Two (Chemo)-Enzymatic Cascades for the Production of Opposite Enantiomers of Chiral Azidoalcohols
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalyst Selection for Asymmetric Epoxidation (First Cascade Step)
2.2. Catalyst Selection for the Epoxide Ring-Opening Reaction (Second Cascade Step)
2.3. Optimisation and Compatibility Tests of the Shi Epoxidation and the HHDH-Catalysed Epoxide Ring Opening (Cascade 1)
2.4. Optimisation of the Styrene Monooxygenase-Catalysed Epoxidation and Compatibility Tests with the HHDH-Catalysed Epoxide Ring Opening (Cascade 2)
2.5. Cascade Runs
3. Materials and Methods
3.1. Chemicals
3.2. Chemical Synthesis of Epoxides
3.3. Chemical Synthesis of Azidoalcohol Standards
3.4. Bacterial Strains and Plasmids
3.5. Biocatalyst Production
3.6. Epoxidation Catalysed by the Unspecific Peroxygenase from Agrocybe aegerita
3.7. StyAB-Catalysed Epoxidation—1 mL Scale
3.8. StyAB-Catalysed Epoxidation—80 mL Scale
3.9. Jacobsen Epoxidation—1 mL Scale
3.10. Shi epoxidation
3.11. HHDH-Catalysed Epoxide Ring-Opening
3.12. HHDH—Compatibility Tests
3.13. Cascade 1—Shi Epoxidation Diketal Catalyst, HHDH—One-Pot Two-Step Mode
3.14. Cascade 2—StyAB, HHDH—One-Pot Two-Step Mode
3.15. Sample Preparation for GC Analysis
3.16. GC Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ricklefs, E.; Girhard, M.; Koschorreck, K.; Smit, M.S.; Urlacher, V.B. Two-Step One-Pot Synthesis of Pinoresinol from Eugenol in an Enzymatic Cascade. Chem. Cat. Chem. 2015, 7, 1857–1864. [Google Scholar] [CrossRef]
- Bruggink, A.; Schoevaart, R.; Kieboom, T. Concepts of Nature in Organic Synthesis: Cascade Catalysis and Multistep Conversions in Concert. Org. Process. Res. Dev. 2003, 7, 622–640. [Google Scholar] [CrossRef]
- Schoevaart, R.; van Rantwijk, F.; Sheldon, R.A. A Four-Step Enzymatic Cascade for the One-Pot Synthesis of Non-Natural Carbohydrates from Glycerol. J. Org. Chem. 2000, 65, 6940–6943. [Google Scholar] [CrossRef] [PubMed]
- Schubert, J.; Schwesinger, R.; Prinzbach, H. Total Synthesis of a Fortimicin Aglycone. Angew. Chem. Int. Ed. 1984, 23, 167–169. [Google Scholar] [CrossRef]
- Yadav, J.S.; Reddy, P.T.; Nanda, S.; Rao, A.B. Stereoselective Synthesis of (R)-(−)-Denopamine, (R)-(−)-Tembamide and (R)-(−)-Aegeline via Asymmetric Reduction of Azidoketones by Daucus carota in Aqueous Medium. Tetrahedron Asymmetry 2002, 12, 3381–3385. [Google Scholar] [CrossRef]
- Gupta, P.; Mahajan, N. Biocatalytic Approaches towards the Stereoselective Synthesis of Vicinal Amino Alcohols. New J. Chem. 2018, 42, 12296–12327. [Google Scholar] [CrossRef]
- Smith, B.T.; Gracias, V.; Aubé, J. Regiochemical Studies of the Ring Expansion Reactions of Hydroxy Azides with Cyclic Ketones. J. Org. Chem. 2000, 65, 3771–3774. [Google Scholar] [CrossRef]
- Sonavane, S.U.; Chidambaram, M.; Khalil, S.; Almog, J.; Sasson, Y. Synthesis of Cyclic Disulfides Using Didecyldimethylammonium Bromide as Phase Transfer Catalyst. Tetrahedron Lett. 2008, 49, 520–522. [Google Scholar] [CrossRef]
- Badiang, J.G.; Aubé, J. One-Step Conversion of Aldehydes to Oxazolines and 5,6-Dihydro-4H-1,3-Oxazines Using 1,2- and 1,3-Azido Alcohols. J. Org. Chem. 1996, 61, 2484–2487. [Google Scholar] [CrossRef]
