Intraoperative Radiation Therapy (IORT) in Gynecologic Cancers: A Scoping Review
Simple Summary
Abstract
1. Introduction
2. Methodology (Supplement)
2.1. Inclusion Criteria
2.2. Search Strategy/Selection Process and Data Extraction
3. Results
3.1. Oligometastatic and Lymph Node Metastasis
3.2. Primary and Recurrent Settings
3.3. Primary Tumor Type and Histology
3.4. Central Recurrence and Pelvic Sidewall Recurrence/Pelvic Exenteration and Laterally Extended Endopelvic Exenteration
3.5. Margin Status
3.6. Tumor Size
3.7. Distant Metastasis and Advanced Locoregional Disease
3.8. Time to Recurrence
3.9. IORT Technique and Discussion of Which Patients Need Additional Perioperative Chemo/Radiotherapy
3.10. Medically Fit Patients
4. Morbidity and Mortality
5. Limitations and Strengths of the Present Review
6. Future Directions
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Pilar, A.; Gupta, M.; Ghosh Laskar, S.; Laskar, S. Intraoperative radiotherapy: Review of techniques and results. Ecancermedicalscience 2017, 11, 750. [Google Scholar] [CrossRef] [PubMed]
- Calvo, F.A.; Meirino, R.M.; Orecchia, R. Intraoperative radiation therapy: First part: Rationale and techniques. Crit. Rev. Oncol./Hematol. 2006, 59, 106–115. [Google Scholar] [CrossRef]
- Casas, F.; Ferrer, F.; Calvo, F.A. European historical note of intraoperative radiation therapy (IORT): A case report from 1905. Radiother. Oncol. 1997, 43, 323–324. [Google Scholar] [CrossRef] [PubMed]
- Barney, B.M.; Petersen, I.A.; Dowdy, S.C.; Bakkum-Gamez, J.N.; Klein, K.A.; Haddock, M.G. Intraoperative Electron Beam Radiotherapy (IOERT) in the management of locally advanced or recurrent cervical cancer. Radiat. Oncol. 2013, 8, 80. [Google Scholar] [CrossRef] [PubMed]
- Arians, N.; Foerster, R.; Rom, J.; Uhl, M.; Roeder, F.; Debus, J.; Lindel, K. Outcome of patients with local recurrent gynecologic malignancies after resection combined with intraoperative electron radiation therapy (IOERT). Radiat. Oncol. 2016, 11, 44. [Google Scholar] [CrossRef]
- Backes, F.J.; Billingsley, C.C.; Martin, D.D.; Tierney, B.J.; Eisenhauer, E.L.; Cohn, D.E.; O’Malley, D.M.; Salani, R.; Copeland, L.J.; Fowler, J.M. Does intra-operative radiation at the time of pelvic exenteration improve survival for patients with recurrent, previously irradiated cervical, vaginal, or vulvar cancer? Gynecol. Oncol. 2014, 135, 95–99. [Google Scholar] [CrossRef]
- Delara, R.; Yang, J.; Suárez-Salvador, E.; Vora, S.; Magriña, J.; Butler, K.; Magtibay, P. Radical Extirpation With Intraoperative Radiotherapy for Locally Recurrent Gynecologic Cancer: An Institutional Review. Mayo Clin. Proc. Innov. Qual. Outcomes 2021, 5, 1081–1088. [Google Scholar] [CrossRef]
- Foley, O.W.; Rauh-Hain, J.A.; Clark, R.M.; Goodman, A.; Growdon, W.B.; Boruta, D.M.; Schorge, J.O.; Del Carmen, M.G. Intraoperative Radiation Therapy in the Management of Gynecologic Malignancies. Am. J. Clin. Oncol. 2016, 39, 329–334. [Google Scholar] [CrossRef]
- Howlett, L.N.; Fadadu, P.P.; Grcevich, L.O.; Fought, A.J.; McGree, M.E.; Giannini, A.; Butler, K.A.; Tortorella, L.; Marnholtz, A.A.; Haddock, M.G.; et al. Intraoperative Radiation Therapy for Recurrent Cervical and Endometrial Cancer: Predicting Morbidity and Mortality in a Contemporary Cohort. Cancers 2024, 16, 3628. [Google Scholar] [CrossRef]
- Jablonska, P.A.; Cambeiro, M.; Gimeno, M.; Aramendía, J.M.; Mínguez, J.A.; Alcázar, J.L.; Aristu, J.J.; Calvo, F.A.; Martínez-Monge, R. Intraoperative electron beam radiotherapy and perioperative high-dose-rate brachytherapy in previously irradiated oligorecurrent gynecological cancer: Clinical outcome analysis. Clin. Transl. Oncol. 2021, 23, 1934–1941. [Google Scholar] [CrossRef]
- Sole, C.V.; Calvo, F.A.; Lizarraga, S.; Gonzalez-Bayon, L.; García-Sabrido, J.L. Intraoperative electron-beam radiation therapy with or without external-beam radiotherapy in the management of paraaortic lymph-node oligometastases from gynecological malignancies. Clin. Transl. Oncol. 2015, 17, 910–916. [Google Scholar] [CrossRef] [PubMed]
