Effect of pH on Microstructure and Catalytic Oxidation of Formaldehyde in MnO2 Catalyst
Abstract
:1. Introduction
2. Results and Discussion
2.1. Influence of pH Value on Catalyst Performance
2.2. Influence of Space Velocity on Catalytic Effect
3. Analysis and Characterization of Catalysts under Different Preparation Conditions
3.1. X-ray Diffraction (XRD)
3.2. Scanning Electron Microscope (SEM)
3.3. Transmission Electron Microscopy (TEM)
3.4. Specific Surface Area Test (BET)
3.5. X-ray Photoelectron Spectroscopy (XPS)
3.6. Temperature-Programmed Reduction of Hydrogen (H2-TPR)
3.7. Mechanism Analysis
4. Experiment
4.1. Preparation of Catalyst
4.2. Catalyst Characterization
4.3. Evaluation of Catalyst Activity
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guan, S.; Li, W.; Ma, J.; Lei, Y.; Zhu, Y.; Huang, Q.; Dou, X. A review of the preparation and applications of MnO2 composites in formaldehyde oxidation. J. Ind. Eng. Chem. 2018, 66, 126–140. [Google Scholar] [CrossRef]
- Yusuf, A.; Snape, C.; He, J.; Xu, H.; Liu, C.; Zhao, M.; Chen, G.Z.; Tang, B.; Wang, C.; Wang, J. Advances on transition metal oxides catalysts for formaldehyde oxidation: A review. Catal. Rev. 2017, 59, 189–233. [Google Scholar] [CrossRef]
- Bai, B.; Qiao, Q.; Li, J.; Hao, J. Progress in research on catalysts for catalytic oxidation of formaldehyde. Chin. J. Catal. 2016, 37, 102–122. [Google Scholar] [CrossRef]
- Zhu, S.; Wang, J.; Nie, L. Progress of catalytic oxidation of formaldehyde over manganese oxides. ChemistrySelect 2019, 4, 12085–12098. [Google Scholar] [CrossRef]
- Ashwini, S.; Prashantha, S.C.; Naik, R.; Naik, Y.V.; Nagabhushana, H.; Narasimhamurthy, K.N. Photoluminescence and photocatalytic properties of novel Bi2O3:Sm3+ nanophosphor. J. Sci.-Adv. Mater. Devices 2019, 4, 531–537. [Google Scholar] [CrossRef]
- Shanbhag, V.V.; Prashantha, S.; Kumar, P.; Surendra, B.; Nagabhushana, H.; Jnaneshwara, D.; Revathi, V.; Naik, R.; Shashidhara, T.; Krupanidhi, Y. Comparative analysis of electrochemical performance and photocatalysis of SiO2 coated CaTiO3: RE3+ (Dy, Sm), Li+ core shell nano structures. Inorg. Chem. Commun. 2021, 134, 108960. [Google Scholar] [CrossRef]
- Huang, Z.; Cao, S.; Yu, J.; Tang, X.; Guo, Y.; Guo, Y.; Wang, L.; Dai, S.; Zhan, W. Total oxidation of light alkane over phosphate-modified Pt/CeO2 catalysts. Environ. Sci. Technol. 2022, 56, 9661–9671. [Google Scholar] [CrossRef]
- Zhang, N.; Guo, Y.; Guo, Y.; Dai, Q.; Wang, L.; Dai, S.; Zhan, W. Synchronously constructing the optimal redox-acidity of sulfate and RuOx Co-modified CeO2 for catalytic combustion of chlorinated VOCs. Chem. Eng. J. 2023, 454, 140391. [Google Scholar] [CrossRef]
- Feng, X.; Xia, L.; Jiang, Z.; Tian, M.; Zhang, S.; He, C. Dramatically promoted toluene destruction over Mn@ Na-Al2O3@ Al monolithic catalysts by Ce incorporation: Oxygen vacancy construction and reaction mechanism. Fuel 2022, 326, 125051. [Google Scholar] [CrossRef]
