Photocatalytic Selective Oxidation of Ammonia in a Semi-Batch Reactor: Unravelling the Effect of Reaction Conditions and Metal Co-Catalysts
Abstract
:1. Introduction
2. Results and Discussion
2.1. Activity Testing for Photooxidation of Ammonia
2.1.1. Effect of Ammonia Concentration
2.1.2. Effect of pH
2.1.3. Effect of Co-Catalyst
3. Materials and Methods
3.1. Materials Preparation
- 0.1 mol% of Au, from NaAuCl4·2H2O, TTPR: 700 °C;
- 0.1 mol% of Ag, from AgNO3, TTPR: 150 °C;
- 0.1 mol% of Pd, from Pd(NO3)2·xH2O, TTPR: 300 °C;
- 0.1 mol% of Pt, from Pt(Acetylacetonate)2, TTPR: 700 °C.
3.2. Materials Characterization
3.3. Photoreactor and Testing Condition
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Delwiche, C.C. Denitrification, Nitrification, and Atmosphere Nitrous Oxide; John Wiley & Sons: New York, NY, USA, 1981; pp. 107–108. ISBN 10-0471048968. [Google Scholar]
- Lee, J.; Park, H.; Choi, W. Selective Photocatalytic Oxidation of NH3 to N2 on Platinized TiO2 in Water. Environ. Sci. Technol. 2002, 36, 5462–5468. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Kankanamge, N.R.; Chow, C.; Welsh, D.T.; Li, T.; Teasdale, P.R. Removing Ammonium from Water and Wastewater Using Cost-Effective Adsorbents: A Review. J. Environ. Sci. 2018, 63, 174–197. [Google Scholar] [CrossRef]
- Yang, J.; Wang, F.; Lv, J.; Liu, Q.; Nan, F.; Liu, X.; Xu, L.; Xie, S.; Feng, J. Interactive Effects of Temperature and Nutrients on the Phytoplankton Community in an Urban River in China. Environ. Monit. Assess. 2019, 191. [Google Scholar] [CrossRef] [PubMed]
- Stumm, W.; Morgan, J. Chemical Equilibria and Rates in Natural Waters. In Aquatic Chemistry; John Wiley & Sons: New York, NY, USA, 1996; pp. 120–129. [Google Scholar]
- Chapman, D.; Kimstach, V. Selection of water quality variables. In Water Quality Assessments—A Guide to Use of Biota, Sediments and Water in Environmental Monitoring; Chapman, D., Ed.; WHO: Geneva, Switzerland, 1992. [Google Scholar]
- Appl, M. The Haber–Bosch Process and the Development of Chemical Engineering. In A Century of Chemical Engineering; Plenum Press: New York, NY, USA, 1982; pp. 29–54. ISBN 978-0-306-40895-3. [Google Scholar]
- Rossetti, I. Reactor Design, Modelling and Process Intensification for Ammonia Synthesis. In Sustainable Ammonia Production, Series Green Energy and Technology; Springer Nature Switzerland AG: Charm, Switzerland, 2020; pp. 17–48. [Google Scholar]
- Christensen, M.H.; Harremoes, P. Nitrification and Denitrification in Wastewater Treatment. Water Pollut. J. 1978, 2, 391–414. [Google Scholar]
- Focht, D.D.; Chang, A.C. Nitrification and Denitrification Processes Related to Wastewater Treatment. Adv. Appl. Microbiol. 1975, 19, 153–186. [Google Scholar]
- Pressley, T.A.; Bishop, D.F.; Roan, S.G. Ammonia-Nitrogen Removal by Breakpoint Chlorination. Environ. Sci. Technol. 1972, 6, 622–628. [Google Scholar] [CrossRef]