- Scriven, E.F.V.; Turnbull, K. Azides: Their Preparation and Synthetic Uses. Chem. Rev. 1988, 88, 297–368. [Google Scholar] [CrossRef]
- Fringuelli, F.; Piermatti, O.; Pizzo, F.; Vaccaro, L. Ring Opening of Epoxides with Sodium Azide in Water. A Regioselective PH-Controlled Reaction. J. Org. Chem. 1999, 64, 6094–6096. [Google Scholar] [CrossRef]
- Martínez-Montero, L.; Tischler, D.; Süss, P.; Schallmey, A.; Franssen, M.C.; Hollmann, F.; Paul, C.E. Asymmetric Azidohydroxylation of Styrene Derivatives Mediated by a Biomimetic Styrene Monooxygenase Enzymatic Cascade. Catal. Sci. Technol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Katsuki, T.; Sharpless, K.B. The First Practical Method for Asymmetric Epoxidation. J. Am. Chem. Soc. 1980, 102, 5974–5976. [Google Scholar] [CrossRef]
- Xia, Q.-H.; Ge, H.-Q.; Ye, C.-P.; Liu, Z.-M.; Su, K.-X. Advances in Homogeneous and Heterogeneous Catalytic Asymmetric Epoxidation. Chem. Rev. 2005, 105, 1603–1662. [Google Scholar] [CrossRef]
- Wang, C.; Yamamoto, H. Asymmetric Epoxidation Using Hydrogen Peroxide as Oxidant. Chem. Asian J. 2015, 10, 2056–2068. [Google Scholar] [CrossRef]
- Zhang, W.; Loebach, J.L.; Wilson, S.R.; Jacobsen, E.N. Enantioselective Epoxidation of Unfunctionalized Olefins Catalyzed by Salen Manganese Complexes. J. Am. Chem. Soc. 1990, 112, 2801–2803. [Google Scholar] [CrossRef]
- Ito, Y.N.; Katsuki, T. Asymmetric Catalysis of New Generation Chiral Metallosalen Complexes. Bull. Chem. Soc. Jpn. 1999, 72, 603–619. [Google Scholar] [CrossRef]
- Miyazaki, T.; Katsuki, T. Nb(Salen)-Catalyzed Sulfoxidation. Synlett 2003, 1046–1048. [Google Scholar] [CrossRef]
- Brandes, B.D.; Jacobsen, E.N. Highly Enantioselective, Catalytic Epoxidation of Trisubstituted Olefins. J. Org. Chem. 1994, 59, 4378–4380. [Google Scholar] [CrossRef]
- Tu, Y.; Wang, Z.-X.; Shi, Y. An Efficient Asymmetric Epoxidation Method for Trans-Olefins Mediated by a Fructose-Derived Ketone. J. Am. Chem. Soc. 1996, 118, 9806–9807. [Google Scholar] [CrossRef]
- Shu, L.; Shi, Y. An Efficient Ketone-Catalyzed Epoxidation Using Hydrogen Peroxide as Oxidant. J. Org. Chem. 2000, 65, 8807–8810. [Google Scholar] [CrossRef]
- Liang, Y.; Wei, J.; Qiu, X.; Jiao, N. Homogeneous Oxygenase Catalysis. Chem. Rev. 2018, 118, 4912–4945. [Google Scholar] [CrossRef] [PubMed]
- Hollmann, F.; Arends, I.W.C.; Buehler, K.; Schallmey, A.; Bühler, B. Enzyme -Mediated Oxidations for the Chemist. Green Chem. 2011, 13, 226–265. [Google Scholar] [CrossRef]
- Holtmann, D.; Fraaije, M.W.; Arends, I.W.C.; Opperman, D.J.; Hollmann, F. The Taming of Oxygen: Biocatalytic Oxyfunctionalisations. Chem. Comm. 2014, 50, 13180–13200. [Google Scholar] [CrossRef] [Green Version]
- Toda, H.; Imae, R.; Itoh, N. Bioproduction of Chiral Epoxyalkanes Using Styrene Monooxygenase from Rhodococcus sp. ST-10 (RhSMO). Adv. Synth. Catal. 2014, 356, 3443–3450. [Google Scholar] [CrossRef]
- Toda, H.; Imae, R.; Komio, T.; Itoh, N. Expression and Characterization of Styrene Monooxygenases of Rhodococcus sp. ST-5 and ST-10 for Synthesizing Enantiopure (S)-Epoxides. Appl. Microbiol. Biotechnol. 2012, 96, 407–418. [Google Scholar] [CrossRef]