- Sidheswaran, M.A.; Destaillats, H.; Sullivan, D.P.; Larsen, J.; Fisk, W.J. Quantitative room-temperature mineralization of airborne formaldehyde using manganese oxide catalysts. Appl. Catal. B 2011, 107, 34–41. [Google Scholar] [CrossRef] [Green Version]
- Eckert, M.; Peters, W.; Drillet, J.-F. Fast microwave-assisted hydrothermal synthesis of pure layered δ-MnO2 for multivalent ion intercalation. Materials 2018, 11, 2399. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Zou, X.; Liu, H.; Chen, T.; Suib, S.L.; Chen, D.; Xie, J.; Li, M.; Sun, F. A highly efficient catalyst of palygorskite-supported manganese oxide for formaldehyde oxidation at ambient and low temperature: Performance, mechanism and reaction kinetics. Appl. Surf. Sci. 2019, 486, 420–430. [Google Scholar] [CrossRef]
- Pang, G.; Wang, D.; Zhang, Y.; Ma, C.; Hao, Z. Catalytic activities and mechanism of formaldehyde oxidation over gold supported on MnO2 microsphere catalysts at room temperature. Front. Environ. Sci. Eng. 2016, 10, 447–457. [Google Scholar] [CrossRef]
- Wu, Y.; Lu, Y.; Song, C.; Ma, Z.; Xing, S.; Gao, Y. A novel redox-precipitation method for the preparation of α-MnO2 with a high surface Mn4+ concentration and its activity toward complete catalytic oxidation of o-xylene. Catal. Today 2013, 201, 32–39. [Google Scholar] [CrossRef]
- Min, X.; Guo, M.; Li, K.; Gu, J.-N.; Guo, X.; Xue, Y.; Liang, J.; Hu, S.; Jia, J.; Sun, T. Enhancement of toluene removal over α@ δ-MnO2 composites prepared via one-pot by modifying the molar ratio of KMnO4 to MnSO4· H2O. Appl. Surf. Sci. 2021, 568, 150972. [Google Scholar] [CrossRef]
- Chen, Y.; Hong, Y.; Ma, Y.; Yang, H.; Li, J. Preparation of nanostructure MnO2 single crystal in various acid solution. Acta Metall. Sin. 2010, 46, 857–861. [Google Scholar] [CrossRef]
- Jiang, Y.; Cheng, G.; Yang, R.; Liu, H.; Sun, M.; Yu, L.; Hao, Z. Influence of preparation temperature and acid treatment on the catalytic activity of MnO2. J. Solid State Chem. 2019, 272, 173–181. [Google Scholar] [CrossRef]
- Zheng, X.; Cai, J.; Cao, Y.; Shen, L.; Zheng, Y.; Liu, F.; Liang, S.; Xiao, Y.; Jiang, L. Construction of cross-linked δ-MnO2 with ultrathin structure for the oxidation of H2S: Structure-activity relationship and kinetics study. Appl. Catal. B 2021, 297, 120402. [Google Scholar] [CrossRef]
- Wang, J.; Li, J.; Jiang, C.; Zhou, P.; Zhang, P.; Yu, J. The effect of manganese vacancy in birnessite-type MnO2 on room-temperature oxidation of formaldehyde in air. Appl. Catal. B 2017, 204, 147–155. [Google Scholar] [CrossRef]
- Miao, L.; Xie, Y.; Xia, Y.; Zou, N.; Wang, J. Facile photo-driven strategy for the regeneration of a hierarchical C@MnO2 sponge for the removal of indoor toluene. Appl. Surf. Sci. 2019, 481, 404–413. [Google Scholar] [CrossRef]
- Yang, W.; Su, Z.; Xu, Z.; Yang, W.; Peng, Y.; Li, J. Comparative study of α-, β-, γ-and δ-MnO2 on toluene oxidation: Oxygen vacancies and reaction intermediates. Appl. Catal. B 2020, 260, 118150. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, G.; Zhang, P. Layered birnessite-type MnO2 with surface pits for enhanced catalytic formaldehyde oxidation activity. J. Mater. Chem. A 2017, 5, 5719–5725. [Google Scholar] [CrossRef]