- Pagano, F.; Saner, F.A.-C.; Mueller, M.D.; Ionescu, C.; Loessl, K.; Imboden, S. 922 Intraoperative radiation therapy for gynaecologic malignancies: What can we expect? When is it indicated? Int. J. Gynecol. Cancer 2024, 34, A270. [Google Scholar] [CrossRef]
- Sprave, T.; Stoian, R.; Volegova-Neher, N.; Gainey, M.; Kollefrath, M.; Baltas, D.; Grosu, A.L.; Juhasz-Böss, I.; Schröder, R.; Taran, F.A. The value of a multimodal approach combining radical surgery and intraoperative radiotherapy in the recurrence treatment of gynecological malignancies-analysis of a large patient cohort in a tertiary care center. Radiat. Oncol. 2024, 19, 147. [Google Scholar] [CrossRef]
- Ning, M.S.; Ahobila, V.; Jhingran, A.; Stecklein, S.R.; Frumovitz, M.; Schmeler, K.M.; Eifel, P.J.; Klopp, A.H. Outcomes and patterns of relapse after definitive radiation therapy for oligometastatic cervical cancer. Gynecol. Oncol. 2018, 148, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Corrigan, K.L.; Yoder, A.; De, B.; Lin, L.; Jhingran, A.; Joyner, M.M.; Eifel, P.J.; Colbert, L.E.; Lu, K.H.; Klopp, A.H. Long-term survival following definitive radiation therapy for recurrence or oligometastases in gynecological malignancies: A landmark analysis. Gynecol. Oncol. 2022, 164, 550–557. [Google Scholar] [CrossRef]
- Iftode, C.; D’Agostino, G.R.; Tozzi, A.; Comito, T.; Franzese, C.; De Rose, F.; Franceschini, D.; Di Brina, L.; Tomatis, S.; Scorsetti, M. Stereotactic Body Radiation Therapy in Oligometastatic Ovarian Cancer: A Promising Therapeutic Approach. Int. J. Gynecol. Cancer 2018, 28, 1507–1513. [Google Scholar] [CrossRef]
- Conte, C.; Marchetti, C.; Loverro, M.; Giudice, M.T.; Rosati, A.; Gallotta, V.; Scambia, G.; Fagotti, A. Role of minimally invasive secondary cytoreduction in patients with recurrent ovarian cancer. Int. J. Gynecol. Cancer 2023, 33, 137–144. [Google Scholar] [CrossRef]
- Giorda, G.; Boz, G.; Gadducci, A.; Lucia, E.; De Piero, G.; De Paoli, A.; Innocente, R.; Trovò, M.; Sorio, R.; Campagnutta, E. Multimodality approach in extra cervical locally advanced cervical cancer: Chemoradiation, surgery and intra-operative radiation therapy. A phase II trial. Eur. J. Surg. Oncol. 2011, 37, 442–447. [Google Scholar] [CrossRef]
- Bhatla, N.; Berek, J.S.; Cuello Fredes, M.; Denny, L.A.; Grenman, S.; Karunaratne, K.; Kehoe, S.T.; Konishi, I.; Olawaiye, A.B.; Prat, J.; et al. Revised FIGO staging for carcinoma of the cervix uteri. Int. J. Gynaecol. Obstet. 2019, 145, 129–135. [Google Scholar] [CrossRef]
- Salvo, G.; Odetto, D.; Pareja, R.; Frumovitz, M.; Ramirez, P.T. Revised 2018 International Federation of Gynecology and Obstetrics (FIGO) cervical cancer staging: A review of gaps and questions that remain. Int. J. Gynecol. Cancer 2020, 30, 873–878. [Google Scholar] [CrossRef]
- Li, H.; Pang, Y.; Cheng, X. Surgery of primary sites for stage IVB cervical cancer patients receiving chemoradiotherapy: A population-based study. J. Gynecol. Oncol. 2020, 31, e8. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Cho, S.Y.; Kim, B.J.; Kim, M.H.; Choi, S.C.; Ryu, S.Y. The type of metastasis is a prognostic factor in disseminated cervical cancer. J. Gynecol. Oncol. 2010, 21, 186–190. [Google Scholar] [CrossRef]
- Bogani, G.; Vinti, D.; Murgia, F.; Chiappa, V.; Leone Roberti Maggiore, U.; Martinelli, F.; Ditto, A.; Raspagliesi, F. Burden of lymphatic disease predicts efficacy of adjuvant radiation and chemotherapy in FIGO 2018 stage IIICp cervical cancer. Int. J. Gynecol. Cancer 2019, 29, 1355–1360. [Google Scholar] [CrossRef] [PubMed]
- Marnitz, S.; Köhler, C.; Müller, M.; Behrens, K.; Hasenbein, K.; Schneider, A. Indications for primary and secondary exenterations in patients with cervical cancer. Gynecol. Oncol. 2006, 103, 1023–1030. [Google Scholar] [CrossRef] [PubMed]
- Ungar, L.; Palfalvi, L.; Novak, Z. Primary pelvic exenteration in cervical cancer patients. Gynecol. Oncol. 2008, 111, S9–S12. [Google Scholar] [CrossRef]
