Nanostructured Conducting Polymers and Their Applications in Energy Storage Devices
Abstract
:1. Introduction
2. How Do Supercapacitors Contribute to Energy Shortages?
3. Conducting Polymers
4. Nanostructured Materials
5. CP as Supercapacitors
Electronic Storage Devices
6. Nanostructuring CP
6.1. PANI
6.2. PPy
6.3. PTh
6.4. PEDOT
6.5. Copolymers
6.6. CP Conjugated with Carbonyl Functional Groups
7. Nanostructured CP as Supercapacitors
7.1. PANI
7.2. Ppy
7.3. PEDOT
7.4. Copolymers and Derivatives of CP
8. Nanostructured CP as Rechargeable Batteries
8.1. PANI
8.2. PPy
8.3. PTh and PEDOT
8.4. Copolymers and Derivatives of CP
9. Nanostructured CP Used in Fuel Cells
9.1. PANI
9.2. PPy
9.3. PEDOT
9.4. Copolymers and Derivatives of CP
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Sorrell, S. Reducing Energy Demand: A Review of Issues, Challenges and Approaches. Renew. Sustain. Energy Rev. 2015, 47, 74–82. [Google Scholar] [CrossRef] [Green Version]
- Cullen, J.M.; Allwood, J.M.; Borgstein, E.H. Reducing Energy Demand: What Are the Practical Limits? Environ. Sci. Technol. 2011, 45, 1711–1718. [Google Scholar] [CrossRef] [PubMed]
- Reyna, J.L.; Chester, M.V. Energy Efficiency to Reduce Residential Electricity and Natural Gas Use under Climate Change. Nat. Commun. 2017, 8, 14916. [Google Scholar] [CrossRef] [Green Version]
- Dehghani-Sanij, A.R.; Tharumalingam, E.; Dusseault, M.B.; Fraser, R. Study of Energy Storage Systems and Environmental Challenges of Batteries. Renew. Sustain. Energy Rev. 2019, 104, 192–208. [Google Scholar] [CrossRef]
- Bonaccorso, F.; Colombo, L.; Yu, G.; Stoller, M.; Tozzini, V.; Ferrari, A.C.; Ruoff, R.S.; Pellegrini, V. Graphene, Related Two-Dimensional Crystals, and Hybrid Systems for Energy Conversion and Storage. Science 2015, 347, 1246501. [Google Scholar] [CrossRef] [PubMed]
- Merle, G.; Wessling, M.; Nijmeijer, K. Anion Exchange Membranes for Alkaline Fuel Cells: A Review. J. Membr. Sci. 2011, 377, 1–35. [Google Scholar] [CrossRef]
- Ryu, H.; Yoon, H.J.; Kim, S.W. Hybrid Energy Harvesters: Toward Sustainable Energy Harvesting. Adv. Mater. 2019, 31, 1802898. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, J.; Kintner-Meyer, M.C.W.; Lu, X.; Choi, D.; Lemmon, J.P.; Liu, J. Electrochemical Energy Storage for Green Grid. Chem. Rev. 2011, 111, 3577–3613. [Google Scholar] [CrossRef]
- Abdelhamid, M.E.; O’Mullane, A.P.; Snook, G.A. Storing Energy in Plastics: A Review on Conducting Polymers & Their Role in Electrochemical Energy Storage. RSC Adv. 2015, 5, 11611–11626. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Lee, J.; You, J.; Park, M.-S.; Hossain, M.S.A.; Yamauchi, Y.; Kim, J.H. Conductive Polymers for Next-Generation Energy Storage Systems: Recent Progress and New Functions. Mater. Horiz. 2016, 3, 517–535. [Google Scholar] [CrossRef]
- Salanne, M.; Rotenberg, B.; Naoi, K.; Kaneko, K.; Taberna, P.L.; Grey, C.P.; Dunn, B.; Simon, P. Efficient Storage Mechanisms for Building Better Supercapacitors. Nat. Energy 2016, 1, 16070. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.K.; Sy, S.; Yu, A.; Zhang, J. Electrochemical Supercapacitors for Energy Storage and Conversion. In Handbook of Clean Energy Systems; Yan, J., Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2015; pp. 1–25. ISBN 978-1-118-99197-8. [Google Scholar]
- Poonam; Sharma, K.; Arora, A.; Tripathi, S.K. Review of Supercapacitors: Materials and Devices. J. Energy Storage 2019, 21, 801–825. [Google Scholar] [CrossRef]
- Alazard, N.; Toux, P.; Devezeaux de Lavergne, J.G.; Chevallet, L.; Gentier, S.; Hache, E. Decarbonization Wedges—ANCRE Report 2015; ANCRE Group: Carrollton, TX, USA, 2015. [Google Scholar]
- Carrasco, J.M.; Franquelo, L.G.; Bialasiewicz, J.T.; Galván, E.; Portillo Guisado, R.C.; Prats, M.Á.M.; León, J.I.; Moreno-Alfonso, N. Power-Electronic Systems for the Grid Integration of Renewable Energy Sources: A Survey. IEEE Trans. Ind. Electron. 2006, 53, 1002–1016. [Google Scholar] [CrossRef]
- Mathy, S.; Menanteau, P.; Criqui, P. After the Paris Agreement: Measuring the Global Decarbonization Wedges From National Energy Scenarios. Ecol. Econ. 2018, 150, 273–289. [Google Scholar] [CrossRef]
- Yekini Suberu, M.; Wazir Mustafa, M.; Bashir, N. Energy Storage Systems for Renewable Energy Power Sector Integration and Mitigation of Intermittency. Renew. Sustain. Energy Rev. 2014, 35, 499–514. [Google Scholar] [CrossRef]
- Poizot, P.; Gaubicher, J.; Renault, S.; Dubois, L.; Liang, Y.; Yao, Y. Opportunities and Challenges for Organic Electrodes in Electrochemical Energy Storage. Chem. Rev. 2020, 120, 6490–6557. [Google Scholar] [CrossRef]
- Denholm, P.; Mai, T. Timescales of Energy Storage Needed for Reducing Renewable Energy Curtailment. Renew. Energy 2019, 130, 388–399. [Google Scholar] [CrossRef]
- Guarnieri, M.; Liserre, M.; Sauter, T.; Hung, J.Y. Future Energy Systems: Integrating Renewable Energy Sources into the Smart Power Grid through Industrial Electronics. IEEE Ind. Electron. Mag. 2010, 4, 18–37. [Google Scholar] [CrossRef]
- Reka, S.S.; Dragicevic, T. Future Effectual Role of Energy Delivery: A Comprehensive Review of Internet of Things and Smart Grid. Renew. Sustain. Energy Rev. 2018, 91, 90–108. [Google Scholar] [CrossRef]
- Arefifar, S.A.; Mohamed, Y.A.R.I.; El-Fouly, T.H.M. Comprehensive Operational Planning Framework for Self-Healing Control Actions in Smart Distribution Grids. IEEE Trans. Power Syst. 2013, 28, 4192–4200. [Google Scholar] [CrossRef]
- Awad, A.S.A.; El-Fouly, T.H.M.; Salama, M.M.A. Optimal ESS Allocation and Load Shedding for Improving Distribution System Reliability. IEEE Trans. Smart Grid 2014, 5, 2339–2349. [Google Scholar] [CrossRef]
- Dunn, B.; Kamath, H.; Tarascon, J.M. Electrical Energy Storage for the Grid: A Battery of Choices. Science 2011, 334, 928–935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanco, G.; Gerlagh, R.; Suh, S.; Barrett, J.; de Coninck, H.C.; Diaz Morejon, C.F.; Mathur, R.; Nakicenovic, N.; Ofosu Ahenkora, A.; Pan, J.; et al. Drivers, Trends and Mitigation. In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- The International Organization of Motor Vehicle Manufacturers. World Vehicles in Use—All Vehicles 2005–2015; The International Organization of Motor Vehicle Manufacturers: Paris, France, 2014; pp. 21–23. [Google Scholar]
- Madakam, S.; Ramaswamy, R.; Tripathi, S. Internet of Things (IoT): A Literature Review. J. Comput. Commun. 2015, 3, 164–173. [Google Scholar] [CrossRef] [Green Version]
- Bandyopadhyay, D.; Sen, J. Internet of Things: Applications and Challenges in Technology and Standardization. Wirel. Pers. Commun. 2011, 58, 49–69. [Google Scholar] [CrossRef] [Green Version]
- The Shift Project. Lean ICT-Towards Digital Sobriety; The Shift Project: Paris, France, 2019. [Google Scholar]
- Croguennec, L.; Palacin, M.R. Recent Achievements on Inorganic Electrode Materials for Lithium-Ion Batteries. J. Am. Chem. Soc. 2015, 137, 3140–3156. [Google Scholar] [CrossRef]
- Yassine, M.; Fabris, D. Performance of Commercially Available Supercapacitors. Energies 2017, 10, 1340. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Zheng, M.; Xue, H.; Pang, H. High Performance Electrochemical Capacitor Materials Focusing on Nickel Based Materials. Inorg. Chem. Front. 2016, 3, 175–202. [Google Scholar] [CrossRef]
- Han, Y.; Dai, L. Conducting Polymers for Flexible Supercapacitors. Macromol. Chem. Phys. 2019, 220, 1800355. [Google Scholar] [CrossRef]
- Pomerantseva, E.; Bonaccorso, F.; Feng, X.; Cui, Y.; Gogotsi, Y. Energy Storage: The Future Enabled by Nanomaterials. Science 2019, 366, eaan8285. [Google Scholar] [CrossRef] [Green Version]
- Zhou, G.; Xu, L.; Hu, G.; Mai, L.; Cui, Y. Nanowires for Electrochemical Energy Storage. Chem. Rev. 2019, 119, 11042–11109. [Google Scholar] [CrossRef]
- Kamat, P.V. Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Conversion. J. Phys. Chem. C 2007, 111, 2834–2860. [Google Scholar] [CrossRef]
- Lines, M.G. Nanomaterials for Practical Functional Uses. J. Alloys Compd. 2008, 449, 242–245. [Google Scholar] [CrossRef]
- Le, T.H.; Kim, Y.; Yoon, H. Electrical and Electrochemical Properties of Conducting Polymers. Polymers 2017, 9, 150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibanez, J.G.; Rincón, M.E.; Gutierrez-Granados, S.; Chahma, M.; Jaramillo-Quintero, O.A.; Frontana-Uribe, B.A. Conducting Polymers in the Fields of Energy, Environmental Remediation, and Chemical-Chiral Sensors. Chem. Rev. 2018, 118, 4731–4816. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, M.; Pei, Z.; Xue, Q.; Li, H.; Huang, Y.; Zhi, C. Polymers for Supercapacitors: Boosting the Development of the Flexible and Wearable Energy Storage. Mater. Sci. Eng. R. Rep. 2020, 139, 100520. [Google Scholar] [CrossRef]
