Highly Efficient Catalytic Reduction of Nitrobenzene Using Cu@C Based on a Novel Cu–MOF Precursor
Abstract
:1. Introduction
2. Results and Discussion
2.1. Materials Synthesis and Characterizations
2.2. Catalytic Reduction of Nitrobenzene
2.3. Catalytic Mechanism
3. Materials and Methods
3.1. Synthesis of Cu–MOF and Cu@C
3.2. Characterization Techniques
3.3. Catalytic Reduction of Nitrobenzene
3.4. Stability and Recyclability of the Catalyst
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ebadati, E.; Aghabarari, B.; Bagheri, M.; Khanlarkhani, A.; Martinez Huerta, M.V. Palladium nanoparticles supported on silicate-based nanohybrid material: Highly active and eco-friendly catalyst for reduction of nitrobenzene at ambient conditions. Inorg. Nano-Met. Chem. 2020, 51, 569–578. [Google Scholar] [CrossRef]
- Chen, W.S.; Liu, Y.C. Photocatalytic degradation of nitrobenzene in wastewater by persulfate integrated with Ag/Pb3O4 semiconductor under visible light irradiation. Heliyon 2021, 7, e06984. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, M.I.; Yi, C.W.; Ni, L.X.; Zhao, H.; Wang, H.J.; Yi, R.J.; Yin, L.L.; Aleem, M.; Zaman, M. Removal of nitrobenzene from wastewater by vertical flow constructed wetland and optimizing substrate composition using Hydrus-1D: Optimizing substrate composition of vertical flow constructed wetland for removing nitrobenzene from wastewater. Int. J. Environ. Sci. Technol. 2019, 16, 8005–8014. [Google Scholar] [CrossRef]
- Wu, J.H.; Zhang, F. Rapid aerobic visible-light-driven photo-reduction of nitrobenzene. Sci. Total Environ. 2020, 710, 136322. [Google Scholar] [CrossRef]
- Scarborough, T.D.; McAcy, C.J.; Beck, J.; Uiterwaal, C. Comparison of ultrafast intense-field photodynamics in aniline and nitrobenzene: Stability under amino and nitro substitution. Phys. Chem. Chem. Phys. 2019, 21, 6553–6558. [Google Scholar] [CrossRef]
- Kainthla, I.; Gurram, V.R.B.; Bhanushali, J.T.; Kamaraju, S.R.R.; Keri, R.S.; Gosavi, S.W.; Jadhav, A.H.; Nagaraja, B.M. In Situ Generation of Cu-0 Supported on TiO2 Aerogel as a Catalyst for the Vapour Phase Hydrogenation of Nitrobenzene to Aniline. Catal. Lett. 2018, 148, 2891–2900. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Z.; Yang, M.; Ma, W. Pilot study of treatment on nitrobenzene wastewater. Ind. Water Treat. 2021, 41, 115–118. [Google Scholar]
- Paul, B.; Vadivel, S.; Yadav, N.; Dhar, S.S. Room temperature catalytic reduction of nitrobenzene to azoxybenzene over one pot synthesised reduced graphene oxide decorated with Ag/ZnO nanocomposite. Catal. Commun. 2019, 124, 71–75. [Google Scholar] [CrossRef]
- Qu, Y.M.; Chen, T. Fullerene derivative supported Ni for hydrogenation of nitrobenzene: Effect of functional group of fullerene derivative. Chem. Eng. J. 2020, 382, 122911. [Google Scholar] [CrossRef]
- Hajdu, V.; Muranszky, G.; Nagy, M.; Kopcsik, E.; Kristaly, F.; Fiser, B.; Viskolcz, B.; Vanyorek, L. Development of High-Efficiency, Magnetically Separable Palladium-Decorated Manganese-Ferrite Catalyst for Nitrobenzene Hydrogenation. Int. J. Mol. Sci. 2022, 23, 6535. [Google Scholar] [CrossRef]
- Neeli, C.K.P.; Puthiaraj, P.; Lee, Y.R.; Chung, Y.M.; Baeck, S.H.; Ahn, W.S. Transfer hydrogenation of nitrobenzene to aniline in water using Pd nanoparticles immobilized on amine-functionalized UiO-66. Catal. Today 2018, 303, 227–234. [Google Scholar] [CrossRef]