- Gheorghe, M.; Cozlea, A.L.; Kiss, S.L.; Stanca, M.; Căpîlna, M.E.; Bacalbașa, N.; Moldovan, A.A. Primary pelvic exenteration: Our experience with 23 patients from a single institution. Exp. Ther. Med. 2021, 22, 1060. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ketcham, A.S.; Deckers, P.J.; Sugarbaker, E.V.; Hoye, R.C.; Thomas, L.B.; Smith, R.R. Pelvic exenteration for carcinoma of the uterine cervix. A 15-year experience. Cancer 1970, 26, 513–521. [Google Scholar] [CrossRef] [PubMed]
- Kenter, G.G.; Greggi, S.; Vergote, I.; Katsaros, D.; Kobierski, J.; van Doorn, H.; Landoni, F.; van der Velden, J.; Reed, N.; Coens, C.; et al. Randomized Phase III Study Comparing Neoadjuvant Chemotherapy Followed by Surgery Versus Chemoradiation in Stage IB2-IIB Cervical Cancer: EORTC-55994. J. Clin. Oncol. 2023, 41, 5035–5043. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Maheshwari, A.; Parab, P.; Mahantshetty, U.; Hawaldar, R.; Sastri Chopra, S.; Kerkar, R.; Engineer, R.; Tongaonkar, H.; Ghosh, J.; et al. Neoadjuvant Chemotherapy Followed by Radical Surgery Versus Concomitant Chemotherapy and Radiotherapy in Patients With Stage IB2, IIA, or IIB Squamous Cervical Cancer: A Randomized Controlled Trial. J. Clin. Oncol. 2018, 36, 1548–1555. [Google Scholar] [CrossRef]
- Mileshkin, L.R.; Moore, K.N.; Barnes, E.H.; Gebski, V.; Narayan, K.; King, M.T.; Bradshaw, N.; Lee, Y.C.; Diamante, K.; Fyles, A.W.; et al. Adjuvant chemotherapy following chemoradiotherapy as primary treatment for locally advanced cervical cancer versus chemoradiotherapy alone (OUTBACK): An international, open-label, randomised, phase 3 trial. Lancet Oncol. 2023, 24, 468–482. [Google Scholar] [CrossRef]
- McCormack, M.; Eminowicz, G.; Gallardo, D.; Diez, P.; Farrelly, L.; Kent, C.; Hudson, E.; Panades, M.; Mathew, T.; Anand, A.; et al. Induction chemotherapy followed by standard chemoradiotherapy versus standard chemoradiotherapy alone in patients with locally advanced cervical cancer (GCIG INTERLACE): An international, multicentre, randomised phase 3 trial. Lancet 2024, 404, 1525–1535. [Google Scholar] [CrossRef]
- Sturdza, A.; Pötter, R.; Fokdal, L.U.; Haie-Meder, C.; Tan, L.T.; Mazeron, R.; Petric, P.; Šegedin, B.; Jurgenliemk-Schulz, I.M.; Nomden, C.; et al. Image guided brachytherapy in locally advanced cervical cancer: Improved pelvic control and survival in RetroEMBRACE, a multicenter cohort study. Radiother. Oncol. 2016, 120, 428–433. [Google Scholar] [CrossRef]
- Pötter, R.; Tanderup, K.; Schmid, M.P.; Jürgenliemk-Schulz, I.; Haie-Meder, C.; Fokdal, L.U.; Sturdza, A.E.; Hoskin, P.; Mahantshetty, U.; Segedin, B.; et al. MRI-guided adaptive brachytherapy in locally advanced cervical cancer (EMBRACE-I): A multicentre prospective cohort study. Lancet Oncol. 2021, 22, 538–547. [Google Scholar] [CrossRef]
- Magrina, J.F.; Stanhope, C.R.; Weaver, A.L. Pelvic exenterations: Supralevator, infralevator, and with vulvectomy. Gynecol. Oncol. 1997, 64, 130–135. [Google Scholar] [CrossRef]
- Colombo, N.; Dubot, C.; Lorusso, D.; Caceres, M.V.; Hasegawa, K.; Shapira-Frommer, R.; Tewari, K.S.; Salman, P.; Hoyos Usta, E.; Yañez, E.; et al. Pembrolizumab for Persistent, Recurrent, or Metastatic Cervical Cancer. N. Engl. J. Med. 2021, 385, 1856–1867. [Google Scholar] [CrossRef] [PubMed]
- Oaknin, A.; Gladieff, L.; Martínez-García, J.; Villacampa, G.; Takekuma, M.; De Giorgi, U.; Lindemann, K.; Woelber, L.; Colombo, N.; Duska, L.; et al. Atezolizumab plus bevacizumab and chemotherapy for metastatic, persistent, or recurrent cervical cancer (BEATcc): A randomised, open-label, phase 3 trial. Lancet 2024, 403, 31–43. [Google Scholar] [CrossRef] [PubMed]
- Lorusso, D.; Xiang, Y.; Hasegawa, K.; Scambia, G.; Leiva, M.; Ramos-Elias, P.; Acevedo, A.; Sukhin, V.; Cloven, N.; Pereira de Santana Gomes, A.J.; et al. Pembrolizumab or placebo with chemoradiotherapy followed by pembrolizumab or placebo for newly diagnosed, high-risk, locally advanced cervical cancer (ENGOT-cx11/GOG-3047/KEYNOTE-A18): A randomised, double-blind, phase 3 clinical trial. Lancet 2024, 403, 1341–1350. [Google Scholar] [CrossRef] [PubMed]