- Nezakati, T.; Seifalian, A.; Tan, A.; Seifalian, A.M. Conductive Polymers: Opportunities and Challenges in Biomedical Applications. Chem. Rev. 2018, 118, 6766–6843. [Google Scholar] [CrossRef]
- Bidan, G. Electropolymerized Films of Π-Conjugated Polymers. A Tool for Surface Functionalization: A Brief Historical Evolution and Recent Trends. In Electropolymerization: Concepts, Materials and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2010; pp. 1–26. ISBN 978-3-527-63059-2. [Google Scholar]
- Inzelt, G. Chemical and Electrochemical Syntheses of Conducting Polymers. In Conducting Polymers: A New Era in Electrochemistry; Springer: Berlin/Heidelberg, Germany, 2008; pp. 149–171. [Google Scholar]
- Raymond, D.E.; Harrison, D.J. Observation of Pyrrole Radical Cations as Transient Intermediates during the Anodic Formation of Conducting Polypyrrole Films. J. Electroanal. Chem. 1993, 361, 65–76. [Google Scholar] [CrossRef]
- Smie, A.; Synowczyk, A.; Heinze, J.; Alle, R.; Tschuncky, P.; Götz, G.; Bäuerle, P. β,β-Disubstituted Oligothiophenes, a New Oligomeric Approach towards the Synthesis of Conducting Polymers. J. Electroanal. Chem. 1998, 452, 87–95. [Google Scholar] [CrossRef]
- Ruiz, V.; Colina, Á.; Heras, A.; López-Palacios, J.; Seeber, R. Bidimensional Spectroelectrochemistry Applied to the Electrosynthesis and Characterization of Conducting Polymers: Study of Poly[4,4′-Bis(Butylthio)-2,2′-Bithiophene]. Helv. Chim. Acta 2001, 84, 3628–3642. [Google Scholar] [CrossRef]
- Schrebler, R.; Grez, P.; Cury, P.; Veas, C.; Merino, M.; Gómez, H.; Córdova, R.; Del Valle, M.A. Nucleation and Growth Mechanisms of Poly(Thiophene) Part 1. Effect of Electrolyte and Monomer Concentration in Dichloromethane. J. Electroanal. Chem. 1997, 430, 77–90. [Google Scholar] [CrossRef]
- Romero, M.; del Valle, M.A.; del Río, R.; Díaz, F.R.; Armijo, F. Polymers Nucleation and Growth Mechanism: Solubility, a Determining Factor. Int. J. Electrochem. Sci. 2012, 7, 10132–10141. [Google Scholar]
- Córdova, R.; del Valle, M.A.; Arratia, A.; Gómez, H.; Schrebler, R. Effect of Anions on the Nucleation and Growth Mechanism of Polyaniline. J. Electroanal. Chem. 1994, 377, 75–83. [Google Scholar] [CrossRef]
- del Valle, M.A.; Cury, P.; Schrebler, R. Solvent Effect on the Nucleation and Growth Mechanisms of Poly(Thiophene). Electrochim. Acta 2002, 48, 397–405. [Google Scholar] [CrossRef]
- del Valle, M.A.; Gacitúa, M.A.; Borrego, E.D.; Zamora, P.P.; Díaz, F.R.; Camarada, M.B.; Antilén, M.P.; Soto, J.P. Electro-Synthesis and Characterization of Aniline and o-Anisidine Oligomers. Int. J. Electrochem. Sci. 2012, 7, 2552–2565. [Google Scholar]
- del Valle, M.A.; Díaz, F.R.; Bodini, M.E.; Alfonso, G.; Soto, G.M.; Borrego, E.D. Electrosynthesis and Characterization of O-Phenylenediamine Oligomers. Polym. Int. 2005, 54, 526–532. [Google Scholar] [CrossRef]
- MacDiarmid, A.G. “synthetic Metals”: A Novel Role for Organic Polymers. Curr. Appl. Phys. 2001, 1, 269–279. [Google Scholar] [CrossRef]
- MacDiarmid, A.G.; Mammone, R.J.; Kaner, R.B.; Porter, L. The Concept of ‘Doping’ of Conducting Polymers: The Role of Reduction Potentials. Philos. Trans. R. Soc. London. Ser. A Math. Phys. Sci. 1985, 314, 3–15. [Google Scholar] [CrossRef]
- Tourillon, G.; Garnier, F. Effect of Dopant on the Physicochemical and Electrical Properties of Organic Conducting Polymers. J. Phys. Chem. 1983, 87, 2289–2292. [Google Scholar] [CrossRef]
- Salmon, M.; Kanazawa, K.K.; Diaz, A.F.; Krounbi, M. Chemical Route To Pyrrole Polymer Films. J. Polym. Sci. Part B Polym. Lett. 1982, 20, 187–193. [Google Scholar] [CrossRef]
- Pron, A.; Genoud, F.; Menardo, C.; Nechtschein, M. The Effect of the Oxidation Conditions on the Chemical Polymerization of Polyaniline. Synth. Met. 1988, 24, 193–201. [Google Scholar] [CrossRef]
- Winther-Jensen, B.; Chen, J.; West, K.; Wallace, G. Vapor Phase Polymerization of Pyrrole and Thiophene Using Iron(III) Sulfonates as Oxidizing Agents. Macromolecules 2004, 37, 5930–5935. [Google Scholar] [CrossRef]
- Mohammadi, A.; Lundström, I.; Inganäs, O.; Salaneck, W.R. Conducting Polymers Prepared by Template Polymerization: Polypyrrole. Polymer 1990, 31, 395–399. [Google Scholar] [CrossRef]
- Paradee, N.; Sirivat, A. Synthesis of Poly(3,4-Ethylenedioxythiophene) Nanoparticles via Chemical Oxidation Polymerization. Polym. Int. 2014, 63, 106–113. [Google Scholar] [CrossRef]
- Cao, Y.; Andreatta, A.; Heeger, A.J.; Smith, P. Influence of Chemical Polymerization Conditions on the Properties of Polyaniline. Polymer 1989, 30, 2305–2311. [Google Scholar] [CrossRef]
- Lizarraga, L.; Andrade, E.M.; Molina, F.V. Swelling and Volume Changes of Polyaniline upon Redox Switching. J. Electroanal. Chem. 2004, 561, 127–135. [Google Scholar] [CrossRef]
- Otero, T.F.; Martinez, J.G. Electro-Chemo-Biomimetics from Conducting Polymers: Fundamentals, Materials, Properties and Devices. J. Mater. Chem. B 2016, 4, 2069–2085. [Google Scholar] [CrossRef]
- Pei, Q.; Inganäs, O. Electrochemical Applications of the Bending Beam Method. 1. Mass Transport and Volume Changes in Polypyrrole during Redox. J. Phys. Chem. 1992, 96, 10507–10514. [Google Scholar] [CrossRef]
- Smela, E.; Gadegaard, N. Surprising Volume Change in PPy(DBS): An Atomic Force Microscopy Study. Adv. Mater. 1999, 11, 953–957. [Google Scholar] [CrossRef]
- Krische, B.; Zagorska, M. Overoxidation in Conducting Polymers. Synth. Met. 1989, 28, 257–262. [Google Scholar] [CrossRef]
- Saxena, V.; Malhotra, B.D.; Menon, R. Charge Transport and Electrical Properties of Doped Conjugated Polymers. In Handbook of Polymers in Electronics; Malhotra, B.D., Ed.; Rapra Technology Limited: Shrewsbury, Shropshire, UK, 2002; pp. 3–65. [Google Scholar]
- Brédas, J.L.; Scott, J.C.; Yakushi, K.; Street, G.B. Polarons and Bipolarons in Polypyrrole: Evolution of the Band Structure and Optical Spectrum upon Doing. Phys. Rev. B 1984, 30, 1023–1025. [Google Scholar] [CrossRef]
- Heinze, J.; Frontana-Uribe, B.A.; Ludwigs, S. Electrochemistry of Conducting Polymers-Persistent Models and New Concepts. Chem. Rev. 2010, 110, 4724–4771. [Google Scholar] [CrossRef] [PubMed]
- Baranovskii, S.D.; Rubel, O.; Jansson, F.; Österbacka, R. Description of Charge Transport in Disordered Organic Materials. In Organic Electronics. Advances in Polymer Science, Vol 223; Grasser, T., Meller, G., Li, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–28. [Google Scholar]
- Kim, F.S.; Ren, G.; Jenekhe, S.A. One-Dimensional Nanostructures of π-Conjugated Molecular Systems: Assembly, Properties, and Applications from Photovoltaics, Sensors, and Nanophotonics to Nanoelectronics. Chem. Mater. 2011, 23, 682–732. [Google Scholar] [CrossRef]
- Yu, M.; Qiu, W.; Wang, F.; Zhai, T.; Fang, P.; Lu, X.; Tong, Y. Three Dimensional Architectures: Design, Assembly and Application in Electrochemical Capacitors. J. Mater. Chem. A 2015, 3, 15792–15823. [Google Scholar] [CrossRef]
- Dang, S.; Zhu, Q.L.; Xu, Q. Nanomaterials Derived from Metal-Organic Frameworks. Nat. Rev. Mater. 2017, 3, 17075. [Google Scholar] [CrossRef]
- De Volder, M.F.L.; Tawfick, S.H.; Baughman, R.H.; Hart, A.J. Carbon Nanotubes: Present and Future Commercial Applications. Science 2013, 339, 535–539. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.M.; Zhang, Y.Z.; Kotaki, M.; Ramakrishna, S. A Review on Polymer Nanofibers by Electrospinning and Their Applications in Nanocomposites. Compos. Sci. Technol. 2003, 63, 2223–2253. [Google Scholar] [CrossRef]
- Cai, J.; Pignedoli, C.A.; Talirz, L.; Ruffieux, P.; Söde, H.; Liang, L.; Meunier, V.; Berger, R.; Li, R.; Feng, X.; et al. Graphene Nanoribbon Heterojunctions. Nat. Nanotechnol. 2014, 9, 896–900. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L.M.; Mulvaney, P. Gold Nanorods: Synthesis, Characterization and Applications. Coord. Chem. Rev. 2005, 249, 1870–1901. [Google Scholar] [CrossRef]
- Jin, T.; Han, Q.; Wang, Y.; Jiao, L. 1D Nanomaterials: Design, Synthesis, and Applications in Sodium–Ion Batteries. Small 2018, 14, 1703086. [Google Scholar] [CrossRef]
- Petrii, O.A. Electrosynthesis of Nanostructures and Nanomaterials. Russ. Chem. Rev. 2015, 84, 159–193. [Google Scholar] [CrossRef]
- Gong, S.; Cheng, W. One-Dimensional Nanomaterials for Soft Electronics. Adv. Electron. Mater. 2017, 3, 1600314. [Google Scholar] [CrossRef]
