Surface Characteristics and Color Stability of Dental PEEK Related to Water Saturation and Thermal Cycling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Water Saturation
2.3. Thermal Cycling
2.4. Surface Roughness Measurements
2.5. Nanosurface Topographic Characterization by Atomic Force Microscopy (AFM)
2.6. Hardness Measurements
2.7. Optical and Color Changes Measurements
2.8. Statistical Analysis
3. Results
3.1. Water Saturation
3.2. Roughness Measurements
3.3. Nanosurface Topographic Characterization by Atomic Force Microscopy (AFM)
3.4. Hardness Measurements
3.5. Optical and Color Changes Measurements
4. Discussion
5. Conclusions
- The studied reinforced and unfilled PEEK reached water saturation after the first week of immersion, without significant differences between them. Water absorption was associated with a decrease in microhardness. The most affected from this point of view was the reinforced PEEK material.
- Thermocycling induced a significant increase of microroughness, without significant differences between the studied materials.
- Related to the nanosurface topography and roughness, the reinforced PEEK material was the least modified by aging.
- The color changes after 4 weeks of water immersion and one year of simulated in vitro aging ranged from extremely slight to slight, for all materials.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Priester, M.; Müller, W.D.; Beuer, F.; Schmidt, F.; Schwitalla, A.D. Performance of PEEK based telescopic crowns, a comparative study. Dent. Mater. 2021, 37, 1667–1675. [Google Scholar] [PubMed]
- Nguyen, L.G.; Kopperud, H.M.; Øilo, M. Water sorption and solubility of polyamide denture base materials. Acta Biomater. Odontol. Scand. 2017, 13, 47–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skirbutis, G.; Dzingutė, A.; Masiliūnaitė, V.; Šulcaitė, G.; Žilinskas, J. A review of PEEK polymer’s properties and its use in prosthodontics. Stomatologija 2017, 19, 19–23. [Google Scholar] [PubMed]
- Gao, S.; Gao, S.; Xu, B.; Yu, H. Effects of Different pH-Values on the Nanomechanical Surface Properties of PEEK and CFR-PEEK Compared to Dental Resin-Based Materials. Materials 2015, 27, 4751–4767. [Google Scholar] [CrossRef] [PubMed]
- Porto, T.S.; Roperto, R.C.; Akkus, A.; Akkus, O.; Teich, S.; Faddoul, F.; Porto-Neto, S.T.; Campos, E.A. Effect of storage and aging conditions on the flexural strength and flexural modulus of CAD/CAM materials. Dent. Mater J. 2019, 31, 264–270. [Google Scholar]
- Bathala, L.; Majeti, V.; Rachuri, N.; Singh, N.; Gedela, S. The Role of Polyether Ether Ketone (Peek) in Dentistry—A Review. J. Med. Life 2019, 12, 5–9. [Google Scholar] [CrossRef]
- Al Taweel, S.M.; Al Fouzan, A.; NAl-Otaibi, H.; Labban, N.; AlShehri, H.A. Thermal-cycling, simulated brushing, and beverages induced color changes and roughness of CAD/CAM poly (methyl methacrylate), denture resins. Mater. Res. Express 2021, 8, 125401. [Google Scholar]
- Alp, G.; Johnston, W.M.; Yilmaz, B. Optical properties and surface roughness of prepolymerized poly(methyl methacrylate) denture base materials. J. Prosthet. Dent. 2019, 121, 347–352. [Google Scholar]