- Valstad, H.; Eyjolfsdottir, B.; Wang, Y.; Kristensen, G.B.; Skeie-Jensen, T.; Lindemann, K. Pelvic exenteration for vulvar cancer: Postoperative morbidity and oncologic outcome-A single center retrospective analysis. Eur. J. Surg. Oncol. 2023, 49, 106958. [Google Scholar] [CrossRef]
- Straubhar, A.M.; Chi, A.J.; Zhou, Q.C.; Iasonos, A.; Filippova, O.T.; Leitao, M.M., Jr.; Awowole, I.O.; Abu-Rustum, N.R.; Broach, V.A.; Jewell, E.L.; et al. Pelvic exenteration for recurrent or persistent gynecologic malignancies: Clinical and histopathologic factors predicting recurrence and survival in a modern cohort. Gynecol. Oncol. 2021, 163, 294–298. [Google Scholar] [CrossRef]
- Westin, S.N.; Rallapalli, V.; Fellman, B.; Urbauer, D.L.; Pal, N.; Frumovitz, M.M.; Ramondetta, L.M.; Bodurka, D.C.; Ramirez, P.T.; Soliman, P.T. Overall survival after pelvic exenteration for gynecologic malignancy. Gynecol. Oncol. 2014, 134, 546–551. [Google Scholar] [CrossRef]
- Egger, E.K.; Liesenfeld, H.; Stope, M.B.; Recker, F.; Döser, A.; Könsgen, D.; Marinova, M.; Hilbert, T.; Exner, D.; Ellinger, J.; et al. Pelvic Exenteration in Advanced Gynecologic Malignancies-Who Will Benefit? Anticancer Res. 2021, 41, 3037–3043. [Google Scholar] [CrossRef]
- Matsuo, K.; Matsuzaki, S.; Mandelbaum, R.S.; Matsushima, K.; Klar, M.; Grubbs, B.H.; Roman, L.D.; Wright, J.D. Hospital surgical volume and perioperative mortality of pelvic exenteration for gynecologic malignancies. J. Surg. Oncol. 2020, 121, 402–409. [Google Scholar] [CrossRef] [PubMed]
- Moore, K.N.; Gold, M.A.; McMeekin, D.S.; Zorn, K.K. Vesicovaginal fistula formation in patients with Stage IVA cervical carcinoma. Gynecol. Oncol. 2007, 106, 498–501. [Google Scholar] [CrossRef] [PubMed]
- Biewenga, P.; Mutsaerts, M.A.; Stalpers, L.J.; Buist, M.R.; Schilthuis, M.S.; van der Velden, J. Can we predict vesicovaginal or rectovaginal fistula formation in patients with stage IVA cervical cancer? Int. J. Gynecol. Cancer 2010, 20, 471–475. [Google Scholar] [CrossRef]
- Teh, J.; Yap, S.P.; Tham, I.; Sethi, V.K.; Chua, E.J.; Yeo, R.; Ho, T.H.; Tay, E.H.; Chia, Y.N.; Soh, L.T.; et al. Concurrent chemoradiotherapy incorporating high-dose rate brachytherapy for locally advanced cervical carcinoma: Survival outcomes, patterns of failure, and prognostic factors. Int. J. Gynecol. Cancer 2010, 20, 428–433. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wei, L.C.; Zhang, Y.; Zhao, L.N.; Li, W.W.; Ping, L.J.; Dang, Y.Z.; Hu, J.; Shi, M. The Prognosis and Risk Stratification Based on Pelvic Lymph Node Characteristics in Patients With Locally Advanced Cervical Squamous Cell Carcinoma Treated With Concurrent Chemoradiotherapy. Int. J. Gynecol. Cancer 2016, 26, 1472–1479. [Google Scholar] [CrossRef]
- Ryan, O.K.; Doogan, K.L.; Ryan, É.J.; Donnelly, M.; Reynolds, I.S.; Creavin, B.; Davey, M.G.; Kelly, M.E.; Kennelly, R.; Hanly, A.; et al. Comparing minimally invasive surgical and open approaches to pelvic exenteration for locally advanced or recurrent pelvic malignancies-Systematic review and meta-analysis. Eur. J. Surg. Oncol. 2023, 49, 1362–1373. [Google Scholar] [CrossRef]
- Minimally invasive surgery techniques in pelvic exenteration: A systematic and meta-analysis review. Surg. Endosc. 2018, 32, 4707–4715. [CrossRef]
- Bizzarri, N.; Chiantera, V.; Ercoli, A.; Fagotti, A.; Tortorella, L.; Conte, C.; Cappuccio, S.; Di Donna, M.C.; Gallotta, V.; Scambia, G.; et al. Minimally Invasive Pelvic Exenteration for Gynecologic Malignancies: A Multi-Institutional Case Series and Review of the Literature. J. Minim. Invasive Gynecol. 2019, 26, 1316–1326. [Google Scholar] [CrossRef]
- Dudus, L.; Minciuna, C.; Tudor, S.; Lacatus, M.; Stefan, B.; Vasilescu, C. Robotic or laparoscopic pelvic exenteration for gynecological malignancies: Feasible options to open surgery. J. Gynecol. Oncol. 2024, 35, e12. [Google Scholar] [CrossRef]