- Yu, K.; Pan, X.; Zhang, G.; Liao, X.; Zhou, X.; Yan, M.; Xu, L.; Mai, L. Nanowires in Energy Storage Devices: Structures, Synthesis, and Applications. Adv. Energy Mater. 2018, 8, 1802369. [Google Scholar] [CrossRef]
- Liao, J.Y.; Higgins, D.; Lui, G.; Chabot, V.; Xiao, X.; Chen, Z. Multifunctional TiO2-C/MnO2 Core-Double-Shell Nanowire Arrays as High-Performance 3D Electrodes for Lithium Ion Batteries. Nano Lett. 2013, 13, 5467–5473. [Google Scholar] [CrossRef] [PubMed]
- Mai, L.; Dong, F.; Xu, X.; Luo, Y.; An, Q.; Zhao, Y.; Pan, J.; Yang, J. Cucumber-like V2O5/Poly(3,4-Ethylenedioxythiophene) &MnO2 Nanowires with Enhanced Electrochemical Cyclability. Nano Lett. 2013, 13, 740–745. [Google Scholar] [CrossRef] [PubMed]
- Mai, L.; Hu, B.; Chen, W.; Qi, Y.; Lao, C.; Yang, R.; Dai, Y.; Wang, Z.L. Lithiated MoO3 Nanobelts with Greatly Improved Performance for Lithium Batteries. Adv. Mater. 2007, 19, 3712–3716. [Google Scholar] [CrossRef]
- del Valle, M.A.; Gacitúa, M.; Díaz, F.R.; Armijo, F.; Río, R. del Electrosynthesis of Polythiophene Nanowires via Mesoporous Silica Thin Film Templates. Electrochem. Commun. 2009, 11, 2117–2120. [Google Scholar] [CrossRef]
- García-Barberá, A.; Culebras, M.; Roig-Sánchez, S.; Gómez, C.M.; Cantarero, A. Three Dimensional PEDOT Nanowires Network. Synth. Met. 2016, 220, 208–212. [Google Scholar] [CrossRef]
- Lei, W.; He, P.; Wang, Y.; Zhang, S.; Dong, F.; Liu, H. Soft Template Interfacial Growth of Novel Ultralong Polypyrrole Nanowires for Electrochemical Energy Storage. Electrochim. Acta 2014, 132, 112–117. [Google Scholar] [CrossRef]
- Li, C.; Bai, H.; Shi, G. Conducting Polymer Nanomaterials: Electrosynthesis and Applications. Chem. Soc. Rev. 2009, 38, 2397. [Google Scholar] [CrossRef]
- Ghosh, S.; Maiyalagan, T.; Basu, R.N. Nanostructured Conducting Polymers for Energy Applications: Towards a Sustainable Platform. Nanoscale 2016, 8, 6921–6947. [Google Scholar] [CrossRef]
- del Valle, M.; Hernandez, L.; Diaz, F.; Ramos, A. Electrosynthesis and Characterization of Poly(3,4-Ethylenedioxythiophene) Nanowires. Int. J. Electrochem. Sci. 2015, 10, 5152–5163. [Google Scholar]
- del Valle, M.A.; Salgado, R.; Armijo, F. PEDOT Nanowires and Platinum Nanoparticles Modified Electrodes to Be Assayed in Formic Acid Electro-Oxidation. Int. J. Electrochem. Sci. 2014, 9, 1557–1564. [Google Scholar]
- Ahn, K.J.; Lee, Y.; Choi, H.; Kim, M.S.; Im, K.; Noh, S.; Yoon, H. Surfactant-Templated Synthesis of Polypyrrole Nanocages as Redox Mediators for Efficient Energy Storage. Sci. Rep. 2015, 5, 14097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramirez, A.; Gacitua, M.; Ortega, E.; Diaz, F.; del Valle, M. Electrochemical in Situ Synthesis of Polypyrrole Nanowires. Electrochem. Commun. 2019, 102, 94–98. [Google Scholar] [CrossRef]
- Anilkumar, P.; Jayakannan, M. Divergent Nanostructures from Identical Ingredients: Unique Amphiphilic Micelle Template for Polyaniline Nanofibers, Tubes, Rods, and Spheres. Macromolecules 2008, 41, 7706–7715. [Google Scholar] [CrossRef]
- Baker, C.O.; Huang, X.; Nelson, W.; Kaner, R.B. Polyaniline Nanofibers: Broadening Applications for Conducting Polymers. Chem. Soc. Rev. 2017, 46, 1510–1525. [Google Scholar] [CrossRef]
- Lorcy, J.M.; Massuyeau, F.; Moreau, P.; Chauvet, O.; Faulques, E.; Wéry, J.; Duvail, J.L. Coaxial Nickel/Poly(p-Phenylene Vinylene) Nanowires as Luminescent Building Blocks Manipulated Magnetically. Nanotechnology 2009, 20, 405601. [Google Scholar] [CrossRef]
- Wen, L.; Xu, R.; Mi, Y.; Lei, Y. Multiple Nanostructures Based on Anodized Aluminium Oxide Templates. Nat. Nanotechnol. 2017, 12, 244–250. [Google Scholar] [CrossRef]
- Lee, W.; Park, S.J. Porous Anodic Aluminum Oxide: Anodization and Templated Synthesis of Functional Nanostructures. Chem. Rev. 2014, 114, 7487–7556. [Google Scholar] [CrossRef]
- Martin, C.R. Nanomaterials: A Membrane-Based Synthetic Approach. Science 1994, 266, 1961–1966. [Google Scholar] [CrossRef]
- Trueba, M.; Montero, A.L.; Rieumont, J. Pyrrole Nanoscaled Electropolymerization: Effect of the Proton. Electrochim. Acta 2004, 49, 4341–4349. [Google Scholar] [CrossRef]
- Cho, M.S.; Choi, H.J.; Ahn, W.S. Enhanced Electrorheology of Conducting Polyaniline Confined in MCM-41 Channels. Langmuir 2004, 20, 202–207. [Google Scholar] [CrossRef]
- Walcarius, A.; Sibottier, E.; Etienne, M.; Ghanbaja, J. Electrochemically Assisted Self-Assembly of Mesoporous Silica Thin Films. Nat. Mater. 2007, 6, 602–608. [Google Scholar] [CrossRef] [PubMed]
- Long, D.L.; Tsunashima, R.; Cronin, L. Polyoxometalates: Building Blocks for Functional Nanoscale Systems. Angew. Chem.-Int. Ed. 2010, 49, 1736–1758. [Google Scholar] [CrossRef]
- Nguyen, D.N.; Yoon, H. Recent Advances in Nanostructured Conducting Polymers: From Synthesis to Practical Applications. Polymers 2016, 8, 118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, B.H.; Cheng, K.Y.; Holmes, R.J.; Lodge, T.P. Nanoporous Poly(3,4-Ethylenedioxythiophene) Derived from Polymeric Bicontinuous Microemulsion Templates. Macromolecules 2012, 45, 599–601. [Google Scholar] [CrossRef]
- Jang, J.; Yoon, H. Formation Mechanism of Conducting Polypyrrole Nanotubes in Reverse Micelle Systems. Langmuir 2005, 21, 11484–11489. [Google Scholar] [CrossRef] [PubMed]
- Rydzek, G.; Ji, Q.; Li, M.; Schaaf, P.; Hill, J.P.; Boulmedais, F.; Ariga, K. Electrochemical Nanoarchitectonics and Layer-by-Layer Assembly: From Basics to Future. Nano Today 2015, 10, 138–167. [Google Scholar] [CrossRef] [Green Version]
- Shukla, A.K.; Banerjee, A.; Ravikumar, M.K.; Jalajakshi, A. Electrochemical Capacitors: Technical Challenges and Prognosis for Future Markets. Electrochim. Acta 2012, 84, 165–173. [Google Scholar] [CrossRef]
- Conway, B.E. Electrochemical Supercapacitors; Springer: Boston, MA, USA, 1999; ISBN 978-1-4757-3060-9. [Google Scholar]
- Simon, P.; Gogotsi, Y. Materials for Electrochemical Capacitors. Nat. Mater. 2008, 7, 845–854. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Uchaker, E.; Candelaria, S.L.; Cao, G. Nanomaterials for Energy Conversion and Storage. Chem. Soc. Rev. 2013, 42, 3127. [Google Scholar] [CrossRef] [PubMed]
- Lang, X.; Hirata, A.; Fujita, T.; Chen, M. Nanoporous Metal/Oxide Hybrid Electrodes for Electrochemical Supercapacitors. Nat. Nanotechnol. 2011, 6, 232–236. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, N.; Li, C.; Moore, J.; Nagaiah, N.; Zhai, L.; Jung, Y.; Thomas, J. Asymmetric Supercapacitor Electrodes and Devices. Adv. Mater. 2017, 29, 1605336. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Song, Y.; Xia, Y. Electrochemical Capacitors: Mechanism, Materials, Systems, Characterization and Applications. Chem. Soc. Rev. 2016, 45, 5925–5950. [Google Scholar] [CrossRef]
- Kumar, Y.; Rawal, S.; Joshi, B.; Hashmi, S.A. Background, Fundamental Understanding and Progress in Electrochemical Capacitors. J. Solid State Electrochem. 2019, 23, 667–692. [Google Scholar] [CrossRef]
- Fan, L.-Z.; Maier, J. High-Performance Polypyrrole Electrode Materials for Redox Supercapacitors. Electrochem. Commun. 2006, 8, 937–940. [Google Scholar] [CrossRef]
- Liu, T.; Finn, L.; Yu, M.; Wang, H.; Zhai, T.; Lu, X.; Tong, Y.; Li, Y. Polyaniline and Polypyrrole Pseudocapacitor Electrodes with Excellent Cycling Stability. Nano Lett. 2014, 14, 2522–2527. [Google Scholar] [CrossRef]
- Jow, T.R. Electrochemical Characteristics of Alkali-Metal Doped Polyacetylene Electrodes. J. Electrochem. Soc. 1988, 135, 541. [Google Scholar] [CrossRef]
- Will, F.G. Charge-Discharge Behavior of Polyacetylene Electrodes. J. Electrochem. Soc. 1985, 132, 2351. [Google Scholar] [CrossRef]
- Eftekhari, A.; Li, L.; Yang, Y. Polyaniline Supercapacitors. J. Power Sources 2017, 347, 86–107. [Google Scholar] [CrossRef]
- Bryan, A.M.; Santino, L.M.; Lu, Y.; Acharya, S.; D’Arcy, J.M. Conducting Polymers for Pseudocapacitive Energy Storage. Chem. Mater. 2016, 28, 5989–5998. [Google Scholar] [CrossRef]
- Winter, M.; Brodd, R.J. What Are Batteries, Fuel Cells, and Supercapacitors? Chem. Rev. 2004, 104, 4245–4269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagotsky, V.S.; Skundin, A.M.; Volfkovich, Y.M. Electrochemical Power Sources: Batteries, Fuel Cells, and Supercapacitors; The ECS Series of Texts and Monographs; Wiley: Hoboken, NJ, USA, 2015; ISBN 978-1-118-94253-6. [Google Scholar]
- Rand, D.A.J.; Moseley, P.T. Lead-Acid Battery Fundamentals. Lead-Acid Batter. Future Automob. 2017, 1, 97–132. [Google Scholar] [CrossRef]