- Compagnoni, M.; Ramis, G.; Freyria, F.S.; Armandi, M.; Bonelli, B.; Rossetti, I. Photocatalytic Processes for the Abatement of N-Containing Pollutants from Waste Water. Part 1: Inorganic Pollutants. J. Nanosci. Nanotechnol. 2017, 17, 3632–3653. [Google Scholar] [CrossRef]
- Freyria, F.S.; Armandi, M.; Compagnoni, M.; Ramis, G.; Rossetti, I.; Bonelli, B. Catalytic and Photocatalytic Processes for the Abatement of N-Containing Pollutants from Wastewater. Part 2: Organic Pollutants. J. Nanosci. Nanotechnol. 2017, 17, 3654–3672. [Google Scholar] [CrossRef]
- Gopalarao, G.; Murty, K.S. Photosensitisation by Solids. Part II. Photosensitized Oxidation Ofammoniain Aqueous Solution with Titania as the Photosensitiser. J. Indian Chem. Soc. 1941, 18, 361–370. [Google Scholar]
- Bravo, A.; Garcia, J.; Domenech, X.; Peral, J. Some Aspects of the Photocatalytic Oxidation Ofammoniumion by Titanium Dioxide. J. Chem. Res. 1993, 376–377. [Google Scholar]
- Ren, H.T.; Liang, Y.; Han, X.; Liu, Y.; Wu, S.H.; Bai, H.; Jia, S.Y. Photocatalytic Oxidation of Aqueous Ammonia by Ag2O/TiO2 (P25): New Insights into Selectivity and Contributions of Different Oxidative Species. Appl. Surf. Sci. 2020, 504. [Google Scholar] [CrossRef]
- Wang, J.; Song, M.; Chen, B.; Wang, L.; Zhu, R. Effects of PH and H2O2 on Ammonia, Nitrite, and Nitrate Transformations during UV254nm Irradiation: Implications to Nitrogen Removal and Analysis. Chemosphere 2017, 184, 1003–1011. [Google Scholar] [CrossRef] [PubMed]
- Nagaveni, K.; Sivalingam, G.; Hegde, M.S.; Madras, G. Solar Photocatalytic Degradation of Dyes: High Activity of Combustion Synthesized Nano TiO2. Appl. Catal. B Environ. 2004, 48, 83–93. [Google Scholar] [CrossRef]
- Low, G.K.C.; McEvoy, S.R.; Matthews, R.W. Formation of Nitrate and Ammonium Ions in Titanium Dioxide Mediated Photocatalytic Degradation of Organic Compounds Containing Nitrogen Atoms. Environ. Sci. Technol. 1991, 25, 460–467. [Google Scholar] [CrossRef]
- Pollema, C.H.; Milosavljevic, E.B.; Hendrix, J.L.; Solujic, L.; Nelson, J.H. Photocatalytic Oxidation of Aqueous Ammonia (Ammonium Ion) to Nitrite or Nitrate at TiO2 Particles. Monatsh. Chem. 1992, 123, 333–339. [Google Scholar] [CrossRef]
- Bonsen, M.; Schroeter, S.; Jacobs, H.; Broekaert, J.A.C. Photocatalytic Degradation of Ammonia with TiO2 as Photocatalyst in the Laboratory and under the Use of Solar Radiation. Chemosphere 1997, 35, 1431–1445. [Google Scholar] [CrossRef]
- Biyoghe Bi Ndong, L.; Ibondou, M.P.; Gu, X.; Lu, S.; Qiu, Z.; Sui, Q.; Maurice Mbadinga, S. Enhanced Photocatalytic Activity of TiO2 Nanosheets by Doping with Cu for Chlorinated Solvent Pollutants Degradation. Ind. Eng. Chem. Res. 2014, 53, 1368–1376. [Google Scholar] [CrossRef]
- Kumaresan, L.; Mahalakshmi, M.; Palanichamy, M.; Murugesan, V. Synthesis, Characterization, and Photocatalytic Activity of Sr2+ Doped TiO2 Nanoplates. Ind. Eng. Chem. Res. 2010, 49, 1480–1485. [Google Scholar] [CrossRef]
- Bahadori, E.; Compagnoni, M.; Tripodi, A.; Freyria, F.; Armandi, M.; Bonelli, B.; Ramis, G.; Rossetti, I. Photoreduction of Nitrates from Waste and Drinking Water. Mater. Today Proc. 2018, 5, 17404–17413. [Google Scholar] [CrossRef]