- Toda, H.; Itoh, N. Isolation and Characterization of Styrene Metabolism Genes from Styrene-Assimilating Soil Bacteria Rhodococcus sp. ST-5 and ST-10. J. Biosci. Bioeng. 2012, 113, 12–19. [Google Scholar] [CrossRef]
- Tischler, D.; Schlömann, M.; van Berkel, W.J.H.; Gassner, G.T. FAD C(4a)-Hydroxide Stabilized in a Naturally Fused Styrene Monooxygenase. FEBS Lett. 2013, 587, 3848–3852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riedel, A.; Heine, T.; Westphal, A.H.; Conrad, C.; Rathsack, P.; van Berkel, W.J.H.; Tischler, D. Catalytic and Hydrodynamic Properties of Styrene Monooxygenases from Rhodococcus opacus 1CP Are Modulated by Cofactor Binding. AMB Express 2015, 5, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Oelschlägel, M.; Zimmerling, J.; Schlömann, M.; Tischler, D. Styrene Oxide Isomerase of Sphingopyxis sp. Kp5.2. Microbiology 2014, 160, 2481–2491. [Google Scholar] [CrossRef]
- Xiao, H.; Dong, S.; Liu, Y.; Pei, X.-Q.; Lin, H.; Wu, Z.-L. A New Clade of Styrene Monooxygenases for (R)-Selective Epoxidation. Catal. Sci. Technol. 2021, 11, 2195–2201. [Google Scholar] [CrossRef]
- Heine, T.; Scholtissek, A.; Hofmann, S.; Koch, R.; Tischler, D. Accessing Enantiopure Epoxides and Sulfoxides: Related Flavin-Dependent Monooxygenases Provide Reversed Enantioselectivity. ChemCatChem 2020, 12, 199–209. [Google Scholar] [CrossRef] [Green Version]
- Cui, C.; Guo, C.; Lin, H.; Ding, Z.-Y.; Liu, Y.; Wu, Z.-L. Functional Characterization of an (R)-Selective Styrene Monooxygenase from Streptomyces sp. NRRL S-31. Enzyme Microb. Technol. 2020, 132, 109391. [Google Scholar] [CrossRef]
- Benedetti, F.; Berti, F.; Norbedo, S. Regio- and Stereoselective Ring Opening of 2,3-Epoxyalcohols with Diethylaluminium Azide. Tetrahedron Lett. 1998, 39, 7971–7974. [Google Scholar] [CrossRef]
- Hansen, K.B.; Leighton, J.L.; Jacobsen, E.N. On the Mechanism of Asymmetric Nucleophilic Ring-Opening of Epoxides Catalyzed by (Salen)CrIII Complexes. J. Am. Chem. Soc. 1996, 118, 10924–10925. [Google Scholar] [CrossRef]
- Kamal, A.; Damayanthi, Y.; Reddy, B.S.N.; Lakminarayana, B.; Reddy, B.S.P. Novel Biocatalytic Reduction of Aryl Azides: Chemoenzymatic Synthesis of Pyrrolo [2,1–c][1,4] Benzodiazepine Antibiotics1. Chem. Comm. 1997, 11, 1015–1016. [Google Scholar] [CrossRef]
- Jacobsen, E.N. Asymmetric Catalysis of Epoxide Ring-Opening Reactions. Acc. Chem. Res. 2000, 33, 421–431. [Google Scholar] [CrossRef]
- White, D.E.; Tadross, P.M.; Lu, Z.; Jacobsen, E.N. A Broadly Applicable and Practical Oligomeric (Salen) Co Catalyst for Enantioselective Epoxide Ring-Opening Reactions. Tetrahedron 2014, 70, 4165–4180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schallmey, A.; Schallmey, M. Recent Advances on Halohydrin Dehalogenases—from Enzyme Identification to Novel Biocatalytic Applications. Appl. Microbiol. Biotechnol. 2016, 100, 7827–7839. [Google Scholar] [CrossRef] [Green Version]
- Blažević, Z.F.; Milčić, N.; Sudar, M.; Elenkov, M.M. Halohydrin Dehalogenases and Their Potential in Industrial Application—A Viewpoint of Enzyme Reaction Engineering. Adv. Syn. Catal. 2021, 363, 388–410. [Google Scholar] [CrossRef]