- Huang, M.; Li, M.; Niu, C.; Li, Q.; Mai, L. Recent Advances in Rational Electrode Designs for High-Performance Alkaline Rechargeable Batteries. Adv. Funct. Mater. 2019, 29, 1807847. [Google Scholar] [CrossRef]
- Liu, K.; Liu, Y.; Lin, D.; Pei, A.; Cui, Y. Materials for Lithium-Ion Battery Safety. Sci. Adv. 2018, 4, eaas9820. [Google Scholar] [CrossRef] [Green Version]
- Vaalma, C.; Buchholz, D.; Weil, M.; Passerini, S. A Cost and Resource Analysis of Sodium-Ion Batteries. Nat. Rev. Mater. 2018, 3, 18013. [Google Scholar] [CrossRef]
- Wang, W.; Luo, Q.; Li, B.; Wei, X.; Li, L.; Yang, Z. Recent Progress in Redox Flow Battery Research and Development. Adv. Funct. Mater. 2013, 23, 970–986. [Google Scholar] [CrossRef]
- Reddy, T. Linden’s Handbook of Batteries, 4th ed.; McGraw-Hill Education: New York, NY, USA, 2010; ISBN 978-0-07-162419-0. [Google Scholar]
- Garcia, B.; Lavallée, S.; Perron, G.; Michot, C.; Armand, M. Room Temperature Molten Salts as Lithium Battery Electrolyte. Electrochim. Acta 2004, 49, 4583–4588. [Google Scholar] [CrossRef]
- Aravindan, V.; Gnanaraj, J.; Madhavi, S.; Liu, H.K. Lithium-Ion Conducting Electrolyte Salts for Lithium Batteries. Chem.-A Eur. J. 2011, 17, 14326–14346. [Google Scholar] [CrossRef]
- Park, J.W.; Ueno, K.; Tachikawa, N.; Dokko, K.; Watanabe, M. Ionic Liquid Electrolytes for Lithium-Sulfur Batteries. J. Phys. Chem. C 2013, 117, 20531–20541. [Google Scholar] [CrossRef]
- Wang, J.; Yamada, Y.; Sodeyama, K.; Watanabe, E.; Takada, K.; Tateyama, Y.; Yamada, A. Fire-Extinguishing Organic Electrolytes for Safe Batteries. Nat. Energy 2018, 3, 22–29. [Google Scholar] [CrossRef]
- Zheng, F.; Kotobuki, M.; Song, S.; Lai, M.O.; Lu, L. Review on Solid Electrolytes for All-Solid-State Lithium-Ion Batteries. J. Power Sources 2018, 389, 198–213. [Google Scholar] [CrossRef]
- Pu, X.; Wang, H.; Zhao, D.; Yang, H.; Ai, X.; Cao, S.; Chen, Z.; Cao, Y. Recent Progress in Rechargeable Sodium-Ion Batteries: Toward High-Power Applications. Small 2019, 15, 1805427. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kumar, R.; Bandodkar, A.J.; Wang, J. Advanced Materials for Printed Wearable Electrochemical Devices: A Review. Adv. Electron. Mater. 2017, 3, 1600260. [Google Scholar] [CrossRef]
- Larcher, D.; Tarascon, J.M. Towards Greener and More Sustainable Batteries for Electrical Energy Storage. Nat. Chem. 2015, 7, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Schon, T.B.; McAllister, B.T.; Li, P.F.; Seferos, D.S. The Rise of Organic Electrode Materials for Energy Storage. Chem. Soc. Rev. 2016, 45, 6345–6404. [Google Scholar] [CrossRef] [Green Version]
- Muench, S.; Wild, A.; Friebe, C.; Häupler, B.; Janoschka, T.; Schubert, U.S. Polymer-Based Organic Batteries. Chem. Rev. 2016, 116, 9438–9484. [Google Scholar] [CrossRef]
- Xie, J.; Gu, P.; Zhang, Q. Nanostructured Conjugated Polymers: Toward High-Performance Organic Electrodes for Rechargeable Batteries. ACS Energy Lett. 2017, 2, 1985–1996. [Google Scholar] [CrossRef]
- Häupler, B.; Wild, A.; Schubert, U.S. Carbonyls: Powerful Organic Materials for Secondary Batteries. Adv. Energy Mater. 2015, 5, 1402034. [Google Scholar] [CrossRef]
- Jiménez, P.; Levillain, E.; Alévêque, O.; Guyomard, D.; Lestriez, B.; Gaubicher, J. Lithium N-Doped Polyaniline as a High-Performance Electroactive Material for Rechargeable Batteries. Angew. Chem.-Int. Ed. 2017, 56, 1553–1556. [Google Scholar] [CrossRef]
- O’Hayre, R.; Cha, S.W.; Colella, W.; Prinz, F.B. Fuel Cell Fundamentals; Wiley: Hoboken, NJ, USA, 2016; ISBN 978-1-119-11420-8. [Google Scholar]
- Davis, F.; Higson, S.P.J. Biofuel Cells-Recent Advances and Applications. Biosens. Bioelectron. 2007, 22, 1224–1235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Chen, K.S.; Mishler, J.; Cho, S.C.; Adroher, X.C. A Review of Polymer Electrolyte Membrane Fuel Cells: Technology, Applications, and Needs on Fundamental Research. Appl. Energy 2011, 88, 981–1007. [Google Scholar] [CrossRef] [Green Version]
- Neburchilov, V.; Martin, J.; Wang, H.; Zhang, J. A Review of Polymer Electrolyte Membranes for Direct Methanol Fuel Cells. J. Power Sources 2007, 169, 221–238. [Google Scholar] [CrossRef]
- Badwal, S.P.S.; Giddey, S.; Kulkarni, A.; Goel, J.; Basu, S. Direct Ethanol Fuel Cells for Transport and Stationary Applications—A Comprehensive Review. Appl. Energy 2015, 145, 80–103. [Google Scholar] [CrossRef]
- Sammes, N.; Bove, R.; Stahl, K. Phosphoric Acid Fuel Cells: Fundamentals and Applications. Curr. Opin. Solid State Mater. Sci. 2004, 8, 372–378. [Google Scholar] [CrossRef]
- Kulkarni, A.; Giddey, S. Materials Issues and Recent Developments in Molten Carbonate Fuel Cells. J. Solid State Electrochem. 2012, 16, 3123–3146. [Google Scholar] [CrossRef]
- Jacobson, A.J. Materials for Solid Oxide Fuel Cells. Chem. Mater. 2010, 22, 660–674. [Google Scholar] [CrossRef]
- Zhao, S.; Li, Y.; Yin, H.; Liu, Z.; Luan, E.; Zhao, F.; Tang, Z.; Liu, S. Energy Resources: Three-Dimensional Graphene/Pt Nanoparticle Composites as Freestanding Anode for Enhancing Performance of Microbial Fuel Cells. Sci. Adv. 2015, 1, e1500372. [Google Scholar] [CrossRef] [Green Version]
- Bashyam, R.; Zelenay, P. A Class of Non-Precious Metal Composite Catalysts for Fuel Cells. Nature 2006, 443, 63–66. [Google Scholar] [CrossRef]
- Winther-Jensen, B.; MacFarlane, D.R. New Generation, Metal-Free Electrocatalysts for Fuel Cells, Solar Cells and Water Splitting. Energy Environ. Sci. 2011, 4, 2790–2798. [Google Scholar] [CrossRef]
- Lee, H.; Kim, M.J.; Lim, T.; Sung, Y.E.; Kim, H.J.; Lee, H.N.; Kwon, O.J.; Cho, Y.H. A Facile Synthetic Strategy for Iron, Aniline-Based Non-Precious Metal Catalysts for Polymer Electrolyte Membrane Fuel Cells. Sci. Rep. 2017, 7, 5396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Zhou, S. A-Fe2O3/Polyaniline Nanocomposites as an Effective Catalyst for Improving the Electrochemical Performance of Microbial Fuel Cell. Chem. Eng. J. 2018, 339, 539–546. [Google Scholar] [CrossRef]
- Qiu, H.; Wan, M.; Matthews, B.; Dai, L. Conducting Polyaniline Nanotubes by Template-Free Polymerization. Macromolecules 2001, 34, 675–677. [Google Scholar] [CrossRef]
- Wang, Y.-G.; Li, H.-Q.; Xia, Y.-Y. Ordered Whiskerlike Polyaniline Grown on the Surface of Mesoporous Carbon and Its Electrochemical Capacitance Performance. Adv. Mater. 2006, 18, 2619–2623. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, L.L.; Zhao, X.S.; Wu, J. Graphene/Polyaniline Nanofiber Composites as Supercapacitor Electrodes. Chem. Mater. 2010, 22, 1392–1401. [Google Scholar] [CrossRef]
- Feng, X.-M.; Li, R.-M.; Ma, Y.-W.; Chen, R.-F.; Shi, N.-E.; Fan, Q.-L.; Huang, W. One-Step Electrochemical Synthesis of Graphene/Polyaniline Composite Film and Its Applications. Adv. Funct. Mater. 2011, 21, 2989–2996. [Google Scholar] [CrossRef]
- Cong, H.-P.; Ren, X.-C.; Wang, P.; Yu, S.-H. Flexible Graphene–Polyaniline Composite Paper for High-Performance Supercapacitor. Energy Environ. Sci. 2013, 6, 1185. [Google Scholar] [CrossRef]
- Zeng, S.; Chen, H.; Cai, F.; Kang, Y.; Chen, M.; Li, Q. Electrochemical Fabrication of Carbon Nanotube/Polyaniline Hydrogel Film for All-Solid-State Flexible Supercapacitor with High Areal Capacitance. J. Mater. Chem. A 2015, 3, 23864–23870. [Google Scholar] [CrossRef]
- Lu, X.-F.; Chen, X.-Y.; Zhou, W.; Tong, Y.-X.; Li, G.-R. α-Fe2O3 @PANI Core–Shell Nanowire Arrays as Negative Electrodes for Asymmetric Supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 14843–14850. [Google Scholar] [CrossRef]
- Zhou, W.; Yu, Y.; Chen, H.; DiSalvo, F.J.; Abruña, H.D. Yolk–Shell Structure of Polyaniline-Coated Sulfur for Lithium–Sulfur Batteries. J. Am. Chem. Soc. 2013, 135, 16736–16743. [Google Scholar] [CrossRef]
- Huang, J.; Wang, Z.; Hou, M.; Dong, X.; Liu, Y.; Wang, Y.; Xia, Y. Polyaniline-Intercalated Manganese Dioxide Nanolayers as a High-Performance Cathode Material for an Aqueous Zinc-Ion Battery. Nat. Commun. 2018, 9, 2906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Zhang, J.; Song, W.; Liu, Z. Controllable Synthesis of Conducting Polypyrrole Nanostructures. J. Phys. Chem. B 2006, 110, 1158–1165. [Google Scholar] [CrossRef] [PubMed]
- Jurewicz, K.; Delpeux, S.; Bertagna, V.; Béguin, F.; Frackowiak, E. Supercapacitors from Nanotubes/Polypyrrole Composites. Chem. Phys. Lett. 2001, 347, 36–40. [Google Scholar] [CrossRef]
- Biswas, S.; Drzal, L.T. Multilayered Nanoarchitecture of Graphene Nanosheets and Polypyrrole Nanowires for High Performance Supercapacitor Electrodes. Chem. Mater. 2010, 22, 5667–5671. [Google Scholar] [CrossRef]