- Cianci, S.; Arcieri, M.; Vizzielli, G.; Martinelli, C.; Granese, R.; La Verde, M.; Fagotti, A.; Fanfani, F.; Scambia, G.; Ercoli, A. Robotic Pelvic Exenteration for Gynecologic Malignancies, Anatomic Landmarks, and Surgical Steps: A Systematic Review. Front. Surg. 2021, 8, 790152. [Google Scholar] [CrossRef]
- Oaknin, A.; Bosse, T.J.; Creutzberg, C.L.; Giornelli, G.; Harter, P.; Joly, F.; Lorusso, D.; Marth, C.; Makker, V.; Mirza, M.R.; et al. Endometrial cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Annals of Oncology 2022, 33, 860–877. [Google Scholar] [CrossRef] [PubMed]
- Chiantera, V.; Rossi, M.; De Iaco, P.; Koehler, C.; Marnitz, S.; Fagotti, A.; Fanfani, F.; Parazzini, F.; Schiavina, R.; Scambia, G.; et al. Morbidity after pelvic exenteration for gynecological malignancies: A retrospective multicentric study of 230 patients. Int. J. Gynecol. Cancer 2014, 24, 156–164. [Google Scholar] [CrossRef]
- Mukkai Krishnamurty, D.; Wise, P.E. Importance of surgical margins in rectal cancer. J. Surg. Oncol. 2016, 113, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Garton, G.R.; Gunderson, L.L.; Webb, M.J.; Wilson, T.O.; Cha, S.S.; Podratz, K.C. Intraoperative radiation therapy in gynecologic cancer: Update of the experience at a single institution. Int. J. Radiat. Oncol. Biol. Phys. 1997, 37, 839–843. [Google Scholar] [CrossRef]
- Maggioni, A.; Roviglione, G.; Landoni, F.; Zanagnolo, V.; Peiretti, M.; Colombo, N.; Bocciolone, L.; Biffi, R.; Minig, L.; Morrow, C.P. Pelvic exenteration: Ten-year experience at the European Institute of Oncology in Milan. Gynecol. Oncol. 2009, 114, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.L.; Sinha, S.; Peres, L.C.; Hakam, A.; Chon, H.S.; Hoffman, M.S.; Shahzad, M.M.; Wenham, R.M.; Chern, J.Y. The impact of distance to closest negative margin on survival after pelvic exenteration. Gynecol. Oncol. 2022, 165, 514–521. [Google Scholar] [CrossRef]
- Aiba, T.; Uehara, K.; Tsuyuki, Y.; Ogura, A.; Murata, Y.; Mizuno, T.; Yamaguchi, J.; Kokuryo, T.; Yokoyama, Y.; Ebata, T. Minimum radial margin in pelvic exenteration for locally advanced or recurrent rectal cancer. Eur. J. Surg. Oncol. 2022, 48, 2502–2508. [Google Scholar] [CrossRef]
- Olson, S.M.; Hussaini, M.; Lewis, J.S., Jr. Frozen section analysis of margins for head and neck tumor resections: Reduction of sampling errors with a third histologic level. Mod. Pathol. 2011, 24, 665–670. [Google Scholar] [CrossRef]
- Villafuerte, C.V.L., 3rd; Ylananb, A.M.D.; Wong, H.V.T.; Cañal, J.P.A.; Fragante, E.J.V., Jr. Systematic review of intraoperative radiation therapy for head and neck cancer. Ecancermedicalscience 2022, 16, 1488. [Google Scholar] [CrossRef]
- Bizzarri, N.; Chiantera, V.; Loverro, M.; Sozzi, G.; Perrone, E.; Gueli Alletti, S.; Costantini, B.; Gallotta, V.; Tortorella, L.; Fagotti, A.; et al. Minimally invasive versus open pelvic exenteration in gynecological malignancies: A propensity-matched survival analysis. Int. J. Gynecol. Cancer 2023, 33, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Bizzarri, N.; Chiantera, V.; Loverro, M.; Ercoli, A.; Vizzielli, G.; Scambia, G. Minimally invasive pelvic exenteration for gynaecological malignancies: The challenge of patients’ selection. Facts Views Vis. Obgyn 2023, 15, 193–196. [Google Scholar] [CrossRef] [PubMed]
- Köhler, C.; Tozzi, R.; Possover, M.; Schneider, A. Explorative laparoscopy prior to exenterative surgery. Gynecol. Oncol. 2002, 86, 311–315. [Google Scholar] [CrossRef]
- Sardain, H.; Lavoue, V.; Redpath, M.; Bertheuil, N.; Foucher, F.; Levêque, J. Curative pelvic exenteration for recurrent cervical carcinoma in the era of concurrent chemotherapy and radiation therapy. A Syst. Rev. Eur. J. Surg. Oncol. 2015, 41, 975–985. [Google Scholar] [CrossRef]