- Bahadori, E.; Tripodi, A.; Ramis, G.; Rossetti, I. Semi-Batch Photocatalytic Reduction of Nitrates: Role of Process Conditions and Co-Catalysts. ChemCatChem 2019, 11, 4642–4652. [Google Scholar] [CrossRef]
- Rossetti, I.; Biffi, C.; Bianchi, C.L.; Nichele, V.; Signoretto, M.; Menegazzo, F.; Finocchio, E.; Ramis, G.; Di Michele, A. Ni/SiO2 and Ni/ZrO2 Catalysts for the Steam Reforming of Ethanol. Appl. Catal. B Environ. 2012, 117–118, 384–396. [Google Scholar] [CrossRef]
- Finocchio, E.; Rossetti, I.; Ramis, G. Redox Properties of Co- and Cu-Based Catalysts for the Steam Reforming of Ethanol. Int. J. Hydrogen Energy 2013, 38, 3213–3225. [Google Scholar] [CrossRef]
- Compagnoni, M.; Lasso, J.; Di Michele, A.; Rossetti, I. Flame-Pyrolysis-Prepared Catalysts for the Steam Reforming of Ethanol. Catal. Sci. Technol. 2016, 6, 6257. [Google Scholar] [CrossRef]
- Chiarello, G.L.; Rossetti, I.; Lopinto, P.; Migliavacca, G.; Forni, L. Preparation by Flame Spray Pyrolysis of ABO3±δ Catalysts for the Flameless Combustion of Methane. Catal. Today 2006, 117, 549–553. [Google Scholar] [CrossRef]
- Zhu, X.; Castleberry, S.R.; Nanny, M.A.; Butler, E.C. Effect of PH on the Photocatalytic Oxidation of Aqueous Ammonia and Nitrite in Titanium Dioxide Suspensions. Environ. Sci. Technol. 2005, 39, 3784–3791. [Google Scholar] [CrossRef] [PubMed]
- Pagsberg, P.B. Investigation of the NH2 Radical Produced by Pulse Radiolysis of Ammonia in Aqueous Solution. Ris. Rep. 1972, 256, 209–221. [Google Scholar]
- Neta, P.; Maruthamuthu, P.; Carton, P.M.; Fessenden, R.W. Formation and Reactivity of the Amino Radical. J. Phys. Chem. 1978, 82, 1875–1878. [Google Scholar] [CrossRef]
- Milis, A.; Doménech, X. Photoassisted Oxidation of Nitrite and Nitrate over Different Semiconducting Oxides. J. Photochem. Photobiol. A Chem. 1993, 72, 55–59. [Google Scholar] [CrossRef]
- Letterman, R.D.W. Quality and treatment: A handbook of community water supplies. In American Water Works Association; McGraw-Hill: New York, NY, USA, 1999; Chapter 6. [Google Scholar]
- Shibuya, S.; Sekine, Y.; Mikami, I. Influence of PH and PH Adjustment Conditions on Photocatalytic Oxidation of Aqueous Ammonia under Airflow over Pt-Loaded TiO2. Appl. Catal. A Gen. 2015, 496, 73–78. [Google Scholar] [CrossRef]
- Ogata, Y.; Tomizawa, K.; Adachi, K. Photooxidation of Ammonia with Aqueous Hydrogen Peroxide. Mem. Fac. Eng. Nagoya Univ. 1981, 3, 58–65. [Google Scholar]
- Kuo, C.H.; Yuan, F.; Hill, D.O. Kinetics of Oxidation of Ammonia in Solutions Containing Ozone with or without Hydrogen Peroxide. Ind. Eng. Chem. Res. 1997, 36, 4108–4113. [Google Scholar] [CrossRef]
- Huang, L.; Li, L.; Dong, W.; Liu, Y.; Hou, H. Removal of Ammonia by OH Radical in Aqueous Phase. Environ. Sci. Technol. 2008, 42, 8070–8075. [Google Scholar] [CrossRef]
- Hoigne, J.; Bader, H. Ozonation of Water: Kinetics of Oxidation of Ammonia by Ozone and Hydroxyl Radicals. Environ. Sci. Technol. 1978, 12, 79–84. [Google Scholar] [CrossRef]