- Zhang, H.; Zheng, X.; Xu, T.; Zhang, P. Atomically dispersed Y or La on birnessite-type MnO2 for the catalytic decomposition of low-concentration toluene at room temperature. ACS Appl. Mater. Interfaces 2021, 13, 17532–17542. [Google Scholar] [CrossRef] [PubMed]
- Gil, E.R.; Ruiz, B.; Lozano, M.; Martín, M.; Fuente, E. VOCs removal by adsorption onto activated carbons from biocollagenic wastes of vegetable tanning. Chem. Eng. J. 2014, 245, 80–88. [Google Scholar] [CrossRef]
- Wang, J.; Li, D.; Li, P.; Zhang, P.; Xu, Q.; Yu, J. Layered manganese oxides for formaldehyde-oxidation at room temperature: The effect of interlayer cations. RSC Adv. 2015, 5, 100434–100442. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, B.; Crocker, M.; Yu, L.; Shi, C. New insights into alkaline metal modified CoMn-oxide catalysts for formaldehyde oxidation at low temperatures. Appl. Catal. A 2020, 596, 117512. [Google Scholar] [CrossRef]
- Sun, D.; Wageh, S.; Al-Ghamdi, A.A.; Le, Y.; Yu, J.; Jiang, C. Pt/C@ MnO2 composite hierarchical hollow microspheres for catalytic formaldehyde decomposition at room temperature. Appl. Surf. Sci. 2019, 466, 301–308. [Google Scholar] [CrossRef]
- Huang, Q.; Lu, Y.; Si, H.; Yang, B.; Tao, T.; Zhao, Y.; Chen, M. Study of Complete Oxidation of Formaldehyde Over MnO x–CeO2 Mixed Oxide Catalysts at Ambient Temperature. Catal. Lett. 2018, 148, 2880–2890. [Google Scholar] [CrossRef]
- Chen, T.; Dou, H.; Li, X.; Tang, X.; Li, J.; Hao, J. Tunnel structure effect of manganese oxides in complete oxidation of formaldehyde. Microporous Mesoporous Mater. 2009, 122, 270–274. [Google Scholar] [CrossRef]
- Tian, Y.; Li, D.; Liu, J.; Wang, H.; Zhang, J.; Zheng, Y.; Liu, T.; Hou, S. Facile synthesis of Mn3O4 nanoplates-anchored graphene microspheres and their applications for supercapacitors. Electrochim. Acta 2017, 257, 155–164. [Google Scholar] [CrossRef]
- Zhao, W.; Cui, H.; Liu, F.; Tan, W.; Feng, X. Relationship between Pb2+ adsorption and average Mn oxidation state in synthetic birnessites. Clays Clay Miner. 2009, 57, 513–520. [Google Scholar] [CrossRef]
- Yusuf, A.; Sun, Y.; Ren, Y.; Snape, C.; Wang, C.; Jia, H.; He, J. Opposite effects of Co and Cu dopants on the catalytic activities of birnessite MnO2 catalyst for low-temperature formaldehyde oxidation. J. Phys. Chem. C 2020, 124, 26320–26331. [Google Scholar] [CrossRef]
- Fang, R.; Huang, H.; Ji, J.; He, M.; Feng, Q.; Zhan, Y.; Leung, D.Y. Efficient MnOx supported on coconut shell activated carbon for catalytic oxidation of indoor formaldehyde at room temperature. Chem. Eng. J. 2018, 334, 2050–2057. [Google Scholar] [CrossRef]
- Zheng, J.Y.; Zhao, W.K.; Wang, X.; Zheng, Z.; Zhang, Y.; Wang, H.; Yan, H.; Song, X.; Han, C.B. Electric-enhanced hydrothermal synthesis of manganese dioxide for the synergistic catalytic of indoor low-concentration formaldehyde at room temperature. Chem. Eng. J. 2020, 401, 125790. [Google Scholar] [CrossRef]
