Combination of Sorbitol and Glycerol, as Plasticizers, and Oxidized Starch Improves the Physicochemical Characteristics of Films for Food Preservation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Oxidized Starches
2.3. Carbonyl Group Content
2.4. Carboxyl Group Content
2.5. Film Preparation
2.6. Scanning Electron Microscopy (SEM)
2.7. Thickness and Mechanical Properties of the Films
2.8. Moisture, Solubility in Water, and Water Vapor Permeability (WVP) of the Films
2.9. Light Transmittance and Transparency
2.10. Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) Spectroscopy
2.11. X-ray Diffraction
2.12. Statistical Analysis
3. Results and Discussion
3.1. Carbonyl and Carboxyl Contents
3.2. Films Obtained
3.3. Scanning Electron Microscopy (SEM)
3.4. Thickness and Mechanical Properties of the Films
3.5. Moisture, Solubility in Water, and WVP of the Films
3.6. Light Transmittance and Transparency of the Films
3.7. Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) Spectroscopy
3.8. X-ray Diffraction
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Balakrishnan, P.; Sreekala, M.S.; Kunaver, M.; Huskic, M.; Thomas, S. Morphology, transport characteristics and viscoelastic polymer chain confinement in nanocomposites based on thermoplastic potato starch and cellulose nanofibers from pineapple leaf. Carbohydr. Polym. 2017, 169, 176–188. [Google Scholar] [CrossRef]
- Hazrol, M.D.; Sapuan, S.M.; Zainudin, E.S.; Zuhri, M.Y.M.; Abdul Wahab, N.I. Corn Starch (Zea mays) Biopolymer Plastic Reaction in Combination with Sorbitol and Glycerol. Polymers 2021, 13, 242. [Google Scholar] [CrossRef]
- Pereira, D.G.; Vieira, J.M.; Vicente, A.A.; Cruz, R. Development and characterization of pectin films with Salicornia ramosissima: Biodegradation in soil and seawater. Polymers 2021, 13, 2632. [Google Scholar] [CrossRef] [PubMed]
- Tongdeesoontorn, W.; Mauer, L.J.; Wongruong, S.; Sriburi, P.; Reungsang, A.; Rachtanapun, P. Antioxidant Films from Cassava Starch/Gelatin Biocomposite Fortified with Quercetin and TBHQ and Their Applications in Food Models. Polymers 2021, 13, 1117. [Google Scholar] [CrossRef] [PubMed]
- García, M.A.; Martino, M.N.; Zaritzky, N.E. Microstructural characterization of plasticized starch-based films. Starch-Stärke 2000, 52, 118–124. [Google Scholar] [CrossRef]
- Masina, N.; Choonara, Y.E.; Kumar, P.; du Toit, L.C.; Govender, M.; Indermun, S.; Pillay, V. A review of the chemical modification techniques of starch. Carbohydr. Polym. 2017, 157, 1226–1236. [Google Scholar] [CrossRef] [PubMed]
- Onofre, F.; Wang, Y.-J.; Mauromoustakos, A. Effects of structure and modification on sustained release properties of starches. Carbohydr. Polym. 2009, 76, 541–547. [Google Scholar] [CrossRef]
- Hu, G.; Chen, J.; Gao, J. Preparation and characteristics of oxidized potato starch films. Carbohydr. Polym. 2009, 76, 291–298. [Google Scholar] [CrossRef]
- Sánchez-Rivera, M.M.; García-Suárez, F.J.L.; Velázquez del Valle, M.; Gutierrez-Meraz, F.; Bello-Pérez, L.A. Partial characterization of banana starches oxidized by different levels of sodium hypochlorite. Carbohydr. Polym. 2005, 62, 50–56. [Google Scholar] [CrossRef]
- Wang, Y.-J.; Wang, L. Physicochemical properties of common and waxy corn starches oxidized by different levels of sodium hypochlorite. Carbohydr. Polym. 2003, 52, 207–217. [Google Scholar] [CrossRef]
- Zamudio-Flores, P.B.; Vargas-Torres, A.; Pérez-González, J.; Bosquez-Molina, E.; Bello-Pérez, L.A. Films Prepared with Oxidized Banana Starch: Mechanical and Barrier Properties. Starch-Stärke 2006, 58, 274–282. [Google Scholar] [CrossRef]
- Kowalczyk, D.; Baraniak, B. Effects of plasticizers, pH and heating of film-forming solution on the properties of pea protein isolate films. J. Food Eng. 2011, 105, 295–305. [Google Scholar] [CrossRef]
- Madhumitha, G.; Fowsiya, J.; Mohana Roopan, S.; Thakur, V.K. Recent advances in starch–clay nanocomposites. Int. J. Polym. Anal. Charact. 2018, 23, 331–345. [Google Scholar] [CrossRef]
- Smith, R.J. Production and Used of Hypochlorite Oxidized Starches; Academic Press: New York, NY, USA, 1967. [Google Scholar]
- Chattopadhyay, S.; Singhal, R.S.; Kulkarni, P.R. Optimization of conditions of synthesis of oxidized starch from corn and amaranth for use in film-forming applications. Carbohydr. Polym. 1997, 34, 203–212. [Google Scholar] [CrossRef]
- ASTM D 1708-02a. Standard Test Method for Tensile Properties of Plastics by Use of Microtensile Specimens. In Annual Book of ASTM Standars; American Society for Testing and Materials: West Conshohocken, PA, USA, 2002. [Google Scholar]
- AACC Approved Methods of Analysis, 11th ed.; Method 44-15.02. Moisture-Air-Oven Method; AACC International: St. Paul, MN, USA, 2017.