- Schallmey, M.; Koopmeiners, J.; Wells, E.; Wardenga, R.; Schallmey, A. Expanding the Halohydrin Dehalogenase Enzyme Family: Identification of Novel Enzymes by Database Mining. Appl. Environ. Microbiol. 2014, 80, 7303–7315. [Google Scholar] [CrossRef] [Green Version]
- Calderini, E.; Wessel, J.; Süss, P.; Schrepfer, P.; Wardenga, R.; Schallmey, A. Selective Ring-Opening of Di-Substituted Epoxides Catalysed by Halohydrin Dehalogenases. Chem. Cat. Chem. 2019, 11, 2099–2106. [Google Scholar] [CrossRef]
- Koopmeiners, J.; Diederich, C.; Solarczek, J.; Voß, H.; Mayer, J.; Blankenfeldt, W.; Schallmey, A. HheG, a Halohydrin Dehalogenase with Activity on Cyclic Epoxides. ACS Catal. 2017, 7, 6877–6886. [Google Scholar] [CrossRef]
- Shi, Y. Organocatalytic Asymmetric Epoxidation of Olefins by Chiral Ketones. Acc. Chem. Res. 2004, 37, 488–496. [Google Scholar] [CrossRef]
- Shu, L.; Shi, Y. An Efficient Ketone-Catalyzed Asymmetric Epoxidation Using Hydrogen Peroxide (H2O2) as Primary Oxidant. Tetrahedron 2001, 57, 5213–5218. [Google Scholar] [CrossRef]
- Thompson, R.C.; Wieland, P.; Appelman, E.H. Oxidation of Azide and Azidopentaamminechromium(III) by Peroxymonosulfate in Aqueous Solution. Inorg. Chem. 1979, 18, 1974–1977. [Google Scholar] [CrossRef]
- Toda, H.; Imae, R.; Itoh, N. Efficient Biocatalysis for the Production of Enantiopure (S)-Epoxides Using a Styrene Monooxygenase (SMO) and Leifsonia Alcohol Dehydrogenase (LSADH) System. Tetrahedron Asymmetry 2012, 23, 1542–1549. [Google Scholar] [CrossRef]
- Bradshaw, C.W.; Hummel, W.; Wong, C.H. Lactobacillus Kefir Alcohol Dehydrogenase: A Useful Catalyst for Synthesis. J. Org. Chem. 1992, 57, 1532–1536. [Google Scholar] [CrossRef]
- Panke, S.; Wubbolts, M.G.; Schmid, A.; Witholt, B. Production of Enantiopure Styrene Oxide by Recombinant Escherichia coli Synthesizing a Two-Component Styrene Monooxygenase. Biotechnol. Bioeng. 2000, 69, 91–100. [Google Scholar] [CrossRef]
- Janssen, D.B.; Majerić-Elenkov, M.; Hasnaoui, G.; Hauer, B.; Spelberg, J.H.L. Enantioselective Formation and Ring-Opening of Epoxides Catalysed by Halohydrin Dehalogenases. Biochem. Soc. Trans. 2006, 34, 291–295. [Google Scholar] [CrossRef] [Green Version]
- Bernal, C.; Rodríguez, K.; Martínez, R. Integrating Enzyme Immobilization and Protein Engineering: An Alternative Path for the Development of Novel and Improved Industrial Biocatalysts. Biotechnol. Adv. 2018, 36, 1470–1480. [Google Scholar] [CrossRef]
- Hermanová, S.; Zarevúcká, M.; Bouša, D.; Pumera, M.; Sofer, Z. Graphene Oxide Immobilized Enzymes Show High Thermal and Solvent Stability. Nanoscale 2015, 7, 5852–5858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, H.; Li, B.; Sasaki, T.; Miyazaki, C.; Kajino, T.; Inagaki, S. Immobilized Enzymes in Ordered Mesoporous Silica Materials and Improvement of Their Stability and Catalytic Activity in an Organic Solvent. Microporous Mesoporous Mater. 2001, 44–45, 755–762. [Google Scholar] [CrossRef]
- Corrado, M.L.; Knaus, T.; Mutti, F.G. A Chimeric Styrene Monooxygenase with Increased Efficiency in Asymmetric Biocatalytic Epoxidation. Chembiochem 2018, 19, 679–686. [Google Scholar] [CrossRef] [Green Version]