- Wang, A.; Edwards, J.G.; Davies, J.A. Photooxidation of Aqueous Ammonia with Titania-Based Heterogeneous Catalysts. Sol. Energy 1994, 52, 459–466. [Google Scholar] [CrossRef]
- Altomare, M.; Chiarello, G.L.; Costa, A.; Guarino, M.; Selli, E. Photocatalytic Abatement of Ammonia in Nitrogen-Containing Effluents. Chem. Eng. J. 2012, 191, 394–401. [Google Scholar] [CrossRef]
- Altomare, M.; Dozzi, M.V.; Chiarello, G.L.; Di Paola, A.; Palmisano, L.; Selli, E. High Activity of Brookite TiO2 Nanoparticles in the Photocatalytic Abatement of Ammonia in Water. Catal. Today 2015, 252, 184–189. [Google Scholar] [CrossRef]
- Li, A.; Wang, Z.; Yin, H.; Wang, S.; Yan, P.; Huang, B.; Wang, X.; Li, R.; Zong, X.; Han, H.; et al. Understanding the Anatase-Rutile Phase Junction in Charge Separation and Transfer in a TiO2 Electrode for Photoelectrochemical Water Splitting. Chem. Sci. 2016, 7, 6076–6082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakajima, H.; Mori, T.; Shen, Q.; Toyoda, T. Photoluminescence Study of Mixtures of Anatase and Rutile TiO2 Nanoparticles: Influence of Charge Transfer between the Nanoparticles on Their Photoluminescence Excitation Bands. Chem. Phys. Lett. 2005, 409, 81–84. [Google Scholar] [CrossRef]
- Altomare, M.; Selli, E. Effects of Metal Nanoparticles Deposition on the Photocatalytic Oxidation of Ammonia in TiO2 Aqueous Suspensions. Catal. Today 2013, 209, 127–133. [Google Scholar] [CrossRef]
- Chiarello, G.L.; Rossetti, I.; Forni, L. Flame-Spray Pyrolysis Preparation of Perovskites for Methane Catalytic Combustion. J. Catal. 2005, 236, 251–261. [Google Scholar] [CrossRef]
- Rossetti, I.; Compagnoni, M.; Ramis, G.; Freyria, F.; Armandi, M.; Bonelli, B. Development of Unconventional Photocatalytic Reactors and Processes for the Abatement of Harmful N-Containing Pollutants. Chem. Eng. Trans. 2017, 57, 1663. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bahadori, E.; Conte, F.; Tripodi, A.; Ramis, G.; Rossetti, I. Photocatalytic Selective Oxidation of Ammonia in a Semi-Batch Reactor: Unravelling the Effect of Reaction Conditions and Metal Co-Catalysts. Catalysts 2021, 11, 209. https://doi.org/10.3390/catal11020209
Bahadori E, Conte F, Tripodi A, Ramis G, Rossetti I. Photocatalytic Selective Oxidation of Ammonia in a Semi-Batch Reactor: Unravelling the Effect of Reaction Conditions and Metal Co-Catalysts. Catalysts. 2021; 11(2):209. https://doi.org/10.3390/catal11020209
Chicago/Turabian StyleBahadori, Elnaz, Francesco Conte, Antonio Tripodi, Gianguido Ramis, and Ilenia Rossetti. 2021. "Photocatalytic Selective Oxidation of Ammonia in a Semi-Batch Reactor: Unravelling the Effect of Reaction Conditions and Metal Co-Catalysts" Catalysts 11, no. 2: 209. https://doi.org/10.3390/catal11020209
APA StyleBahadori, E., Conte, F., Tripodi, A., Ramis, G., & Rossetti, I. (2021). Photocatalytic Selective Oxidation of Ammonia in a Semi-Batch Reactor: Unravelling the Effect of Reaction Conditions and Metal Co-Catalysts. Catalysts, 11(2), 209. https://doi.org/10.3390/catal11020209