- Sahin, O.; Koroglu, A.; Dede, D.; Yilmaz, B. Effect of surface sealant agents on the surface roughness and colour stability of denture base materials. J. Prosthet. Dent. 2016, 116, 610–616. [Google Scholar] [CrossRef]
- Ren, J.; Lin, H.; Huang, Q.; Zheng, G. Determining colour difference thresholds in denture base acrylic resin. J. Prosthet. Dent. 2015, 114, 702–708. [Google Scholar] [CrossRef]
- Zuo, W.; Feng, D.; Song, A.; Gong, H.; Zhu, S. Effects of organic-inorganic hybrid coating on the colour stability of denture base resins. J. Prosthet. Dent. 2016, 115, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Aydin, N.; Karaoğlanoğlu, S.; Oktay, E.A.; Ersöz, B. Superficial Effects of Different Finishing and Polishing Systems on the Surface Roughness and Color Change of Resin-Based CAD/CAM Blocks. Odovtos-Int. J. Dent. Sci. 2021, 23–23, 87–97. [Google Scholar] [CrossRef]
- Bagheri, R.; Burrow, M.F.; Tyas, M. Influence of food-simulating solutions and surface finish on susceptibility to staining of aesthetic restorative materials. J. Dent. 2005, 33, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Porojan, L.; Vasiliu, R.-D.; Bîrdeanu, M.-I.; Porojan, S.D. Surface Characterization and Optical Properties of Reinforced Dental Glass-Ceramics Related to Artificial Aging. Molecules 2020, 25, 3407. [Google Scholar] [CrossRef]
- Kurt, M.; Güngör, M.B.; Nemli, S.K.; Bal, B.T. Effects of glazing methods on the optical and surface properties of silicate ceramics. J. Prosthodont. Res. 2020, 64, 202–209. [Google Scholar] [CrossRef]
- Hallmann, L.; Ulmer, P.; Lehmann, F.; Wille, S.; Polonskyi, O.; Johannes, M.; Köbel, S.; Trottenberg, T.; Bornholdt, S.; Haase, F.; et al. Effect of surface modifications on the bond strength of zirconia ceramic with resin cement. Dent. Mater. 2016, 16, 631–639. [Google Scholar] [CrossRef]
- Paravina, R.; Powers, J. Esthetic Color Training in Dentistry; Elsevier Mosby: St. Louis, MO, USA, 2004; pp. 51–78. [Google Scholar]
- Shirani, M.; Savabi, O.; Mosharraf, R.; Akhavankhaleghi, M.; Hebibkhodaei, M.; Isler, S. Comparison of translucency and opalescence among different dental monolithic ceramics. J. Prosthet. Dent. 2021, 126, 446.e1–446.e6. [Google Scholar] [CrossRef]
- Fang, D.; Zhang, N.; Chen, H. Dynamic stress relaxation of orthodontic thermoplastic materials in a simulated oral environment. Dent. Mater. J. 2013, 32, 946–951. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, M.; Wible, E. Long-term effects of seven cleaning methods on light transmittance, surface roughness, and flexural modulus of polyurethane retainer material. Angle Orthod. 2018, 88, 355–362. [Google Scholar] [CrossRef] [Green Version]
- Nguyen-Tri, P.; Prud’homme, R.E. Nanoscale analysis of the photodegradation of Polyester fibers by AFM-IR. J. Photochem. Photobiol. A Chem. 2019, 371, 196–204. [Google Scholar] [CrossRef]
- Biron, M. Detailed Accounts of Thermoplastic Resins. In Thermoplastics and Thermoplastic Composites, 3rd ed.; William Andrew, Kindlington: Oxford, UK, 2018; pp. 203–766. [Google Scholar]
- Porojan, L.; Vasiliu, R.-D.; Porojan, S.D.; Bîrdeanu, M.I. Surface Quality Evaluation of Removable Thermoplastic Dental Appliances Related to Staining Beverages and Cleaning Agents. Polymers 2020, 12, 1736. [Google Scholar] [CrossRef] [PubMed]