- Sevilla, M.; Valle-Vigón, P.; Fuertes, A.B. N-Doped Polypyrrole-Based Porous Carbons for CO2 Capture. Adv. Funct. Mater. 2011, 21, 2781–2787. [Google Scholar] [CrossRef] [Green Version]
- Sun, M.; Zhang, S.; Jiang, T.; Zhang, L.; Yu, J. Nano-Wire Networks of Sulfur–Polypyrrole Composite Cathode Materials for Rechargeable Lithium Batteries. Electrochem. Commun. 2008, 10, 1819–1822. [Google Scholar] [CrossRef]
- Li, F.; Kaiser, M.R.; Ma, J.; Guo, Z.; Liu, H.; Wang, J. Free-Standing Sulfur-Polypyrrole Cathode in Conjunction with Polypyrrole-Coated Separator for Flexible Li-S Batteries. Energy Storage Mater. 2018, 13, 312–322. [Google Scholar] [CrossRef] [Green Version]
- Tang, H.; Wang, J.; Yin, H.; Zhao, H.; Wang, D.; Tang, Z. Growth of Polypyrrole Ultrathin Films on MoS2 Monolayers as High-Performance Supercapacitor Electrodes. Adv. Mater. 2015, 27, 1117–1123. [Google Scholar] [CrossRef]
- Moon, H.; Lee, H.; Kwon, J.; Suh, Y.D.; Kim, D.K.; Ha, I.; Yeo, J.; Hong, S.; Ko, S.H. Ag/Au/Polypyrrole Core-Shell Nanowire Network for Transparent, Stretchable and Flexible Supercapacitor in Wearable Energy Devices. Sci. Rep. 2017, 7, 41981. [Google Scholar] [CrossRef] [Green Version]
- Fu, M.; Zhu, Y.; Tan, R.; Shi, G. Aligned Polythiophene Micro-and Nanotubules. Adv. Mater. 2001, 13, 1874–1877. [Google Scholar] [CrossRef]
- Karim, M.R.; Lim, K.T.; Lee, C.J.; Lee, M.S. A Facile Synthesis of Polythiophene Nanowires. Synth. Met. 2007, 157, 1008–1012. [Google Scholar] [CrossRef]
- del Valle, M.; Hernandez, L.; Ramirez, A.; Diaz, F. Electrosynthesis of Polyquinone Nanowires with Dispersed Platinum Nanoparticles toward Formic Acid Oxidation. Ionics 2017, 23, 191–199. [Google Scholar] [CrossRef]
- Fu, C.; Zhou, H.; Liu, R.; Huang, Z.; Chen, J.; Kuang, Y. Supercapacitor Based on Electropolymerized Polythiophene and Multi-Walled Carbon Nanotubes Composites. Mater. Chem. Phys. 2012, 132, 596–600. [Google Scholar] [CrossRef]
- Nejati, S.; Minford, T.E.; Smolin, Y.Y.; Lau, K.K.S. Enhanced Charge Storage of Ultrathin Polythiophene Films within Porous Nanostructures. ACS Nano 2014, 8, 5413–5422. [Google Scholar] [CrossRef]
- Lu, Q.; Zhou, Y. Synthesis of Mesoporous Polythiophene/MnO2 Nanocomposite and Its Enhanced Pseudocapacitive Properties. J. Power Sources 2011, 196, 4088–4094. [Google Scholar] [CrossRef]
- Ambade, R.B.; Ambade, S.B.; Shrestha, N.K.; Nah, Y.-C.; Han, S.-H.; Lee, W.; Lee, S.-H. Polythiophene Infiltrated TiO2 Nanotubes as High-Performance Supercapacitor Electrodes. Chem. Commun. 2013, 49, 2308. [Google Scholar] [CrossRef]
- Wu, F.; Chen, J.; Chen, R.; Wu, S.; Li, L.; Chen, S.; Zhao, T. Sulfur/Polythiophene with a Core/Shell Structure: Synthesis and Electrochemical Properties of the Cathode for Rechargeable Lithium Batteries. J. Phys. Chem. C 2011, 115, 6057–6063. [Google Scholar] [CrossRef]
- Ali, G.; Lee, J.-H.; Susanto, D.; Choi, S.-W.; Cho, B.W.; Nam, K.-W.; Chung, K.Y. Polythiophene-Wrapped Olivine NaFePO4 as a Cathode for Na-Ion Batteries. ACS Appl. Mater. Interfaces 2016, 8, 15422–15429. [Google Scholar] [CrossRef]
- Liu, R.; Cho, S.I.; Lee, S.B. Poly(3,4-Ethylenedioxythiophene) Nanotubes as Electrode Materials for a High-Powered Supercapacitor. Nanotechnology 2008, 19, 215710. [Google Scholar] [CrossRef]
- Salgado, R.; del Valle, M.A.; Duran, B.G.; Pardo, M.A.; Armijo, F. Optimization of Dopamine Determination Based on Nanowires PEDOT/Polydopamine Hybrid Film Modified Electrode. J. Appl. Electrochem. 2014, 44, 1289–1294. [Google Scholar] [CrossRef]
- Hsu, Y.-K.; Chen, Y.-C.; Lin, Y.-G.; Chen, L.-C.; Chen, K.-H. Direct-Growth of Poly(3,4-Ethylenedioxythiophene) Nanowires/Carbon Cloth as Hierarchical Supercapacitor Electrode in Neutral Aqueous Solution. J. Power Sources 2013, 242, 718–724. [Google Scholar] [CrossRef]
- Alvi, F.; Ram, M.K.; Basnayaka, P.A.; Stefanakos, E.; Goswami, Y.; Kumar, A. Graphene–Polyethylenedioxythiophene Conducting Polymer Nanocomposite Based Supercapacitor. Electrochim. Acta 2011, 56, 9406–9412. [Google Scholar] [CrossRef]
- Liu, W.; Li, X.; Zhu, M.; He, X. High-Performance All-Solid State Asymmetric Supercapacitor Based on Co3O4 Nanowires and Carbon Aerogel. J. Power Sources 2015, 282, 179–186. [Google Scholar] [CrossRef]
- Wang, W.; Lei, W.; Yao, T.; Xia, X.; Huang, W.; Hao, Q.; Wang, X. One-Pot Synthesis of Graphene/SnO2/PEDOT Ternary Electrode Material for Supercapacitors. Electrochim. Acta 2013, 108, 118–126. [Google Scholar] [CrossRef]
- Han, J.; Dou, Y.; Zhao, J.; Wei, M.; Evans, D.G.; Duan, X. Flexible CoAl LDH@PEDOT Core/Shell Nanoplatelet Array for High-Performance Energy Storage. Small 2013, 9, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Dong, W.; Ge, J.; Wang, C.; Wu, X.; Lu, W.; Chen, L. Ultrafine Sulfur Nanoparticles in Conducting Polymer Shell as Cathode Materials for High Performance Lithium/Sulfur Batteries. Sci. Rep. 2013, 3, 1910. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Y.; Han, Y.; Zhao, Y.; Zeng, Y.; Yu, M.; Liu, Y.; Tang, H.; Tong, Y.; Lu, X. Advanced Ti-Doped Fe2O3 @PEDOT Core/Shell Anode for High-Energy Asymmetric Supercapacitors. Adv. Energy Mater. 2015, 5, 1402176. [Google Scholar] [CrossRef]
- Su, D.; Cortie, M.; Fan, H.; Wang, G. Prussian Blue Nanocubes with an Open Framework Structure Coated with PEDOT as High-Capacity Cathodes for Lithium-Sulfur Batteries. Adv. Mater. 2017, 29, 1700587. [Google Scholar] [CrossRef]
- Shang, C.; Dong, S.; Zhang, S.; Hu, P.; Zhang, C.; Cui, G. A Ni3S2-PEDOT Monolithic Electrode for Sodium Batteries. Electrochem. Commun. 2015, 50, 24–27. [Google Scholar] [CrossRef]
- Zhao, D.; Zhang, Q.; Chen, W.; Yi, X.; Liu, S.; Wang, Q.; Liu, Y.; Li, J.; Li, X.; Yu, H. Highly Flexible and Conductive Cellulose-Mediated PEDOT:PSS/MWCNT Composite Films for Supercapacitor Electrodes. ACS Appl. Mater. Interfaces 2017, 9, 13213–13222. [Google Scholar] [CrossRef]
- Liu, J.; Sheina, E.; Kowalewski, T.; McCullough, R.D. Tuning the Electrical Conductivity and Self-assembly of Regioregular Polythiophene by Block Copolymerization: Nanowire Morphologies in New Di-and Triblock Copolymers. Angew. Chem. Int. Ed. 2002, 41, 329–332. [Google Scholar] [CrossRef]
- Mu, S. Poly(Aniline-Co-o-Aminophenol) Nanostructured Network: Electrochemical Controllable Synthesis and Electrocatalysis. Electrochim. Acta 2006, 51, 3434–3440. [Google Scholar] [CrossRef]
- Yang, X.; Wang, G.; Wang, R.; Li, X. A Novel Layered Manganese Oxide/Poly(Aniline-Co-o-Anisidine) Nanocomposite and Its Application for Electrochemical Supercapacitor. Electrochim. Acta 2010, 55, 5414–5419. [Google Scholar] [CrossRef]
- Xu, W.; Read, A.; Koech, P.K.; Hu, D.; Wang, C.; Xiao, J.; Padmaperuma, A.B.; Graff, G.L.; Liu, J.; Zhang, J.-G. Factors Affecting the Battery Performance of Anthraquinone-Based Organic Cathode Materials. J. Mater. Chem. 2012, 22, 4032. [Google Scholar] [CrossRef]
- Hernández, L.A.; del Valle, M.A.; Armijo, F. Electrosynthesis and Characterization of Nanostructured Polyquinone for Use in Detection and Quantification of Naturally Occurring DsDNA. Biosens. Bioelectron. 2016, 79, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Bachman, J.C.; Kavian, R.; Graham, D.J.; Kim, D.Y.; Noda, S.; Nocera, D.G.; Shao-Horn, Y.; Lee, S.W. Electrochemical Polymerization of Pyrene Derivatives on Functionalized Carbon Nanotubes for Pseudocapacitive Electrodes. Nat. Commun. 2015, 6, 7040. [Google Scholar] [CrossRef] [Green Version]
- Liang, H.-W.; Zhuang, X.; Brüller, S.; Feng, X.; Müllen, K. Hierarchically Porous Carbons with Optimized Nitrogen Doping as Highly Active Electrocatalysts for Oxygen Reduction. Nat. Commun. 2014, 5, 4973. [Google Scholar] [CrossRef] [Green Version]
- Holze, R.; Wu, Y.P. Intrinsically Conducting Polymers in Electrochemical Energy Technology: Trends and Progress. Electrochim. Acta 2014, 122, 93–107. [Google Scholar] [CrossRef]
- Shi, Y.; Peng, L.; Yu, G. Nanostructured Conducting Polymer Hydrogels for Energy Storage Applications. Nanoscale 2015, 7, 12796–12806. [Google Scholar] [CrossRef]
- Wang, K.; Wu, H.; Meng, Y.; Wei, Z. Conducting Polymer Nanowire Arrays for High Performance Supercapacitors. Small 2014, 10, 14–31. [Google Scholar] [CrossRef]
- Lota, K.; Khomenko, V.; Frackowiak, E. Capacitance Properties of Poly(3,4-Ethylenedioxythiophene)/Carbon Nanotubes Composites. J. Phys. Chem. Solids 2004, 65, 295–301. [Google Scholar] [CrossRef]