- Li, J.R.; Li, X.H.; Ding, Y.; Wu, P. Pt nanoparticles entrapped in ordered mesoporous carbons: An efficient catalyst for the liquid-phase hydrogenation of nitrobenzene and its derivatives. Chin. J. Catal. 2015, 36, 1995–2003. [Google Scholar] [CrossRef]
- Jiang, Y.X.; Li, X.L.; Qin, Z.Z.; Ji, H.B. Preparation of Ni/bentonite catalyst and its applications in the catalytic hydrogenation of nitrobenzene to aniline. Chin. J. Chem. Eng. 2016, 24, 1195–1200. [Google Scholar] [CrossRef]
- Wang, H.H.; Zhang, W.; Liu, Y.Q.; Pu, M.; Lei, M. First-Principles Study on the Mechanism of Nitrobenzene Reduction to Aniline Catalyzed by a N-Doped Carbon-Supported Cobalt Single-Atom Catalyst. J. Phys. Chem. C 2021, 125, 19171–19182. [Google Scholar] [CrossRef]
- Khosravi, F.; Gholinejad, M.; Sansano, J.M.; Luque, R. Bimetallic Fe-Cu metal organic frameworks for room temperature catalysis. Appl. Organomet. Chem. 2022, 36, e6749. [Google Scholar] [CrossRef]
- Darawsheh, M.D.; Mazario, J.; Lopes, C.W.; Gimenez-Marques, M.; Domine, M.E.; Meira, D.M.; Martinez, J.; Minguez Espallargas, G.; Ona-Burgos, P. MOF-Mediated Synthesis of Supported Fe-Doped Pd Nanoparticles under Mild Conditions for Magnetically Recoverable Catalysis*. Chemistry 2020, 26, 13659–13667. [Google Scholar] [CrossRef]
- Wang, J.H.; Kim, J.; Bu, J.; Kim, D.; Kim, S.Y.; Nam, K.T.; Varma, R.S.; Jang, H.W.; Luque, R.; Shokouhimehr, M. MOF-derived NiFe2O4 nanoparticles on molybdenum disulfide: Magnetically reusable nanocatalyst for the reduction of nitroaromatics in aqueous media. J. Ind. Eng. Chem. 2022, 107, 428–435. [Google Scholar] [CrossRef]
- Wu, C.; Zhu, C.; Liu, K.; Yang, S.; Sun, Y.; Zhu, K.; Cao, Y.; Zhang, S.; Zhuo, S.; Zhang, M.; et al. Nano-pyramid-type Co-ZnO/NC for hydrogen transfer cascade reaction between alcohols and nitrobenzene. Appl. Catal. B Environ. 2022, 300, 120288. [Google Scholar] [CrossRef]
- Hu, A.; Lu, X.H.; Cai, D.M.; Pan, H.J.; Jing, R.; Xia, Q.H.; Zhou, D.; Xia, Y.D. Selective hydrogenation of nitroarenes over MOF-derived Co@CN catalysts at mild conditions. Mol. Catal. 2019, 472, 27–36. [Google Scholar] [CrossRef]
- Li, J.Y.; Wang, B.W.; Qin, Y.T.; Tao, Q.; Chen, L.G. MOF-derived Ni@NC catalyst: Synthesis, characterization, and application in one-pot hydrogenation and reductive amination. Catal. Sci. Technol. 2019, 9, 3726–3734. [Google Scholar] [CrossRef]
- Guo, C.Y.; Liang, C.H.; Qin, X.P.; Gu, Y.J.; Gao, P.; Shao, M.H.; Wong, W.T. Zeolitic Imidazolate Framework Cores Decorated with Pd Nanoparticles and Coated Further with Metal-Organic Framework Shells (ZIF-8@Pd@MOF-74) as Nanocatalysts for Chemoselective Hydrogenation Reactions. Acs Appl. Nano Mater. 2020, 3, 7242–7251. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, W.; Long, Y.; Qin, J.H.; Ma, J.T. MOF-derived Fe-N-C with interconnected mesoporous structure for halonitrobenzenes hydrogenation: Role of dicyandiamide on the growth of active sites and pore structure. Micropor. Mesopor. Mat. 2021, 328, 111472. [Google Scholar] [CrossRef]
- Li, X.W.; She, W.; Wang, J.; Li, W.Z.; Li, G.M. A highly efficient LaOCl supported Fe-Fe3C-based catalyst for hydrogenation of nitroarenes fabricated by coordination-assisted pyrolysis. Catal. Sci. Technol. 2021, 11, 4627–4635. [Google Scholar] [CrossRef]
- Ye, G.; Luo, P.; Zhao, Y.; Qiu, G.; Hu, Y.; Preis, S.; Wei, C. Three-dimensional Co/Ni bimetallic organic frameworks for high-efficient catalytic ozonation of atrazine: Mechanism, effect parameters, and degradation pathways analysis. Chemosphere 2020, 253, 126767. [Google Scholar] [CrossRef]