- Chen, J.; Tang, H.; Huang, M.; Yan, Y.; Zhang, J.; Liu, H.; Zhang, J.; Wang, G.; Wang, R. Surface lattice oxygen activation by nitrogen-doped manganese dioxide as an effective and longevous catalyst for indoor HCHO decomposition. ACS Appl. Mater. Interfaces 2021, 13, 26960–26970. [Google Scholar] [CrossRef]
- Rong, S.; Li, K.; Zhang, P.; Liu, F.; Zhang, J. Potassium associated manganese vacancy in birnessite-type manganese dioxide for airborne formaldehyde oxidation. Catal. Sci. Technol. 2018, 8, 1799–1812. [Google Scholar] [CrossRef]
- Kim, S.C.; Shim, W.G. Catalytic combustion of VOCs over a series of manganese oxide catalysts. Appl. Catal. B 2010, 98, 180–185. [Google Scholar] [CrossRef]
- Ma, C.; Sun, S.; Lu, H.; Hao, Z.; Yang, C.; Wang, B.; Chen, C.; Song, M. Remarkable MnO2 structure-dependent H2O promoting effect in HCHO oxidation at room temperature. J. Hazard. Mater. 2021, 414, 125542. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, J.; He, J.; Hu, Y.; Tian, H. Control over the morphology and structure of manganese oxide by tuning reaction conditions and catalytic performance for formaldehyde oxidation. Mater. Res. Bull. 2011, 46, 1714–1722. [Google Scholar] [CrossRef]
- Qi, Q.; Zhang, W.; Zhang, Y.; Bai, G.; Liang, P. Formaldehyde oxidation at room temperature over layered MnO2. Catal. Commun. 2021, 153, 106293. [Google Scholar] [CrossRef]
Samples | R5.5 h/% | R10 h/% |
---|---|---|
7-MnO2 | 87.8 | 62.2 |
9-MnO2 | 89.9 | 67.5 |
11-MnO2 | 98 | 74.2 |
13-MnO2 | 100 | 82.9 |
14-MnO2 | 0 | 0 |
Samples | BET Surface Area (m²/g) | Pore Volume (cm³/g) |
---|---|---|
7-MnO2 | 78.2 | 0.077 |
9-MnO2 | 29.8 | 0.050 |
11-MnO2 | 29.2 | 0.048 |
13-MnO2 | 58.7 | 0.070 |
14-MnO2 | 20.6 | 0.032 |
Sample | Mn2p3/2 | Mn3s | O1s | |
---|---|---|---|---|
Mn3+/Mn4+ | ΔE | AOS | Oa/Ob | |
7-MnO2 | 0.79 | 4.89 | 3.50 | 0.91 |
9-MnO2 | 0.78 | 4.84 | 3.56 | 0.88 |
11-MnO2 | 0.72 | 4.76 | 3.65 | 0.88 |
13-MnO2 | 0.69 | 4.72 | 3.70 | 0.82 |
14-MnO2 | 1.12 | 5.13 | 3.22 | 2.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Hao, M.; Wang, Y.; Sun, P.; Zeng, D.; Wang, X.; Liang, P. Effect of pH on Microstructure and Catalytic Oxidation of Formaldehyde in MnO2 Catalyst. Catalysts 2023, 13, 490. https://doi.org/10.3390/catal13030490
Zhang W, Hao M, Wang Y, Sun P, Zeng D, Wang X, Liang P. Effect of pH on Microstructure and Catalytic Oxidation of Formaldehyde in MnO2 Catalyst. Catalysts. 2023; 13(3):490. https://doi.org/10.3390/catal13030490
Chicago/Turabian StyleZhang, Wenrui, Meilu Hao, Yonghui Wang, Pengfei Sun, Dongjuan Zeng, Xinya Wang, and Peng Liang. 2023. "Effect of pH on Microstructure and Catalytic Oxidation of Formaldehyde in MnO2 Catalyst" Catalysts 13, no. 3: 490. https://doi.org/10.3390/catal13030490
APA StyleZhang, W., Hao, M., Wang, Y., Sun, P., Zeng, D., Wang, X., & Liang, P. (2023). Effect of pH on Microstructure and Catalytic Oxidation of Formaldehyde in MnO2 Catalyst. Catalysts, 13(3), 490. https://doi.org/10.3390/catal13030490