- El Halal, S.L.M.; Colussi, R.; Deon, V.G.; Pinto, V.Z.; Villanova, F.A.; Carreño, N.L.V.; Dias, A.R.G.; da Rosa Zavareze, E. Films based on oxidized starch and cellulose from barley. Carbohydr. Polym. 2015, 133, 644–653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ASTM E96: Standard methods for water vapor transmission of material. In Annual Book of ASTM Standars; American Society for Testing and Materials: West Conshohocken, PA, USA, 2005.
- Murrieta-Martínez, C.; Soto-Valdez, H.; Pacheco-Aguilar, R.; Torres-Arreola, W.; Rodríguez-Felix, F.; Ramírez-Wong, B.; Santacruz-Ortega, H.; Santos-Sauceda, I.; Olibarría-Rodríguez, G.; Márquez-Ríos, E. Effect of Different Polyalcohols as Plasticizers on the Functional Properties of Squid Protein Film. Coatings 2019, 9, 77. [Google Scholar] [CrossRef] [Green Version]
- Kuakpetoon, D.; Wang, Y.-J. Characterization of Different Starches Oxidized by Hypochlorite. Starch-Stärke 2001, 53, 211–218. [Google Scholar] [CrossRef]
- Zhou, F.; Liu, Q.; Zhang, H.; Chen, Q.; Kong, B. Potato starch oxidation induced by sodium hypochlorite and its effect on functional properties and digestibility. Int. J. Biol. Macromol. 2016, 84, 410–417. [Google Scholar] [CrossRef]
- Basiak, E.; Lenart, A.; Debeaufort, F. How Glycerol and Water Contents Affect the Structural and Functional Properties of Starch-Based Edible Films. Polymers 2018, 10, 412. [Google Scholar] [CrossRef] [Green Version]
- Velásquez-Herrera, J.D.; Lucas-Aguirre, J.C.; Quintero-Castaño, V.D. Physical-chemical characteristics determination of potato (Solanum phureja Juz. & Bukasov) starch. Acta Agronómica 2017, 66, 323–330. [Google Scholar]
- Vanier, N.L.; El Halal, S.L.M.; Dias, A.R.G.; da Rosa Zavareze, E. Molecular structure, functionality and applications of oxidized starches: A review. Food Chem. 2017, 221, 1546–1559. [Google Scholar] [CrossRef] [PubMed]
- Pelissari, F.M.; Grossmann, M.V.; Yamashita, F.; Pineda, E.A.G. Antimicrobial, mechanical, and barrier properties of cassava starch− chitosan films incorporated with oregano essential oil. J. Agric. Food Chem. 2009, 57, 7499–7504. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Graü, M.A.; Soliva-Fortuny, R.; Martín-Belloso, O. Edible coatings to incorporate active ingredients to fresh-cut fruits: A review. Trends Food Sci. Technol. 2009, 20, 438–447. [Google Scholar] [CrossRef]
- Talja, R.A.; Helén, H.; Roos, Y.H.; Jouppila, K. Effect of type and content of binary polyol mixtures on physical and mechanical properties of starch-based edible films. Carbohydr. Polym. 2008, 71, 269–276. [Google Scholar] [CrossRef]
- Davoodi, M.; Kavoosi, G.; Shakeri, R. Preparation and characterization of potato starch-thymol dispersion and film as potential antioxidant and antibacterial materials. Int. J. Biol. Macromol. 2017, 104, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Laohakunjit, N.; Noomhorm, A. Effect of Plasticizers on Mechanical and Barrier Properties of Rice Starch Film. Starch-Stärke 2004, 56, 348–356. [Google Scholar] [CrossRef]