- Wang, K.; Huang, J.; Wei, Z. Conducting Polyaniline Nanowire Arrays for High Performance Supercapacitors. J. Phys. Chem. C 2010, 114, 8062–8067. [Google Scholar] [CrossRef]
- Kumar, S.; Nehra, M.; Kedia, D.; Dilbaghi, N.; Tankeshwar, K.; Kim, K.H. Carbon Nanotubes: A Potential Material for Energy Conversion and Storage. Prog. Energy Combust. Sci. 2018, 64, 219–253. [Google Scholar] [CrossRef]
- Kate, R.S.; Khalate, S.A.; Deokate, R.J. Overview of Nanostructured Metal Oxides and Pure Nickel Oxide (NiO) Electrodes for Supercapacitors: A Review. J. Alloys Compd. 2018, 734, 89–111. [Google Scholar] [CrossRef]
- Adekoya, G.J.; Adekoya, O.C.; Sadiku, R.E.; Hamam, Y.; Ray, S.S. Applications of MXene-Containing Polypyrrole Nanocomposites in Electrochemical Energy Storage and Conversion. ACS Omega 2022, 7, 39498–39519. [Google Scholar] [CrossRef] [PubMed]
- Jin, K.; Zhang, W.; Wang, Y.; Guo, X.; Chen, Z.; Li, L.; Zhang, Y.; Wang, Z.; Chen, J.; Sun, L.; et al. In–Situ Hybridization of Polyaniline Nanofibers on Functionalized Reduced Graphene Oxide Films for High-Performance Supercapacitor. Electrochim. Acta 2018, 285, 221–229. [Google Scholar] [CrossRef]
- Hong, X.; Lu, Y.; Li, S.; Wang, X.; Wang, X.; Liang, J. Carbon Foam@reduced Graphene Oxide Scaffold Grown with Polyaniline Nanofibers for High Performance Symmetric Supercapacitor. Electrochim. Acta 2019, 294, 376–382. [Google Scholar] [CrossRef]
- Yu, J.; Xie, F.; Wu, Z.; Huang, T.; Wu, J.; Yan, D.; Huang, C.; Li, L. Flexible Metallic Fabric Supercapacitor Based on Graphene/Polyaniline Composites. Electrochim. Acta 2018, 259, 968–974. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Q.; Wang, J.; Huang, X.; Bai, H. A Self-Assembly Route to Porous Polyaniline/Reduced Graphene Oxide Composite Materials with Molecular-Level Uniformity for High-Performance Supercapacitors. Energy Environ. Sci. 2018, 11, 1280–1286. [Google Scholar] [CrossRef]
- Li, P.; Jin, Z.; Peng, L.; Zhao, F.; Xiao, D.; Jin, Y.; Yu, G. Stretchable All-Gel-State Fiber-Shaped Supercapacitors Enabled by Macromolecularly Interconnected 3D Graphene/Nanostructured Conductive Polymer Hydrogels. Adv. Mater. 2018, 30, 1800124. [Google Scholar] [CrossRef]
- Zou, Y.; Zhang, Z.; Zhong, W.; Yang, W. Hydrothermal Direct Synthesis of Polyaniline, Graphene/Polyaniline and N-Doped Graphene/Polyaniline Hydrogels for High Performance Flexible Supercapacitors. J. Mater. Chem. A 2018, 6, 9245–9256. [Google Scholar] [CrossRef]
- Xiong, Z.; Yun, X.; Qiu, L.; Sun, Y.; Tang, B.; He, Z.; Xiao, J.; Chung, D.; Ng, T.W.; Yan, H.; et al. A Dynamic Graphene Oxide Network Enables Spray Printing of Colloidal Gels for High-Performance Micro-Supercapacitors. Adv. Mater. 2019, 31, 1804434. [Google Scholar] [CrossRef] [PubMed]
- Tabrizi, A.G.; Arsalani, N.; Mohammadi, A.; Ghadimi, L.S.; Ahadzadeh, I.; Namazi, H. A New Route for the Synthesis of Polyaniline Nanoarrays on Graphene Oxide for High-Performance Supercapacitors. Electrochim. Acta 2018, 265, 379–390. [Google Scholar] [CrossRef]
- Hu, R.; Zhao, J.; Zhu, G.; Zheng, J. Fabrication of Flexible Free-Standing Reduced Graphene Oxide/Polyaniline Nanocomposite Film for All-Solid-State Flexible Supercapacitor. Electrochim. Acta 2018, 261, 151–159. [Google Scholar] [CrossRef]
- Li, J.; Xiao, D.; Ren, Y.; Liu, H.; Chen, Z.; Xiao, J. Bridging of Adjacent Graphene/Polyaniline Layers with Polyaniline Nanofibers for Supercapacitor Electrode Materials. Electrochim. Acta 2019, 300, 193–201. [Google Scholar] [CrossRef]
- Wu, X.; Wu, G.; Tan, P.; Cheng, H.; Hong, R.; Wang, F.; Chen, S. Construction of Microfluidic-Oriented Polyaniline Nanorod Arrays/Graphene Composite Fibers for Application in Wearable Micro-Supercapacitors. J. Mater. Chem. A 2018, 6, 8940–8946. [Google Scholar] [CrossRef]
- Khosrozadeh, A.; Singh, G.; Wang, Q.; Luo, G.; Xing, M. Supercapacitor with Extraordinary Cycling Stability and High Rate from Nano-Architectured Polyaniline/Graphene on Janus Nanofibrous Film with Shape Memory. J. Mater. Chem. A 2018, 6, 21064–21077. [Google Scholar] [CrossRef]
- Feng, L.; Wang, K.; Zhang, X.; Sun, X.; Li, C.; Ge, X.; Ma, Y. Flexible Solid-State Supercapacitors with Enhanced Performance from Hierarchically Graphene Nanocomposite Electrodes and Ionic Liquid Incorporated Gel Polymer Electrolyte. Adv. Funct. Mater. 2018, 28, 1704463. [Google Scholar] [CrossRef]
- Jin, C.; Wang, H.-T.; Liu, Y.-N.; Kang, X.-H.; Liu, P.; Zhang, J.-N.; Jin, L.-N.; Bian, S.-W.; Zhu, Q. High-Performance Yarn Electrode Materials Enhanced by Surface Modifications of Cotton Fibers with Graphene Sheets and Polyaniline Nanowire Arrays for All-Solid-State Supercapacitors. Electrochim. Acta 2018, 270, 205–214. [Google Scholar] [CrossRef]
- Mangisetti, S.R.; Kamaraj, M.; Ramaprabhu, S. N-Doped 3D Porous Carbon-Graphene/Polyaniline Hybrid and N-Doped Porous Carbon Coated GC3N4 Nanosheets for Excellent Energy Density Asymmetric Supercapacitors. Electrochim. Acta 2019, 305, 264–277. [Google Scholar] [CrossRef]
- Zheng, X.; Yu, H.; Xing, R.; Ge, X.; Sun, H.; Li, R.; Zhang, Q. Multi-Growth Site Graphene/Polyaniline Composites with Highly Enhanced Specific Capacitance and Rate Capability for Supercapacitor Application. Electrochim. Acta 2018, 260, 504–513. [Google Scholar] [CrossRef]
- Liu, J.; Xu, X.; Lu, W.; Xiong, X.; Ouyang, X.; Zhao, C.; Wang, F.; Qin, S.; Hong, J.; Tang, J.; et al. A High Performance All-Solid-State Flexible Supercapacitor Based on Carbon Nanotube Fiber/Carbon Nanotubes/Polyaniline with a Double Core-Sheathed Structure. Electrochim. Acta 2018, 283, 366–373. [Google Scholar] [CrossRef]
- Agyemang, F.O.; Tomboc, G.M.; Kwofie, S.; Kim, H. Electrospun Carbon Nanofiber-Carbon Nanotubes Coated Polyaniline Composites with Improved Electrochemical Properties for Supercapacitors. Electrochim. Acta 2018, 259, 1110–1119. [Google Scholar] [CrossRef]
- Guo, Y.; Zheng, K.; Wan, P. A Flexible Stretchable Hydrogel Electrolyte for Healable All-in-One Configured Supercapacitors. Small 2018, 14, 1704497. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Foroughi, J.; Wang, C.; Long, H.; Wallace, G.G. Superelastic Hybrid CNT/Graphene Fibers for Wearable Energy Storage. Adv. Energy Mater. 2018, 8, 1702047. [Google Scholar] [CrossRef]
- Liu, P.; Yan, J.; Gao, X.; Huang, Y.; Zhang, Y. Construction of Layer-by-Layer Sandwiched Graphene/Polyaniline Nanorods/Carbon Nanotubes Heterostructures for High Performance Supercapacitors. Electrochim. Acta 2018, 272, 77–87. [Google Scholar] [CrossRef]
- Mao, N.; Chen, W.; Meng, J.; Li, Y.; Zhang, K.; Qin, X.; Zhang, H.; Zhang, C.; Qiu, Y.; Wang, S. Enhanced Electrochemical Properties of Hierarchically Sheath-Core Aligned Carbon Nanofibers Coated Carbon Fiber Yarn Electrode-Based Supercapacitor via Polyaniline Nanowire Array Modification. J. Power Sources 2018, 399, 406–413. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, Q.; Zhang, X.; Peng, K. A Novel 3D Conductive Network-Based Polyaniline/Graphitic Mesoporous Carbon Composite Electrode with Excellent Electrochemical Performance. J. Power Sources 2018, 401, 278–286. [Google Scholar] [CrossRef]
- Ma, Y.; Hou, C.; Zhang, H.; Zhang, Q.; Liu, H.; Wu, S.; Guo, Z. Three-Dimensional Core-Shell Fe3O4/Polyaniline Coaxial Heterogeneous Nanonets: Preparation and High Performance Supercapacitor Electrodes. Electrochim. Acta 2019, 315, 114–123. [Google Scholar] [CrossRef]
- Yang, Z.; Tang, L.; Ye, J.; Shi, D.; Liu, S.; Chen, M. Hierarchical Nanostructured α-Fe2O3/Polyaniline Anodes for High Performance Supercapacitors. Electrochim. Acta 2018, 269, 21–29. [Google Scholar] [CrossRef]
- Yang, Z.; Ma, J.; Araby, S.; Shi, D.; Dong, W.; Tang, T.; Chen, M. High-Mass Loading Electrodes with Exceptional Areal Capacitance and Cycling Performance through a Hierarchical Network of MnO2 Nanoflakes and Conducting Polymer Gel. J. Power Sources 2019, 412, 655–663. [Google Scholar] [CrossRef]
- Saleh Ghadimi, L.; Arsalani, N.; Tabrizi, A.G.; Mohammadi, A.; Ahadzadeh, I. Novel Nanocomposite of MnFe2O4 and Nitrogen-Doped Carbon from Polyaniline Carbonization as Electrode Material for Symmetric Ultra-Stable Supercapacitor. Electrochim. Acta 2018, 282, 116–127. [Google Scholar] [CrossRef]
- Zhang, S.; Song, X.; Liu, S.; Sun, F.; Liu, G.; Tan, Z. Template-Assisted Synthesized MoS2/Polyaniline Hollow Microsphere Electrode for High Performance Supercapacitors. Electrochim. Acta 2019, 312, 1–10. [Google Scholar] [CrossRef]
- VahidMohammadi, A.; Moncada, J.; Chen, H.; Kayali, E.; Orangi, J.; Carrero, C.A.; Beidaghi, M. Thick and Freestanding MXene/PANI Pseudocapacitive Electrodes with Ultrahigh Specific Capacitance. J. Mater. Chem. A 2018, 6, 22123–22133. [Google Scholar] [CrossRef]