- Nihei, T.; Kurata, S.; Kondo, Y.; Umemoto, K.; Yoshino, N.; Teranaka, T. Enhanced hydrolytic stability of dental composites by use of fluoroalkyltrimethoxysilanes. J. Dent. Res. 2002, 81, 482–486. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, T.; Briscoe, B.J.; Luckham, P.F. Surface Plasticization of Poly(ether ether ketone). Eur. Polym. J. 2011, 47, 2244–2258. [Google Scholar] [CrossRef]
- Aldhafyan, M.; Silikas, N.; Watts, D.C. Influence of curing modes on thermal stability, hardness development and network integrity of dual-cure resin cements. Dent. Mater. 2021, 37, 1854–1864. [Google Scholar] [CrossRef] [PubMed]
- Alamoush, R.A.; Sung, R.; Satterthwaite, J.D.; Silikas, N. The effect of different storage media on the monomer elution and hardness of CAD/CAM composite blocks. Dent. Mater. 2021, 37, 1202–1213. [Google Scholar] [CrossRef] [PubMed]
- Liebermann, A.; Wimmer, T.; Schmidlin, P.R.; Scherer, H.; Löffler, P.; Roos, M.; Stawarczyk, B. Physicomechanical characterization of polyetheretherketone and current esthetic dental CAD/CAM polymers after aging in different storage media. J. Prosthet. Dent. 2016, 115, 321–328.e2. [Google Scholar] [CrossRef] [Green Version]
- Fonseca, A.S.; Labruna Moreira, A.D.; de Albuquerque, P.P.; de Menezes, L.R.; Pfeifer, C.S.; Schneider, L.F. Effect of monomer type on the CC degree of conversion, water sorption and solubility, and color stability of model dental composites. Dent. Mater. 2017, 33, 394–401. [Google Scholar] [CrossRef]
- Taşın, S.; Ismatullaev, A. Comparative evaluation of the effect of thermocycling on the mechanical properties of conventionally polymerized, CAD-CAM milled, and 3D-printed interim materials. J. Prosthet. Dent. 2022, 27, 173.e1–173.e8. [Google Scholar] [CrossRef]
- Müller, J.A.; Rohr, N.; Fischer, J. Evaluation of ISO 4049: Water sorption and water solubility of resin cements. Eur. J. Oral Sci. 2017, 125, 141–150. [Google Scholar] [CrossRef]
- Liebermann, A.; Vehling, D.; Eichberger, M.; Stawarczyk, B. Impact of storage media and temperature on color stability of tooth-colored CAD/CAM materials for final restorations. J. Appl. Biomater. Funct. Mater. 2019, 17, 2280800019836832. [Google Scholar] [CrossRef] [Green Version]
- Munchow, E.A.; Ferreira, A.C.; Machado, R.M.; Ramos, T.S.; Rodrigues, S.A.; Zanchi, C.H. Effect of acidic solutions on the surface degradation of a microhybrid composite resin. Braz. Dent. J. 2014, 25, 321–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musanje, L.; Darvell, B.W. Aspects of water sorption from the air, water and artificial saliva in resin composite restorative materials. Dent. Mater. 2003, 19, 414–422. [Google Scholar] [CrossRef]
- Ferracane, J.L. Hygroscopic and hydrolytic effects in dental polymer networks. Dent. Mater. 2006, 22, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Lohbauer, U.; Belli, R.; Ferracane, J.L. Factors involved in mechanical fatigue degradation of dental resin composites. J. Dent. Res. 2013, 92, 584–591. [Google Scholar] [CrossRef] [Green Version]
- Kurtz, S.M.; Devine, J.N. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 2007, 28, 4845–4869. [Google Scholar] [CrossRef] [Green Version]