- Malmir, S.; Montero, B.; Rico, M.; Barral, L.; Bouza, R. Morphology, thermal and barrier properties of biodegradable films of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) containing cellulose nanocrystals. Compos. Pt. A-Appl. Sci. Manuf. 2017, 93, 41–48. [Google Scholar] [CrossRef]
- Ibrahim, M.I.J.; Sapuan, S.M.; Zainudin, E.S.; Zuhri, M.Y.M. Physical, thermal, morphological, and tensile properties of cornstarch-based films as affected by different plasticizers. Int. J. Food Prop. 2019, 22, 925–941. [Google Scholar] [CrossRef]
- Cerqueira, M.A.; Souza, B.W.S.; Teixeira, J.A.; Vicente, A.A. Effect of glycerol and corn oil on physicochemical properties of polysaccharide films—A comparative study. Food Hydrocoll. 2012, 27, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Romero-Bastida, C.A.; Bello-Pérez, L.A.; García, M.A.; Martino, M.N.; Solorza-Feria, J.; Zaritzky, N.E. Physicochemical and microstructural characterization of films prepared by thermal and cold gelatinization from non-conventional sources of starches. Carbohydr. Polym. 2005, 60, 235–244. [Google Scholar] [CrossRef]
- da Rosa Zavareze, E.; Pinto, V.Z.; Klein, B.; El Halal, S.L.M.; Elias, M.C.; Prentice-Hernández, C.; Dias, A.R.G. Development of oxidised and heat-moisture treated potato starch film. Food Chem. 2012, 132, 344–350. [Google Scholar] [CrossRef] [Green Version]
- Souza, A.C.; Benze, R.F.E.S.; Ferrão, E.S.; Ditchfield, C.; Coelho, A.C.V.; Tadini, C.C. Cassava starch biodegradable films: Influence of glycerol and clay nanoparticles content on tensile and barrier properties and glass transition temperature. LWT Food Sci. Technol. 2012, 46, 110–117. [Google Scholar] [CrossRef]
- Dai, L.; Zhang, J.; Cheng, F. Effects of starches from different botanical sources and modification methods on physicochemical properties of starch-based edible films. Int. J. Biol. Macromol. 2019, 132, 897–905. [Google Scholar] [CrossRef] [PubMed]
- Muscat, D.; Adhikari, B.; Adhikari, R.; Chaudhary, D.S. Comparative study of film forming behaviour of low and high amylose starches using glycerol and xylitol as plasticizers. J. Food Eng. 2012, 109, 189–201. [Google Scholar] [CrossRef]
- Blanco-Pascual, N.; Fernández-Martín, F.; Montero, P. Jumbo squid (Dosidicus gigas) myofibrillar protein concentrate for edible packaging films and storage stability. LWT-Food Sci. Technol. 2014, 55, 543–550. [Google Scholar] [CrossRef]
- Márquez Hernández, Y.M. Formulación y Caracterización de Recubrimientos Comestibles a Base de Proteína de Suero de Leche y Almidones Modificados. Ph.D. Thesis, Ing. Químico. Facultad de Química, Universidad Autónoma de Querétaro, Santiago de Querétaro, Mexico, 2010; p. 67. [Google Scholar]
- Zhong, Y.; Li, Y. Effects of glycerol and storage relative humidity on the properties of kudzu starch-based edible films. Starch-Stärke 2014, 66, 524–532. [Google Scholar] [CrossRef]