- Ruinatscha, R.; Karande, R.; Buehler, K.; Schmid, A. Integrated One-Pot Enrichment and Immobilization of Styrene Monooxygenase (StyA) Using SEPABEAD EC-EA and EC-Q1A Anion-Exchange Carriers. Molecules 2011, 16, 5975–5988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panke, S.; Held, M.; Wubbolts, M.G.; Witholt, B.; Schmid, A. Pilot-Scale Production of (S)-Styrene Oxide from Styrene by Recombinant Escherichia coli Synthesizing Styrene Monooxygenase. Biotechnol. Bioeng. 2002, 80, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Bulger, P.G.; McNevin, M.; Dormer, P.G.; Ball, R.G.; Streckfuss, E.; Cuff, J.F.; Yin, J.; Chen, C. A Cascade Approach to Cyclic Aminonitrones: Reaction Discovery, Mechanism, and Scope. Org. Lett. 2009, 11, 3194–3197. [Google Scholar] [CrossRef]
- Kroutil, W.; Mischitz, M.; Faber, K. Deracemization of (±)-2,3-Disubstituted Oxiranes via Biocatalytic Hydrolysis Using Bacterial Epoxide Hydrolases: Kinetics of an Enantioconvergent Process. J. Chem. Soc. Perkin Trans. 1997, 3629–3636. [Google Scholar] [CrossRef]
- Righi, G.; Pietrantonio, S.; Bonini, C. Stereocontrolled ‘One Pot’ Organometallic Addition–Ring Opening Reaction of α,β-Aziridine Aldehydes. A New Entry to Syn 1,2-Amino Alcohols. Tetrahedron 2001, 57, 10039–10046. [Google Scholar] [CrossRef]
- Wang, Y.; Lan, D.; Durrani, R.; Hollmann, F. Peroxygenases En Route to Becoming Dream Catalysts. What Are the Opportunities and Challenges? Curr. Opin. Chem. Biol. 2017, 37, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.S.; Fujimoto, Y.; Girdaukas, G.; Sih, C.J. Quantitative Analyses of Biochemical Kinetic Resolutions of Enantiomers. J. Am. Chem. Soc. 1982, 104, 7294–7299. [Google Scholar] [CrossRef]
- Wu, S.; Zhou, Y.; Wang, T.; Too, H.-P.; Wang, D.I.C.; Li, Z. Highly Regio- and Enantioselective Multiple Oxy- and Amino-Functionalizations of Alkenes by Modular Cascade Biocatalysis. Nat. Commun. 2016, 7, 11917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schrittwieser, J.H.; Coccia, F.; Kara, S.; Grischek, B.; Kroutil, W.; d’Alessandro, N.; Hollmann, F. One-Pot Combination of Enzyme and Pd Nanoparticle Catalysis for the Synthesis of Enantiomerically Pure 1,2-Amino Alcohols. Green Chem. 2013, 15, 3318–3331. [Google Scholar] [CrossRef] [Green Version]
- Ingram, C.U.; Bommer, M.; Smith, M.E.B.; Dalby, P.A.; Ward, J.M.; Hailes, H.C.; Lye, G.J. One-Pot Synthesis of Amino-Alcohols Using a de-Novo Transketolase and β-Alanine: Pyruvate Transaminase Pathway in Escherichia coli. Biotechnol. Bioeng. 2007, 96, 559–569. [Google Scholar] [CrossRef] [PubMed]
Substrate | Acetonitrile | Conversion | eeP |
---|---|---|---|
trans-2-hexene (1) | 20% | 78.8% ± 5.8% | 85% |
trans-2-hexene (1) | 10% | 26.4% ± 1.8% | 80% |
trans-2-hexene (1) | 5% | 26.4% ± 1.8% | 45% |
trans-2-heptene (4) | 20% | 41.3% ± 7.6% | 81% |
trans-2-heptene (4) | 10% | 24.6% ± 3.6% | 82% |
trans-2-heptene (4) | 5% | 36.9% ± 0.7% | 53% |
Substrate | Catalysts | Overall Conversion [%] [a] | Isolated Yield (Azidoalcohol) [mg] | ee (Azidoalcohol) [%] | Regioisomeric Ratio a:b [b] |
---|---|---|---|---|---|
trans-2-hexene (1) | Shi, HheE | 30.4 | 60.5 | 61 | 97:3 |