- Chiantera, V.; Rossi, M.; De Iaco, P.; Koehler, C.; Marnitz, S.; Ferrandina, G.; Legge, F.; Parazzini, F.; Scambia, G.; Schneider, A.; et al. Survival after curative pelvic exenteration for primary or recurrent cervical cancer: A retrospective multicentric study of 167 patients. Int. J. Gynecol. Cancer 2014, 24, 916–922. [Google Scholar] [CrossRef]
- Gunderson, L.L. Rationale for and results of intraoperative radiation therapy. Cancer 1994, 74, 537–541. [Google Scholar] [CrossRef]
- Seebacher, V.; Rockall, A.; Nobbenhuis, M.; Sohaib, S.A.; Knogler, T.; Alvarez, R.M.; Kolomainen, D.; Shepherd, J.H.; Shaw, C.; Barton, D.P. The impact of nutritional risk factors and sarcopenia on survival in patients treated with pelvic exenteration for recurrent gynaecological malignancy: A retrospective cohort study. Arch Gynecol. Obstet. 2022, 305, 1343–1352. [Google Scholar] [CrossRef] [PubMed]
- Tortorella, L.; Marco, C.; Loverro, M.; Carmine, C.; Persichetti, E.; Bizzarri, N.; Barbara, C.; Francesco, S.; Foschi, N.; Gallotta, V.; et al. Predictive factors of surgical complications after pelvic exenteration for gynecological malignancies: A large single-institution experience. J. Gynecol. Oncol. 2024, 35, e4. [Google Scholar] [CrossRef]
- Tortorella, L.; Casarin, J.; Mara, K.C.; Weaver, A.L.; Multinu, F.; Glaser, G.E.; Cliby, W.A.; Scambia, G.; Mariani, A.; Kumar, A. Prediction of short-term surgical complications in women undergoing pelvic exenteration for gynecological malignancies. Gynecol. Oncol. 2019, 152, 151–156. [Google Scholar] [CrossRef]
- Ng, K.S.; Lee, P.J.M. Pelvic exenteration: Pre-, intra-, and post-operative considerations. Surg. Oncol. 2021, 37, 101546. [Google Scholar] [CrossRef]
- Graybill, W.S.; Frumovitz, M.; Nick, A.M.; Wei, C.; Mena, G.E.; Soliman, P.T.; dos Reis, R.; Schmeler, K.M.; Ramirez, P.T. Impact of smoking on perioperative pulmonary and upper respiratory complications after laparoscopic gynecologic surgery. Gynecol. Oncol. 2012, 125, 556–560. [Google Scholar] [CrossRef] [PubMed]
- Bouwman, F.; Smits, A.; Lopes, A.; Das, N.; Pollard, A.; Massuger, L.; Bekkers, R.; Galaal, K. The impact of BMI on surgical complications and outcomes in endometrial cancer surgery--an institutional study and systematic review of the literature. Gynecol. Oncol. 2015, 139, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Janco, J.M.; Mariani, A.; Bakkum-Gamez, J.N.; Langstraat, C.L.; Weaver, A.L.; McGree, M.E.; Cliby, W.A. Risk-prediction model of severe postoperative complications after primary debulking surgery for advanced ovarian cancer. Gynecol. Oncol. 2016, 140, 15–21. [Google Scholar] [CrossRef]
- Matsuo, K.; Mandelbaum, R.S.; Adams, C.L.; Roman, L.D.; Wright, J.D. Performance and outcome of pelvic exenteration for gynecologic malignancies: A population-based study. Gynecol. Oncol. 2019, 153, 368–375. [Google Scholar] [CrossRef] [PubMed]
Study | Geographical Location | Start Date | Finish Date | Total n | Duration of Study | IORT Volume per Year | Vulvar Cancer (n) | Cervical Cancer (n) | Endometrial Cancer (n) | Vaginal Cancer (n) | Other Primary (n) | Median Tumor Size, cm (Range) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Arians, 2016 [5] | Germany | 2002 | 2014 | 36 | 12 | 3 | 6 | 18 | 12 | 0 | 0 | N.G. |
Backes, 2014 [6] | USA | 2000 | 2012 | 32 | 12 | 2.67 | 3 | 21 | 0 | 8 | 0 | 5–6.5 (0–13) |
Delara, 2021 [7] | USA | 2004 | 2019 | 37 | 15 | 2.47 | 1 | 8 | 20 | 2 | 2 + 4 (ovarian + sarcoma) | 5 (1–12) |
Foley, 2016 [8] | USA | 1994 | 2011 | 32 | 17 | 1.88 | 0 | 21 | 6 | 4 | 1 (ovarian) | 1.5 (0.6–5.2) |
Howlett, 2024 [9] | USA | 2004 | 2021 | 73 | 17 | 4.29 | 0 | 45 | 35 | N.G. | ||
Jablonska, 2021 [10] | Spain | 1985 and 2000 | 1996 and 2015; IORT and PHDRB, respectively | IORT: n = 33; PHDRB: n = 25; total is n = 58 | * 1985–1996 and 2000–2015; total is 26 yrs | 2.23 | 5 (0.5–12.5) | |||||
Sole, 2015 [11] | Spain | 1997 | 2012 | 35 | 15 | 2.33 | 0 | 18 | 14 | 0 | 3 (ovarian) | 6 (2–10) |
Pagano, 2023 * [12] | Switzerland | 2014 | 2022 | 30 | 8 | 3.75 | 19 | 3 | 8 (7 sarcoma + 1 ovarian) | N.G. | ||