- Yusran, Y.; Xu, D.; Fang, Q.R.; Zhang, D.L.; Qiu, S.L. MOF-derived Co@N-C nanocatalyst for catalytic reduction of 4-nitrophenol to 4-aminophenol. Micropor. Mesopor. Mat. 2017, 241, 346–354. [Google Scholar] [CrossRef]
- Su, Y.P.; Li, Z.Y.; Zhou, H.J.; Kang, S.H.; Zhang, Y.X.; Yu, C.Z.; Wang, G.Z. Ni/carbon aerogels derived from water induced self-assembly of Ni-MOF for adsorption and catalytic conversion of oily wastewater. Chem. Eng. J. 2020, 402, 126205. [Google Scholar] [CrossRef]
- Sampaio, S.; Viana, J.C. Optimisation of the green synthesis of Cu/Cu2O particles for maximum yield production and reduced oxidation for electronic applications. Mater. Sci. Eng. B-Adv. 2021, 263, 114807. [Google Scholar] [CrossRef]
- Lam, N.H.; Le, N.; Kim, E.S.; Tamboli, M.S.; Tamboli, A.M.; Truong, N.T.N.; Jung, J.H. Powder X-ray diffraction analysis of Cu/Cu2O nanocomposites synthesized by colloidal solution method. Korean J. Chem. Eng. 2022, 39, 2505–2512. [Google Scholar] [CrossRef]
- Ozaslan, D.; Ozkendir, O.M.; Gunes, M.; Ufuktepe, Y.; Gumus, C. Study of the electronic properties of Cu2O thin films by X-ray absorption spectroscopy. Optik 2018, 157, 1325–1330. [Google Scholar] [CrossRef]
- Lin, H.C.; Yang, M.H.; Fujimoto, N. Feasibility of Paper-based Activated Carbon Fibers as Fried Oil Adsorbing Material. J. Fac. Agric. Kyushu Univ. 2020, 65, 113–122. [Google Scholar] [CrossRef]
- Tella, A.C.; Olayemi, V.T.; Adekola, F.A.; Oladipo, A.C.; Adimula, V.O.; Ogar, J.O.; Hosten, E.C.; Ogunlaja, A.S.; Argent, S.P.; Mokaya, R. Synthesis, characterization and density functional theory of copper(II) complex and cobalt(II) coordination polymer for detection of nitroaromatic explosives. Inorg. Chim. Acta 2021, 515, 120048. [Google Scholar] [CrossRef]
- Soltani, S.; Akhbari, K.; Phuruangrat, A. Investigation of effective factors on antibacterial activity of Pillared-Layered MOFs. J. Mol. Struct. 2021, 1225, 129261. [Google Scholar] [CrossRef]
- Asami, K.; Mitani, S.; Fujimori, H.; Ohnuma, S.; Masumoto, T. Characterization of Co-Al-O magnetic thin films by combined use of XPS, XRD and EPMA. Surf. Interface Anal. 1999, 28, 250–253. [Google Scholar] [CrossRef]
- Kassem, A.A.; Abdelhamid, H.N.; Fouad, D.M.; Ibrahim, S.A. Catalytic reduction of 4-nitrophenol using copper terephthalate frameworks and CuO@C composite. J. Environ. Chem. Eng. 2021, 9, 104401. [Google Scholar] [CrossRef]
- de Souza, J.F.; da Silva, G.T.; Fajardo, A.R. Chitosan-based film supported copper nanoparticles: A potential and reusable catalyst for the reduction of aromatic nitro compounds. Carbohydr. Polym. 2017, 161, 187–196. [Google Scholar] [CrossRef]
- Yaghmaei, M.; Lanterna, A.E.; Scaiano, J.C. Nitro to amine reductions using aqueous flow catalysis under ambient conditions. iScience 2021, 24, 103472. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Li, D.Z.; Jin, S.W.; Chen, S.H.; Zhang, Z.H. Catalytic transfer hydrogenation of nitro compounds into amines over magnetic graphene oxide supported Pd nanoparticles. Int. J. Hydrogen Energ. 2016, 41, 15218–15224. [Google Scholar] [CrossRef]
- Jayabal, S.; Ramaraj, R. Bimetallic Au/Ag nanorods embedded in functionalized silicate sol–gel matrix as an efficient catalyst for nitrobenzene reduction. Appl. Catal. A Gen. 2014, 470, 369–375. [Google Scholar] [CrossRef]
- Farooqi, Z.H.; Butt, Z.; Begum, R.; Khan, S.R.; Sharif, A.; Ahmed, E. Poly(N-isopropylacrylamide-co-methacrylic acid) microgel stabilized copper nanoparticles for catalytic reduction of nitrobenzene. Mater. Sci. Pol. 2015, 33, 627–634. [Google Scholar] [CrossRef]