trans-2-heptene (4) | Shi, HheE5 | 35.8 | 83.9 | 56 | 99:1 |
trans-2-hexene (1) | StyAB, HheE | 14.2 | 31.7 | >99 | 92:8 |
trans-2-heptene (4) | StyAB, HheE5 | 13.7 | 42.9 | >99 | 99:1 |
Alkenes | Epoxides | Azidoalcohols | |
trans-2-hexene (1) | trans-2,3- epoxyhexane (2) | 2-azido-3-hydroxyhexane (3a) | 3-azido-2-hydroxyhexane (3b) |
trans-2-heptene (4) | trans-2,3- epoxyheptane (5) | 2-azido-3-hydroxyheptane (6a) | 3-azido-2-hydroxyheptane (6b) |
Vectors | Antibiotics (Final Conc.) |
---|---|
pETDuet-styAB, | Ampicillin (100 µg/mL) |
pET21a(+)-LkADH | Ampicillin (100 µg/mL) |
pCDF1Duet-LsADH | Spectinomycin (100 µg/mL) |
pETDuet-styAB, pET21a(+)-LkADH | Kanamycin (50 µg/mL), Ampicillin (100 µg/mL) |
pETDuet-styAB, pCDF1Duet-LsADH | Kanamycin (50 µg/mL), Spectinomycin (100 µg/mL) |
pET28a(+)-hhdh from the E-type | Kanamycin (50 µg/mL) |
Compound | Temperature Profile | RT (min) | Column |
---|---|---|---|
trans-2-hexene (1) | 50 °C//10 °C/min//70 °C//50 °C/min//300 °C | 3.6 | Achiral: Optima 5s |
trans-2,3-epoxyhexane (2) | 8.4 | ||
3-azido-2-hydroxyhexane (3b) | 11.8 | ||
2-azido-3-hydroxyhexane (3a) | 11.8 | ||
trans-2-heptene (4) | 70 °C, 2 min//50 °C/min//125 °C, 3 min//50 °C/min//300 °C | 2.1 | |
trans-2,3-epoxyheptane (5) | 3.0 | ||
3-azido-2-hydroxyheptane (6b) | 6.0 | ||
2-azido-3-hydroxyheptane (6a) | 6.1 | ||
trans-(2S,3S)-epoxyhexane (2) | 30 °C//2 °C/min// 50 °C//10 °C/min//200 °C | 8.0 | Chiral: HYDRODEX γ-DiMOM |
trans-(2R,3R)-epoxyhexane (2) | 8.3 | ||
trans-(2S,3S)-epoxyheptane (5) | 40 °C//1 °C/min// 50 °C//10 °C/min//200 °C | 12.1 | |
trans-(2R,3R)-epoxyheptane (5) | 12.2 | ||
(2S,3R)-2-azido-3-hydroxyhexane (3a) | 70 °C, 20 min//10 °C/min//200 °C | 25.6 | Chiral: Lipodex E |
(2R,3S)-2-azido-3-hydroxyhexane(3a) | 25.8 | ||
(3R,2S)-3-azido-2-hydroxyhexane (3b) | 26.3 | ||
(3S,2R)-3-azido-2-hydroxyhexane (3b) | 26.6 | ||
(2S,3R)-2-azido-3-hydroxyheptane (6a) | 85 °C//0.5 °C/min//95 °C//10 °C/min//200 °C | 17.5 | |
(2R,3S)-2-azido-3-hydroxyheptane(6a) | 17.9 | ||
(3R,2S)-3-azido-2-hydroxyheptane (6b) | 19.6 | ||
(3S,2R)-3-azido-2-hydroxyheptane (6b) | 20.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calderini, E.; Süss, P.; Hollmann, F.; Wardenga, R.; Schallmey, A. Two (Chemo)-Enzymatic Cascades for the Production of Opposite Enantiomers of Chiral Azidoalcohols. Catalysts 2021, 11, 982. https://doi.org/10.3390/catal11080982
Calderini E, Süss P, Hollmann F, Wardenga R, Schallmey A. Two (Chemo)-Enzymatic Cascades for the Production of Opposite Enantiomers of Chiral Azidoalcohols. Catalysts. 2021; 11(8):982. https://doi.org/10.3390/catal11080982
Chicago/Turabian StyleCalderini, Elia, Philipp Süss, Frank Hollmann, Rainer Wardenga, and Anett Schallmey. 2021. "Two (Chemo)-Enzymatic Cascades for the Production of Opposite Enantiomers of Chiral Azidoalcohols" Catalysts 11, no. 8: 982. https://doi.org/10.3390/catal11080982
APA StyleCalderini, E., Süss, P., Hollmann, F., Wardenga, R., & Schallmey, A. (2021). Two (Chemo)-Enzymatic Cascades for the Production of Opposite Enantiomers of Chiral Azidoalcohols. Catalysts, 11(8), 982. https://doi.org/10.3390/catal11080982