- Moreno, O.; Cardenas, J.; Atares, L.; Chiralt, A. Influence of starch oxidation on the functionality of starch-gelatin based active films. Carbohydr. Polym. 2017, 178, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Chang, P.R.; Ma, X. The preparation and properties of dialdehyde starch and thermoplastic dialdehyde starch. Carbohydr. Polym. 2010, 79, 296–300. [Google Scholar] [CrossRef]
- Pardo, O.H.; Castañeda, J.C.; Ortiz, C.A. Caracterización estructural y térmica de almidones provenientes de diferentes variedades de papa. Acta Agronómica 2013, 62, 289–295. [Google Scholar]
- Zobel, H. Molecules to granules: A comprehensive starch review. Starch-Stärke 1988, 40, 44–50. [Google Scholar] [CrossRef]
- Agama-Acevedo, E.; Ottenhof, M.A.; Farhat, I.A.; Paredes-López, O.; Ortíz-Cereceres, J.; Bello-Pérez, L.A. Aislamiento y caracterización del almidón de maíces pigmentados. Agrociencia 2005, 39, 419–429. [Google Scholar]
- Rivas-González, M.; Méndez-Montealvo, M.G.C.; Sánchez-Rivera, M.M.; Núñez-Santiago, M.C.; Bello-Pérez, L.A. Caracterización morfológica, molecular y fisicoquímica del almidón de plátano oxidado y lintnerizado. Agrociencia 2008, 42, 487–497. [Google Scholar]
%NaClO | Carbonyl Group Content (%) | Carboxyl Group Content (%) |
---|---|---|
2.0 | 0.188 ± 0.004 a | 0.00052 ± 0.00002 e |
2.5 | 0.188 ± 0.004 a | 0.00074 ± 0.00001 d |
3.0 | 0.131 ± 0.004 ab | 0.00076 ± 0.00001 d |
3.5 | 0.174 ± 0.004 bc | 0.00140 ± 0.00002 c |
4.0 | 0.171 ± 0.004 c | 0.00163 ± 0.00001 b |
4.5 | 0.176 ± 0.007 bc | 0.00170 ± 0.00001 a |
Films Composition | Thickness (mm) | Tensile Strength (MPa) | Elongation at Break (%) | Young’s Modulus (MPa) | |
---|---|---|---|---|---|
NaClO (%) | Plasticizers (g) | ||||
2.0 | (1) 2 Sor-1 Gly | 0.16 ± 0.06 aaa | 0.57 ± 0.12 baa | 21.14 ± 4.19 aba | 0.26 ± 0.04 abb |
(2) 2 Sor-1.5 Gly | 0.14 ± 0.03 aaa | 0.25 ± 0.02 bab | 22.44 ± 7.27 aba | 0.60 ± 0.09 aba | |
(3) 2.5 Sor-1 Gly | 0.14 ± 0.05 aaa | 0.34 ± 0.06 baa | 35.31 ± 12.22 aaa | 0.60 ± 0.16 aab | |
(4) 2.5 Sor-1.5 Gly | 0.15 ± 0.04 aaa | 0.23 ± 0.11 bab | 21.02 ± 6.91 aaa | 0.48 ± 0.15 aaa | |
2.5 | (5) 2 Sor-1 Gly | 0.15 ± 0.08 aaa | 0.49 ± 0.17 aaa | 19.43 ± 6.63 aba | 0.29 ± 0.09 abb |
(6) 2 Sor-1.5 Gly | 0.16 ± 0.07 aaa | 0.36 ± 0.13 aab | 19.42 ± 6.20 aba | 0.39 ± 0.11 aba | |
(7) 2.5 Sor-1 Gly | 0.14 ± 0.05 aaa | 0.47 ± 0.09 aaa | 30.00 ± 10.61 aaa | 0.45 ± 0.12 aab | |
(8) 2.5 Sor-1.5 Gly | 0.18 ± 0.07 aaa | 0.39 ± 0.10 aab | 40.46 ± 4.96 aaa | 0.73 ± 0.20 aaa |
Film | %Moisture | %Solubility | |
---|---|---|---|
1 | 74.55 ± 2.61 bab | 74.05 ± 3.13 aaa | 3.52 ± 0.29 aaa |
2 | 69.95 ± 3.00 baa | 75.21 ± 0.59 aaa | 2.64 ± 0.18 aab |
3 | 77.26 ± 7.32 bbb | 74.95 ± 1.22 aaa | 3.56 ± 0.21 aaa |
4 | 67.87 ± 0.91 bba | 76.64 ± 4.31 aaa | 3.19 ± 0.14 aab |
5 | 73.60 ± 2.13 aab | 73.23 ± 3.36 aaa | 3.05 ± 0.42 baa |
6 | 52.86 ± 2.36 aaa | 78.90 ± 0.94 aaa | 6.22 ± 0.38 bab |
7 | 73.04 ± 4.51 abb | 76.21 ± 0.77 aaa | 4.27 ± 0.68 baa |