- Viswanathan, A.; Shetty, A.N. Single Step Synthesis of RGO, Copper Oxide and Polyaniline Nanocomposites for High Energy Supercapacitors. Electrochim. Acta 2018, 289, 204–217. [Google Scholar] [CrossRef]
- Ghosh, K.; Yue, C.Y. Development of 3D MoO3/Graphene Aerogel and Sandwich-Type Polyaniline Decorated Porous MnO2−graphene Hybrid Film Based High Performance All-Solid-State Asymmetric Supercapacitors. Electrochim. Acta 2018, 276, 47–63. [Google Scholar] [CrossRef]
- Fenoy, G.E.; Van der Schueren, B.; Scotto, J.; Boulmedais, F.; Ceolín, M.R.; Bégin-Colin, S.; Bégin, D.; Marmisollé, W.A.; Azzaroni, O. Layer-by-Layer Assembly of Iron Oxide-Decorated Few-Layer Graphene/PANI:PSS Composite Films for High Performance Supercapacitors Operating in Neutral Aqueous Electrolytes. Electrochim. Acta 2018, 283, 1178–1187. [Google Scholar] [CrossRef]
- Shafi, P.M.; Ganesh, V.; Bose, A.C. LaMnO3 /RGO/PANI Ternary Nanocomposites for Supercapacitor Electrode Application and Their Outstanding Performance in All-Solid-State Asymmetrical Device Design. ACS Appl. Energy Mater. 2018, 1, 2802–2812. [Google Scholar] [CrossRef]
- Shen, J.; Wang, Q.; Zhang, K.; Wang, S.; Li, L.; Dong, S.; Zhao, S.; Chen, J.; Sun, R.; Wang, Y.; et al. Flexible Carbon Cloth Based Solid-State Supercapacitor from Hierarchical Holothurian-Morphological NiCo2O4@NiMoO4/PANI. Electrochim. Acta 2019, 320, 134578. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, X.; Liu, B.; Shi, H.; Chen, F.; Hu, C.; Chen, J. Characterisations of Carbon-Fenced Conductive Silver Nanowires-Supported Hierarchical Polyaniline Nanowires. Electrochim. Acta 2018, 292, 435–445. [Google Scholar] [CrossRef]
- Shen, H.; Li, H.; Li, M.; Li, C.; Qian, L.; Su, L.; Yang, B. High-Performance Aqueous Symmetric Supercapacitor Based on Polyaniline/Vertical Graphene/Ti Multilayer Electrodes. Electrochim. Acta 2018, 283, 410–418. [Google Scholar] [CrossRef]
- Chao, J.; Yang, L.; Liu, J.; Hu, R.; Zhu, M. Sandwiched MoS2/Polyaniline Nanosheets Array Vertically Aligned on Reduced Graphene Oxide for High Performance Supercapacitors. Electrochim. Acta 2018, 270, 387–394. [Google Scholar] [CrossRef]
- Zhang, H.; Qin, G.; Lin, Y.; Zhang, D.; Liao, H.; Li, Z.; Tian, J.; Wu, Q. A Novel Flexible Electrode with Coaxial Sandwich Structure Based Polyaniline-Coated MoS 2 Nanoflakes on Activated Carbon Cloth. Electrochim. Acta 2018, 264, 91–100. [Google Scholar] [CrossRef]
- Han, J.; Ding, Q.; Mei, C.; Wu, Q.; Yue, Y.; Xu, X. An Intrinsically Self-Healing and Biocompatible Electroconductive Hydrogel Based on Nanostructured Nanocellulose-Polyaniline Complexes Embedded in a Viscoelastic Polymer Network towards Flexible Conductors and Electrodes. Electrochim. Acta 2019, 318, 660–672. [Google Scholar] [CrossRef]
- Chu, X.; Huang, H.; Zhang, H.; Zhang, H.; Gu, B.; Su, H.; Liu, F.; Han, Y.; Wang, Z.; Chen, N.; et al. Electrochemically Building Three-Dimensional Supramolecular Polymer Hydrogel for Flexible Solid-State Micro-Supercapacitors. Electrochim. Acta 2019, 301, 136–144. [Google Scholar] [CrossRef]
- Lyu, L.; Chai, H.; Seong, K.; Lee, C.; Kang, J.; Zhang, W.; Piao, Y. Yeast-Derived N-Doped Carbon Microsphere/Polyaniline Composites as High Performance Pseudocapacitive Electrodes. Electrochim. Acta 2018, 291, 256–266. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, H.; Du, P.; Liu, J.; Liu, D.; Liu, P. Porous Polylactic Acid/Carbon Nanotubes/Polyaniline Composite Film as Flexible Free-Standing Electrode for Supercapacitors. Electrochim. Acta 2019, 294, 312–324. [Google Scholar] [CrossRef]
- Wang, L.; Miao, L.; Yang, H.; Xu, L.; Peng, C. Three-Dimensional Kenaf Stem-Derived Macroporous Carbon/Reduced Graphene Oxide/Polyaniline Integrated Electrode for Supercapacitors. Electrochim. Acta 2018, 281, 638–645. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, Y.; Yuan, W.; Zhao, Y.; Luo, S.; Yuan, X.; Zheng, L.; Cheng, L. Highly Flexible, Foldable and Stretchable Ni–Co Layered Double Hydroxide/Polyaniline/Bacterial Cellulose Electrodes for High-Performance All-Solid-State Supercapacitors. J. Mater. Chem. A 2018, 6, 16617–16626. [Google Scholar] [CrossRef]
- Zhou, K.; He, Y.; Xu, Q.; Zhang, Q.; Zhou, A.; Lu, Z.; Yang, L.-K.; Jiang, Y.; Ge, D.; Liu, X.Y.; et al. A Hydrogel of Ultrathin Pure Polyaniline Nanofibers: Oxidant-Templating Preparation and Supercapacitor Application. ACS Nano 2018, 12, 5888–5894. [Google Scholar] [CrossRef]
- Kim, Y.; Han, M.; Kim, J.; Kim, E. Electrochromic Capacitive Windows Based on All Conjugated Polymers for a Dual Function Smart Window. Energy Environ. Sci. 2018, 11, 2124–2133. [Google Scholar] [CrossRef]
- Zhao, Z.; Xie, Y.; Lu, L. Electrochemical Performance of Polyaniline-Derivated Nitrogen-Doped Carbon Nanowires. Electrochim. Acta 2018, 283, 1618–1631. [Google Scholar] [CrossRef]
- Zhao, Z.; Xie, Y. Electrochemical Supercapacitor Performance of Boron and Nitrogen Co-Doped Porous Carbon Nanowires. J. Power Sources 2018, 400, 264–276. [Google Scholar] [CrossRef]
- Rantho, M.N.; Madito, M.J.; Manyala, N. Symmetric Supercapacitor with Supercapattery Behavior Based on Carbonized Iron Cations Adsorbed onto Polyaniline. Electrochim. Acta 2018, 262, 82–96. [Google Scholar] [CrossRef]
- Ock, I.W.; Choi, J.W.; Jeong, H.M.; Kang, J.K. Synthesis of Pseudocapacitive Polymer Chain Anode and Subnanoscale Metal Oxide Cathode for Aqueous Hybrid Capacitors Enabling High Energy and Power Densities along with Long Cycle Life. Adv. Energy Mater. 2018, 8, 1702895. [Google Scholar] [CrossRef]
- Shi, X.; Wu, Z.-S.; Qin, J.; Zheng, S.; Wang, S.; Zhou, F.; Sun, C.; Bao, X. Graphene-Based Linear Tandem Micro-Supercapacitors with Metal-Free Current Collectors and High-Voltage Output. Adv. Mater. 2017, 29, 1703034. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, Z.-S.; Yang, S.; Dong, R.; Feng, X.; Müllen, K. Ultraflexible In-Plane Micro-Supercapacitors by Direct Printing of Solution-Processable Electrochemically Exfoliated Graphene. Adv. Mater. 2016, 28, 2217–2222. [Google Scholar] [CrossRef]
- Cao, L.; Yang, S.; Gao, W.; Liu, Z.; Gong, Y.; Ma, L.; Shi, G.; Lei, S.; Zhang, Y.; Zhang, S.; et al. Direct Laser-Patterned Micro-Supercapacitors from Paintable MoS2 Films. Small 2013, 9, 2905–2910. [Google Scholar] [CrossRef]
- Meng, Y.; Zhao, Y.; Hu, C.; Cheng, H.; Hu, Y.; Zhang, Z.; Shi, G.; Qu, L. All-Graphene Core-Sheath Microfibers for All-Solid-State, Stretchable Fibriform Supercapacitors and Wearable Electronic Textiles. Adv. Mater. 2013, 25, 2326–2331. [Google Scholar] [CrossRef]
- Lin, Y.; Gao, Y.; Fan, Z. Printable Fabrication of Nanocoral-Structured Electrodes for High-Performance Flexible and Planar Supercapacitor with Artistic Design. Adv. Mater. 2017, 29, 1701736. [Google Scholar] [CrossRef]
- Su, F.; Lv, X.; Miao, M. High-Performance Two-Ply Yarn Supercapacitors Based on Carbon Nanotube Yarns Dotted with Co3O4 and NiO Nanoparticles. Small 2015, 11, 854–861. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, L.; Li, Y.; Wang, Y.; Zhang, J.; Guan, G.; Pan, Z.; Zheng, G.; Peng, H. Nitrogen-Doped Core-Sheath Carbon Nanotube Array for Highly Stretchable Supercapacitor. Adv. Energy Mater. 2017, 7, 1601814. [Google Scholar] [CrossRef]
- Kou, L.; Huang, T.; Zheng, B.; Han, Y.; Zhao, X.; Gopalsamy, K.; Sun, H.; Gao, C. Coaxial Wet-Spun Yarn Supercapacitors for High-Energy Density and Safe Wearable Electronics. Nat. Commun. 2014, 5, 3754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, X.; Zhao, Y.; Hu, C.; Hu, Y.; Dong, Z.; Chen, N.; Zhang, Z.; Qu, L. Spinning Fabrication of Graphene/Polypyrrole Composite Fibers for All-Solid-State, Flexible Fibriform Supercapacitors. J. Mater. Chem. A 2014, 2, 12355. [Google Scholar] [CrossRef]
- Zhang, C.J.; Kremer, M.P.; Seral-Ascaso, A.; Park, S.-H.; McEvoy, N.; Anasori, B.; Gogotsi, Y.; Nicolosi, V. Stamping of Flexible, Coplanar Micro-Supercapacitors Using MXene Inks. Adv. Funct. Mater. 2018, 28, 1705506. [Google Scholar] [CrossRef]
- Huang, P.; Lethien, C.; Pinaud, S.; Brousse, K.; Laloo, R.; Turq, V.; Respaud, M.; Demortiere, A.; Daffos, B.; Taberna, P.L.; et al. On-Chip and Freestanding Elastic Carbon Films for Micro-Supercapacitors. Science 2016, 351, 691–695. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.-W.; Feng, Y.-Q.; Yan, X.-B.; Chen, J.-T.; Xue, Q.-J. Superior Micro-Supercapacitors Based on Graphene Quantum Dots. Adv. Funct. Mater. 2013, 23, 4111–4122. [Google Scholar] [CrossRef]