Sprave, 2024 [13] | Germany | 2010 | 2022 | 40 | 12 | 3.33 | 10 | 11 | 10 | 0 | 9 (6 sarcoma + 3 ovarian) | N.G. |
Study | Total N | Age (Range) | Comparation/Cohort | IORT Dose | R0 Resection | Histologic Type | Organ Involvement | Lymph Node Metastasis | Prior Radiation | Prior Surgery | Median Time to IORT | Mortality |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Arians, 2016 [5] | 36 | 50.4 (27–76) | No cohort; overall survival compared based on cancer type | 15 Gy (10–18 Gy) | Squamous: 19 (52.8%); adenocarcinoma: 13 (36.1%); serous: 3 (8.3%); mucinous: 1 (2.8%) | 20 (55.6%) | 13 | 24/36 | 35/36 | 55.9 (months) | ||
Backes, 2014 [6] | 32 | PE + IORT = 59; LEER + IORT = 59; only surgery = 48 | Cohorts based on surgery type; cohorts are PE + IORT, LEER + IORT, and only surgery (control) | PE + IORT: 15 Gy (15–20); LEER + IORT: 17.5 Gy (10–17.5) | PE + IORT: 5 (38%); LEER + IORT: 1 (13%); only surgery (control): 4 (36%) | All cohorts with IORT: squamous: 24 (75%); adenocarcinoma: 1 (3%); serous: 1 (3%); other: 3 (9%) | N/A | N/A | PE + IORT: 13 (100%); LEER + IORT: 8 (100%); only surgery: 11 (100%) | N/A | PE + IORT: <24 m 11 pt (85%); LEER + IORT: <24 m 4 pt (50%); only surgery: <24 m 3 pt (27%) | N/A |
Delara, 2021 [7] | Any type of surgery + IORT: n = 37; PE + IORT: n = 10 PE + 8 CRS (para-aortic LND) + 1 vaginectomy; LEER + IORT: n = 18 (13%); only Surgery (control): n = 7 (4 only LEER and 3 only PE w.o. IORT) | Any type of surgery + IORT = 62 | Cohorts based on surgery type; cohorts are PE + IORT, LEER + IORT, and only surgery (control) | Any type of surgery + IORT: 10–18 Gy | Any type of surgery + IORT: 21 (56.8%) | Any type of surgery + IORT: 37/44 (84%) | Any type of surgery + IORT: 36/44 (82%) | Any type of surgery + IORT: 36 m | Any type of surgery + IORT: 22 (59.5%) | |||
Foley, 2016 [8] | 32 | 54 (32–80) | No cohort; overall survival not compared by groups; instead, survival was observed | 13.5 Gy (10–22.5) | 0% | 12 (37.5%) squamous, 12 (37.5%) adenocarcinoma, 2 (6.3%) sarcoma, 2 (6.3%) carcinosarcoma, and 4 (12.5%) other | 28 (87.5%) | 76.30% | 21 (65.6%) | |||
Howlett, 2024 [9] | Any type of surgery + IORT = 73; only surgery: 7 | 56.8 SD 13.7 | Cohorts were any type of surgery + IORT and only surgery (control); overall survival compared based on cancer type | 72.50% | Any type of surgery + IORT: 76.3% | Any type of surgery + IORT: 76.3% | 23.2 m | 1 (1.3%) | ||||
Jablonska, 2021 [10] | IORT: n = 33; PHDRB: n = 25; total is n = 58 | Any type of surgery + IORT = 47 (25–71); perioperative radiotherapy = 57 (28–73) | Cohorts based on radiation type; any type of surgery + IORT and perioperative radiotherapy | Any type of surgery + IORT = 18 (55%); perioperative radiotherapy = 9 (36%) | Any type of surgery + IORT = 24 (73%) squamous, 8 (24%) adenocarcinomas, 1 (3%) clear cell/serous; perioperative radiotherapy = 12 (48%) squamous, 10 (40%) adenocarcinomas, 2 (8%) clear cell/serous, and 1 (4%) other | Any type of surgery + IORT = 6 (18%); perioperative radiotherapy = 10 (20%) | Any type of surgery + IORT = 33 (100%); perioperative radiotherapy = 25 (100%) | Any type of surgery + IORT = 7 (21%); perioperative radiotherapy = 16 (64%) | Any type of surgery + IORT = 22 (66.7%); perioperative radiotherapy = 14 (56%) | |||
Sole, 2015 [11] | 35 | 59 (37–73) | No cohort; all participants received IORT, and survival was observed based on EBRT | 12.5 Gy (7.5–15) | 18 (51%) | 14 (40%) squamous, 21 (60%) adenocarcinomas | 14 (40%) | 18 (51%) | ||||
Pagano, 2023 [12] | 30 | 38.2 m | ||||||||||
Sprave, 2024 [13] | 40 | 58 (26–78) | No cohort; overall survival, local regional control, and distal metastasis were observed | Any type of surgery + IORT: 13.8 Gy (10–18) | 24 (60%) confirmed; 11 (27.5%) status unknown/cannot be evaluated | 20 (50%) squamous, 9 (22.5%) adenocarcinomas, and 11 (27.5%) other | Any type of surgery + IORT: 27 (67.5%) | Any type of surgery + IORT: 35 (87.5%) | Any type of surgery + IORT: 15 m (5–112) |