8 | 70.66 ± 4.76 aba | 76.10 ± 5.46 aaa | 0.27 bab |
Film | Light Transmittance (%) | Transparency | |||||
---|---|---|---|---|---|---|---|
350 | 400 | 500 | 600 | 700 | 800 | ||
1 | 62.77 ± 1.18 | 86.17 ± 0.23 | 88.11 ± 0.20 | 88.51 ± 0.00 | 89.33 ± 0.21 | 89.40 ± 0.24 | 0.27 ± 0.09 aaa |
2 | 61.10 ± 1.12 | 84.99 ± 1.53 | 86.84 ± 1.41 | 87.30 ± 1.41 | 87.98 ± 1.32 | 88.31 ± 1.13 | 0.33 ± 0.03 aaa |
3 | 63.22 ± 2.17 | 86.57 ± 1.09 | 88.38 ± 0.77 | 88.72 ± 0.74 | 89.47 ± 0.66 | 89.61 ± 0.63 | 0.29 ± 0.08 aaa |
4 | 62.23 ± 0.38 | 86.03 ± 0.30 | 87.84 ± 0.51 | 88.24 ± 0.62 | 88.85 ± 0.63 | 89.06 ± 0.63 | 0.34 ± 0.10 aaa |
5 | 64.04 ± 1.69 | 86.83 ± 0.12 | 88.65 ± 0.12 | 89.13 ± 0.21 | 89.74 ± 0.21 | 89.88 ± 0.32 | 0.38 ± 0.21 aaa |
6 | 62.57 ± 1.23 | 85.97 ± 1.02 | 87.84 ± 0.77 | 88.24 ± 0.59 | 88.85 ± 0.59 | 89.06 ± 0.59 | 0.33 ± 0.12 aaa |
7 | 63.15 ± 0.95 | 86.70 ± 0.80 | 88.45 ± 0.85 | 88.72 ± 0.74 | 89.47 ± 0.86 | 89.61 ± 0.83 | 0.42 ± 0.15 aaa |
8 | 63.41 ± 1.95 | 85.51 ± 0.90 | 87.23 ± 0.70 | 87.63 ± 0.71 | 88.24 ± 0.71 | 88.45 ± 0.71 | 0.32 ± 0.12 aaa |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Torres, B.; Robles-García, M.Á.; Gutiérrez-Lomelí, M.; Padilla-Frausto, J.J.; Navarro-Villarruel, C.L.; Del-Toro-Sánchez, C.L.; Rodríguez-Félix, F.; Barrera-Rodríguez, A.; Reyna-Villela, M.Z.; Avila-Novoa, M.G.; et al. Combination of Sorbitol and Glycerol, as Plasticizers, and Oxidized Starch Improves the Physicochemical Characteristics of Films for Food Preservation. Polymers 2021, 13, 3356. https://doi.org/10.3390/polym13193356
González-Torres B, Robles-García MÁ, Gutiérrez-Lomelí M, Padilla-Frausto JJ, Navarro-Villarruel CL, Del-Toro-Sánchez CL, Rodríguez-Félix F, Barrera-Rodríguez A, Reyna-Villela MZ, Avila-Novoa MG, et al. Combination of Sorbitol and Glycerol, as Plasticizers, and Oxidized Starch Improves the Physicochemical Characteristics of Films for Food Preservation. Polymers. 2021; 13(19):3356. https://doi.org/10.3390/polym13193356
Chicago/Turabian StyleGonzález-Torres, Berenice, Miguel Ángel Robles-García, Melesio Gutiérrez-Lomelí, J. Jesús Padilla-Frausto, Claudia Luz Navarro-Villarruel, Carmen Lizette Del-Toro-Sánchez, Francisco Rodríguez-Félix, Arturo Barrera-Rodríguez, Mireya Zoila Reyna-Villela, María Guadalupe Avila-Novoa, and et al. 2021. "Combination of Sorbitol and Glycerol, as Plasticizers, and Oxidized Starch Improves the Physicochemical Characteristics of Films for Food Preservation" Polymers 13, no. 19: 3356. https://doi.org/10.3390/polym13193356
APA StyleGonzález-Torres, B., Robles-García, M. Á., Gutiérrez-Lomelí, M., Padilla-Frausto, J. J., Navarro-Villarruel, C. L., Del-Toro-Sánchez, C. L., Rodríguez-Félix, F., Barrera-Rodríguez, A., Reyna-Villela, M. Z., Avila-Novoa, M. G., & Reynoso-Marín, F. J. (2021). Combination of Sorbitol and Glycerol, as Plasticizers, and Oxidized Starch Improves the Physicochemical Characteristics of Films for Food Preservation. Polymers, 13(19), 3356. https://doi.org/10.3390/polym13193356