- Ghavami-Lahiji, M.; Firouzmanesh, M.; Bagheri, H.; Kashi, T.S.J.; Razazpour, F.; Behroozibakhsh, M. The effect of thermocycling on the degree of conversion and mechanical properties of a microhybrid dental resin composite. Restor. Dent. Endod. 2018, 43, e26. [Google Scholar] [CrossRef]
- Kiomarsi, N.; Saburian, P.; Chiniforush, N.; Karazifard, M.-J.; Hashemikamangar, S.S. Effect of thermocycling and surface treatment on repair bond strength of composite. J. Clin. Exp. Dent. 2017, 9, e945–e951. [Google Scholar] [CrossRef]
- Atalay, S.; Çakmak, G.; Fonseca, M.; Schimmel, M.; Yilmaz, B. Effect of thermocycling on the surface properties of CAD-CAM denture base materials after different surface treatments. J. Mech. Behav. Biomed. Mater. 2021, 121, 104646. [Google Scholar] [CrossRef]
Material | Composition | Manufacturer |
---|---|---|
BioHPP dentine shade 2 (B) | Ceramic reinforced (grain size of 0.3 to 0.5 μm) partially crystalline polyetheretherketone (PEEK) | Bredent group GmbH & Co. KG, Senden, Germany |
Finoframe PEEK A2 (F) | Polyetheretherketone (PEEK) 100% | Fino GmbH, Bad Bocklet, Germany |
Juvora medical PEEK nature (J) | Polyetheretherketone (PEEK) 100% | Juvora Ltd. Global Technology Center, Lancashire, UK |
NBS Units | Color Changes |
---|---|
0.0–0.5 | extremely slight change |
0.5–1.5 | slight change |
1.5–3.0 | perceivable |
3.0–6.0 | marked change |
6.0–12.0 | extremely marked change |
12.0 or more | change to another color |
Material | Before | After 1 Week | After 2 Weeks | After 3 Weeks | After 4 Weeks | After tc |
---|---|---|---|---|---|---|
B | 30.77 ± 0.67 | 28.37 ± 0.77 | 27.50 ± 0.08 | 27.4 ± 0.30 | 27.40 ± 0.35 | 26.76 ± 0.44 |
F | 30.60 ± 0.77 | 29.03 ± 0.44 | 28.93 ± 0.33 | 28.26 ± 0.33 | 27.27 ± 0.68 | 27.23 ± 0.12 |
J | 27.67 ± 0.52 | 27.03 ± 0.12 | 25.97 ± 0.24 | 25.76 ± 0.38 | 25.67 ± 0.44 | 25.20 ± 0.21 |
Color Change | B(b) | B(w) | F(b) | F(w) | J(b) | J(w) |
---|---|---|---|---|---|---|
0-1 | 0.506 | 0.242 | 0.217 | 1.462 | 0.646 | 1.059 |
0-2 | 1.293 | 0.804 | 1.105 | 1.319 | 0.685 | 0.341 |
0-3 | 1.002 | 1.207 | 0.366 | 1.344 | 0.724 | 0.341 |
0-4 | 1.383 | 1.075 | 0.613 | 0.852 | 0.737 | 0.312 |
4-tc | 0.437 | 0.420 | 0.544 | 0.594 | 0.053 | 0.101 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Porojan, L.; Toma, F.R.; Bîrdeanu, M.I.; Vasiliu, R.D.; Uțu, I.-D.; Matichescu, A. Surface Characteristics and Color Stability of Dental PEEK Related to Water Saturation and Thermal Cycling. Polymers 2022, 14, 2144. https://doi.org/10.3390/polym14112144
Porojan L, Toma FR, Bîrdeanu MI, Vasiliu RD, Uțu I-D, Matichescu A. Surface Characteristics and Color Stability of Dental PEEK Related to Water Saturation and Thermal Cycling. Polymers. 2022; 14(11):2144. https://doi.org/10.3390/polym14112144
Chicago/Turabian StylePorojan, Liliana, Flavia Roxana Toma, Mihaela Ionela Bîrdeanu, Roxana Diana Vasiliu, Ion-Dragoș Uțu, and Anamaria Matichescu. 2022. "Surface Characteristics and Color Stability of Dental PEEK Related to Water Saturation and Thermal Cycling" Polymers 14, no. 11: 2144. https://doi.org/10.3390/polym14112144
APA StylePorojan, L., Toma, F. R., Bîrdeanu, M. I., Vasiliu, R. D., Uțu, I. -D., & Matichescu, A. (2022). Surface Characteristics and Color Stability of Dental PEEK Related to Water Saturation and Thermal Cycling. Polymers, 14(11), 2144. https://doi.org/10.3390/polym14112144