Study | Total N | 1-Year OS | 2- or 3-Year OS | 5-Year OS | Median OS | 1-Year DFS | 2- or 3-Year DFS | 5-Year DFS | Locoregional Recurrence | Distant Recurrence |
---|---|---|---|---|---|---|---|---|---|---|
Arians, 2016 [5] | 36 | Vulvar: 83.3%; endometrial: 83.3%; cervical: 44.5% | Vulvar: 6.4%; endometrial: 50%; cervical: 6.4% | 14 | 18 (50%) | 16 (44%) | ||||
Backes, 2014 [6] | PE + IORT: 13; LEER + IORT: 8; only surgery: 11 | PE + IORT: 50%; LEER + IORT: 63%; only surgery: 83% | PE + IORT: 10%; LEER + IORT: 20%; only surgery: 60% | PE + IORT: 0%; LEER + IORT: 20%; only surgery: 33% | PE + IORT: 17; LEER + IORT: 10; only surgery: 41 | PE + IORT: 55%; LEER + IORT: 45%; only surgery: 82% | PE + IORT: 18%; LEER + IORT: 18%; only surgery: 47% | PE + IORT: 0%; LEER + IORT: 18%; only surgery: 33% | PE + IORT: 31%; LEER + IORT: 37.5%; only surgery: 36% | PE + IORT: 38%; LEER + IORT: 62.5%; only surgery: 9% |
Delara, 2021 [7] | Any type of surgery + IORT: | Any type of surgery + IORT: | Any type of surgery + IORT: | Any type of surgery + IORT: | Any type of surgery: 52 margin negative | Any type of surgery + IORT: 51.8% (margin neg.), 0% (margin pos.); only surgery (control): 54.8% (margin neg.) | Any type of surgery + IORT: 25 (67.5%); only surgery (control): 0% | Any type of surgery + IORT: 25 (67.5%); only surgery (control): 0% | ||
+ | ||||||||||
37 IORT | 90% (margin negative) | 62.9% (margin negative) | 50% (margin negative) | 10 to 14 margin positive | ||||||
only surgery (control): | ||||||||||
PE +IORT: | 85% (margin positive) | 0–20% (margin positive) | 0% (margin positive) | |||||||
10 PE + 8 CRS (para-aortic LND) + 1 vaginectomy | 61 margin negative | |||||||||
LEER + IORT: 18 | Only surgery (control): | |||||||||
70.8% (margin negative) | ||||||||||
Only surgery (control): 7 (4 only LEER and 3 only PE w/o IORT) | ||||||||||
Foley, 2016 [8] | 69.70% | 30.30% | 13 (40.6%) | 4 (12.5%) | ||||||
Howlett, 2024 [9] | 73 | Endometrial: 87%; cervical: 67% | Any type of surgery + IORT: 48.6%; endometrial: 58.6% (95CI 43.6–78.8); cervical: 41% (95CI 28.4–59.2) | 34 m | ||||||
Jablonska, 2021 [10] | Any type of surgery + IORT = 19.1% (2 yr); perioperative radiotherapy = 19.1% (2 yr) | Any type of surgery + IORT = 17.8%; perioperative radiotherapy = 17.8% | Any type of surgery + IORT = 17.2% (2 yr); perioperative radiotherapy = 17.2% (2 yr) | Any type of surgery + IORT = 15.5%; perioperative radiotherapy = 15.5% | Any type of surgery + IORT = 18 (54.6%); perioperative radiotherapy = 11 (44%) | Any type of surgery + IORT = 17 (51.5%); perioperative radiotherapy = 7 (28%) | ||||
Sole, 2015 [11] | 35 | 85% | 55% | 49% | 85% | 50% | 44% | 21% | ||
Pagano, 2023 [12] | Any type of surgery + IORT: 58.1% 2 yr | Any type of surgery + IORT: 18.2% 2 yr | ||||||||
Sprave, 2024 [13] | 80% | 69% | 55% | 18 (45%) | 9 (22.5%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erdemoglu, E.; Ostby, S.A.; Senthilkumar, S.; Kumar, A.; Vora, S.A.; Chen, L.; James, S.E.; Butler, K.A. Intraoperative Radiation Therapy (IORT) in Gynecologic Cancers: A Scoping Review. Cancers 2025, 17, 1356. https://doi.org/10.3390/cancers17081356
Erdemoglu E, Ostby SA, Senthilkumar S, Kumar A, Vora SA, Chen L, James SE, Butler KA. Intraoperative Radiation Therapy (IORT) in Gynecologic Cancers: A Scoping Review. Cancers. 2025; 17():1356. https://doi.org/10.3390/cancers17081356
Chicago/Turabian StyleErdemoglu, Evrim, Stuart A. Ostby, Sanjanaa Senthilkumar, Amanika Kumar, Sujay A. Vora, Longwen Chen, Sarah E. James, and Kristina A. Butler. 2025. "Intraoperative Radiation Therapy (IORT) in Gynecologic Cancers: A Scoping Review" Cancers 17, no. : 1356. https://doi.org/10.3390/cancers17081356
APA StyleErdemoglu, E., Ostby, S. A., Senthilkumar, S., Kumar, A., Vora, S. A., Chen, L., James, S. E., & Butler, K. A. (2025). Intraoperative Radiation Therapy (IORT) in Gynecologic Cancers: A Scoping Review. Cancers, 17(), 1356. https://doi.org/10.3390/cancers17081356