- Qiao, C.X.; Jia, W.L.; Zhong, Q.M.; Liu, B.Y.; Zhang, Y.F.; Meng, C.G.; Tian, F.P. MOF-Derived Cu-Nanoparticle Embedded in Porous Carbon for the Efficient Hydrogenation of Nitroaromatic Compounds. Catal. Lett. 2020, 150, 3394–3401. [Google Scholar] [CrossRef]
- Rajabzadeh, M.; Eshghi, H.; Khalifeh, R.; Bakavoli, M. Generation of Cu nanoparticles on novel designed Fe3O4@SiO2/EP.EN.EG as reusable nanocatalyst for the reduction of nitro compounds. Rsc Adv. 2016, 6, 19331–19340. [Google Scholar] [CrossRef]
- Dayan, S.; Kayaci, N.; Ozdemir, N.; Dayan, O.; Ozpozan, N.K. Palladium(II) complexes assembled on solid materials: As catalysts for the -NO2 (nitro) to -NH2 (amine) reactions. Mon. Fur. Chem. 2020, 151, 1533–1548. [Google Scholar] [CrossRef]
- Sasmal, A.K.; Dutta, S.; Pal, T. A ternary Cu2O-Cu-CuO nanocomposite: A catalyst with intriguing activity. Dalton Trans. 2016, 45, 3139–3150. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Bourgonje, C.R.; Scaiano, J.C. Fiber-glass supported catalysis: Real-time, high-resolution visualization of active palladiumcatalytic centers during the reduction of nitrocompounds. Catal. Sci. Technol. 2023, 45, 3139–3150. [Google Scholar] [CrossRef]
- Mahata, A.; Rai, R.K.; Choudhuri, I.; Singh, S.K.; Pathak, B. Direct vs. indirect pathway for nitrobenzene reduction reaction on a Ni catalyst surface: A density functional study. Phys. Chem. Chem. Phys. 2014, 16, 26365–26374. [Google Scholar] [CrossRef]
Sample | BET Surface Area (m2/g) | Pore Size (Average) (nm) | Pore Volume (cm3/g) |
---|---|---|---|
Cu–MOF | 10.13 | 23.96 | 0.06 |
Cu@C | 25.25 | 11.73 | 0.07 |
Catalysts | Conditions | Efficiency (%) | Time | Ref. |
---|---|---|---|---|
CPCu | Cat. (100 mg), NB [a] (2 mL, 5 mmol/L), NaBH4 (1 mL, 50 mmol/L) | 86 | 60 min | [35] |
Pd@GW | Cat. (39.1 mg), NB (0.14 mmol), NaBH4 (0.96 mmol) | >99 | 8 min | [36] |
C-Pd-Fe3O4 | Cat. (20 mg), NB (1 mmol), NaBH4 (3 mmol) | 100 | 30 min | [37] |
Au/Ag-TPDT NRs | Cat. (8 mmol), NB (4 mmol), NaBH4 (0.2 mol) | 90 | 6 min | [38] |
Cu-p | Cat. (0.4 mg), NB (0.05 mmol), NaBH4 (5 mmol), 18 °C [b] | >90 | 15 min | [39] |
H-Cu@C-400 | Cat. (15 mg), NB (2 mmol), NaBH4 (2 mmol) | 100 | 30 min | [40] |
Fe3O4@SiO2/EP.EN.EG@Cu | Cat. (50 mg), NB (1 mmol), NaBH4 (3 mmol), 50 °C | 85 | 15 min | [41] |
[PdCl2(L4)2]@MWCNTs | Cat. (2.5 mg), NB (0.25 mmol), NaBH4 (15 mmol) | >96 | 90 s | [42] |
Cu@C | Cat. (5.0 mg), NB (0.2 mmol), NaBH4 (5.0 mmol) | 100 | 8 min | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, J.; Zhang, S.; Chen, X.; Zhang, L.; Du, L.; Zhao, Q. Highly Efficient Catalytic Reduction of Nitrobenzene Using Cu@C Based on a Novel Cu–MOF Precursor. Catalysts 2023, 13, 956. https://doi.org/10.3390/catal13060956
Tang J, Zhang S, Chen X, Zhang L, Du L, Zhao Q. Highly Efficient Catalytic Reduction of Nitrobenzene Using Cu@C Based on a Novel Cu–MOF Precursor. Catalysts. 2023; 13(6):956. https://doi.org/10.3390/catal13060956
Chicago/Turabian StyleTang, Jinsheng, Suoshu Zhang, Xue Chen, Linlin Zhang, Lin Du, and Qihua Zhao. 2023. "Highly Efficient Catalytic Reduction of Nitrobenzene Using Cu@C Based on a Novel Cu–MOF Precursor" Catalysts 13, no. 6: 956. https://doi.org/10.3390/catal13060956
APA StyleTang, J., Zhang, S., Chen, X., Zhang, L., Du, L., & Zhao, Q. (2023). Highly Efficient Catalytic Reduction of Nitrobenzene Using Cu@C Based on a Novel Cu–MOF Precursor. Catalysts, 13(6), 956. https://doi.org/10.3390/catal13060956