- Tahir, M.A.; Arshad, N.; Akram, M. Recent Advances in Metal Organic Framework (MOF) as Electrode Material for Super Capacitor: A Mini Review. J. Energy Storage 2022, 47, 103530. [Google Scholar] [CrossRef]
- Ansari, S.; Choudhary, R.B.; Gupta, A. Nanoflower Copper Sulphide Intercalated Reduced Graphene Oxide Integrated Polypyrrole Nano Matrix as Robust Symmetric Supercapacitor Electrode Material. J. Energy Storage 2023, 59, 106446. [Google Scholar] [CrossRef]
- Dai, W.; Ma, L.; Gan, M.; Wang, S.; Sun, X.; Wang, H.; Wang, H.; Zhou, T. Fabrication of Sandwich Nanostructure Graphene/Polyaniline Hollow Spheres Composite and Its Applications as Electrode Materials for Supercapacitor. Mater. Res. Bull. 2016, 76, 344–352. [Google Scholar] [CrossRef]
- Kim, J.; Kim, M.; Cho, S.; Yoon, C.-M.; Lee, C.; Ryu, J.; Jang, J. Multidimensional Polyaniline/Reduced Graphene Oxide/Silica Nanocomposite for Efficient Supercapacitor Electrodes. ChemNanoMat 2016, 2, 236–241. [Google Scholar] [CrossRef]
- Chen, N.; Ren, Y.; Kong, P.; Tan, L.; Feng, H.; Luo, Y. In Situ One-Pot Preparation of Reduced Graphene Oxide/Polyaniline Composite for High-Performance Electrochemical Capacitors. Appl. Surf. Sci. 2017, 392, 71–79. [Google Scholar] [CrossRef]
- Xiao, F.; Yang, S.; Zhang, Z.; Liu, H.; Xiao, J.; Wan, L.; Luo, J.; Wang, S.; Liu, Y. Scalable Synthesis of Freestanding Sandwich-Structured Graphene/Polyaniline/Graphene Nanocomposite Paper for Flexible All-Solid-State Supercapacitor. Sci. Rep. 2015, 5, 9359. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Niu, Z.; Zhang, L.; Zhou, W.; Chen, X.; Xie, S. Nanostructured Graphene Composite Papers for Highly Flexible and Foldable Supercapacitors. Adv. Mater. 2014, 26, 4855–4862. [Google Scholar] [CrossRef]
- Zhu, S.; Wu, M.; Ge, M.-H.; Zhang, H.; Li, S.-K.; Li, C.-H. Design and Construction of Three-Dimensional CuO/Polyaniline/RGO Ternary Hierarchical Architectures for High Performance Supercapacitors. J. Power Sources 2016, 306, 593–601. [Google Scholar] [CrossRef] [Green Version]
- Amir, F.Z.; Pham, V.H.; Mullinax, D.W.; Dickerson, J.H. Enhanced Performance of HRGO-RuO2 Solid State Flexible Supercapacitors Fabricated by Electrophoretic Deposition. Carbon 2016, 107, 338–343. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Sumboja, A.; Lin, M.; Yan, J.; Lee, P.S. Enhancing Electrochemical Reaction Sites in Nickel–Cobalt Layered Double Hydroxides on Zinc Tin Oxide Nanowires: A Hybrid Material for an Asymmetric Supercapacitor Device. Nanoscale 2012, 4, 7266. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, W.; Wang, R.; Sun, J.; Gao, L. Controllable Synthesis of 3D Binary Nickel–Cobalt Hydroxide/Graphene/Nickel Foam as a Binder-Free Electrode for High-Performance Supercapacitors. J. Mater. Chem. A 2015, 3, 12530–12538. [Google Scholar] [CrossRef]
- Li, R.; Wang, S.; Huang, Z.; Lu, F.; He, T. NiCo2S4@Co(OH)2 Core-Shell Nanotube Arrays in Situ Grown on Ni Foam for High Performances Asymmetric Supercapacitors. J. Power Sources 2016, 312, 156–164. [Google Scholar] [CrossRef]
- Liu, X.; Liu, J.; Sun, X. NiCo2O4 @NiO Hybrid Arrays with Improved Electrochemical Performance for Pseudocapacitors. J. Mater. Chem. A 2015, 3, 13900–13905. [Google Scholar] [CrossRef]
- Shen, L.; Yu, L.; Wu, H.B.; Yu, X.-Y.; Zhang, X.; Lou, X.W. Formation of Nickel Cobalt Sulfide Ball-in-Ball Hollow Spheres with Enhanced Electrochemical Pseudocapacitive Properties. Nat. Commun. 2015, 6, 6694. [Google Scholar] [CrossRef] [Green Version]
- Hao, L.; Shen, L.; Wang, J.; Xu, Y.; Zhang, X. Hollow NiCo2S4 Nanotube Arrays Grown on Carbon Textile as a Self-Supported Electrode for Asymmetric Supercapacitors. RSC Adv. 2016, 6, 9950–9957. [Google Scholar] [CrossRef]
- Hassan, H.; Iqbal, M.W.; Afzal, A.M.; Asghar, M.; Aftab, S. Enhanced the Performance of Zinc Strontium Sulfide-Based Supercapattery Device with the Polyaniline Doped Activated Carbon. J. Solid State Electrochem. 2023, 27, 125–137. [Google Scholar] [CrossRef]
- Gao, J.; Wang, X.; Zhang, Y.; Liu, J.; Lu, Q.; Liu, M. Boron-Doped Ordered Mesoporous Carbons for the Application of Supercapacitors. Electrochim. Acta 2016, 207, 266–274. [Google Scholar] [CrossRef]
- Ling, Z.; Wang, Z.; Zhang, M.; Yu, C.; Wang, G.; Dong, Y.; Liu, S.; Wang, Y.; Qiu, J. Sustainable Synthesis and Assembly of Biomass-Derived B/N Co-Doped Carbon Nanosheets with Ultrahigh Aspect Ratio for High-Performance Supercapacitors. Adv. Funct. Mater. 2016, 26, 111–119. [Google Scholar] [CrossRef]
- Tabassum, H.; Mahmood, A.; Wang, Q.; Xia, W.; Liang, Z.; Qiu, B.; Zhao, R.; Zou, R. Hierarchical Cobalt Hydroxide and B/N Co-Doped Graphene Nanohybrids Derived from Metal-Organic Frameworks for High Energy Density Asymmetric Supercapacitors. Sci. Rep. 2017, 7, 43084. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Zhai, H.-J.; Zhi, X. Enhanced Electrochemical Performances of Polypyrrole/Carboxyl Graphene/Carbon Nanotubes Ternary Composite for Supercapacitors. Electrochim. Acta 2018, 290, 1–11. [Google Scholar] [CrossRef]
- Li, X.; Liu, R.; Xu, C.; Bai, Y.; Zhou, X.; Wang, Y.; Yuan, G. High-Performance Polypyrrole/Graphene/SnCl2 Modified Polyester Textile Electrodes and Yarn Electrodes for Wearable Energy Storage. Adv. Funct. Mater. 2018, 28, 1800064. [Google Scholar] [CrossRef]
- Barakzehi, M.; Montazer, M.; Sharif, F.; Norby, T.; Chatzitakis, A. A Textile-Based Wearable Supercapacitor Using Reduced Graphene Oxide/Polypyrrole Composite. Electrochim. Acta 2019, 305, 187–196. [Google Scholar] [CrossRef]
- Qi, K.; Hou, R.; Zaman, S.; Xia, B.Y.; Duan, H. A Core/Shell Structured Tubular Graphene Nanoflake-Coated Polypyrrole Hybrid for All-Solid-State Flexible Supercapacitors. J. Mater. Chem. A 2018, 6, 3913–3918. [Google Scholar] [CrossRef]
- Park, H.; Kim, J.W.; Hong, S.Y.; Lee, G.; Kim, D.S.; Oh, J.H.; Jin, S.W.; Jeong, Y.R.; Oh, S.Y.; Yun, J.Y.; et al. Microporous Polypyrrole-Coated Graphene Foam for High-Performance Multifunctional Sensors and Flexible Supercapacitors. Adv. Funct. Mater. 2018, 28, 1707013. [Google Scholar] [CrossRef]
- Lu, Y.; Zheng, Q.; Wu, J.; Yu, Y. Enhanced Electrochemical Charge Storage Performance by Doping of Copper Phthalocyanine-3,4′,4″,4‴-Tetrasulfonic Acid Tetrasodium Salt into Polypyrrole/Multi-Walled Carbon Nanotubes 3D-Nanostructured Electrodes. Electrochim. Acta 2018, 265, 594–600. [Google Scholar] [CrossRef]
- Rawool, C.R.; Punde, N.S.; Rajpurohit, A.S.; Karna, S.P.; Srivastava, A.K. High Energy Density Supercapacitive Material Based on a Ternary Hybrid Nanocomposite of Cobalt Hexacyanoferrate/Carbon Nanofibers/Polypyrrole. Electrochim. Acta 2018, 268, 411–423. [Google Scholar] [CrossRef]
- Sun, C.; Li, X.; Cai, Z.; Ge, F. Carbonized Cotton Fabric In-Situ Electrodeposition Polypyrrole as High-Performance Flexible Electrode for Wearable Supercapacitor. Electrochim. Acta 2019, 296, 617–626. [Google Scholar] [CrossRef]
- Xu, C.; Puente-Santiago, A.R.; Rodríguez-Padrón, D.; Caballero, A.; Balu, A.M.; Romero, A.A.; Muñoz-Batista, M.J.; Luque, R. Controllable Design of Polypyrrole-Iron Oxide Nanocoral Architectures for Supercapacitors with Ultrahigh Cycling Stability. ACS Appl. Energy Mater. 2019, 2, 2161–2168. [Google Scholar] [CrossRef]
- Zhu, J.; Xu, Y.; Hu, J.; Wei, L.; Liu, J.; Zheng, M. Facile Synthesis of MnO2 Grown on Nitrogen-Doped Carbon Nanotubes for Asymmetric Supercapacitors with Enhanced Electrochemical Performance. J. Power Sources 2018, 393, 135–144. [Google Scholar] [CrossRef]
- Sun, W.; Gao, G.; Du, Y.; Zhang, K.; Wu, G. A Facile Strategy for Fabricating Hierarchical Nanocomposites of V 2O5 Nanowire Arrays on a Three-Dimensional N-Doped Graphene Aerogel with a Synergistic Effect for Supercapacitors. J. Mater. Chem. A 2018, 6, 9938–9947. [Google Scholar] [CrossRef]
- Liang, M.; Zhao, M.; Wang, H.; Shen, J.; Song, X. Enhanced Cycling Stability of Hierarchical NiCo2S4@Ni(OH)2@PPy Core–Shell Nanotube Arrays for Aqueous Asymmetric Supercapacitors. J. Mater. Chem. A 2018, 6, 2482–2493. [Google Scholar] [CrossRef]
- Wang, Q.; Ma, Y.; Liang, X.; Zhang, D.; Miao, M. Novel Core/Shell CoSe2 @PPy Nanoflowers for High-Performance Fiber Asymmetric Supercapacitors. J. Mater. Chem. A 2018, 6, 10361–10369. [Google Scholar] [CrossRef]
- Wang, F.; Lv, X.; Zhang, L.; Zhang, H.; Zhu, Y.; Hu, Z.; Zhang, Y.; Ji, J.; Jiang, W. Construction of Vertically Aligned PPy Nanosheets Networks Anchored on MnCo2O4 Nanobelts for High-Performance Asymmetric Supercapacitor. J. Power Sources 2018, 393, 169–176. [Google Scholar] [CrossRef]
- Zhu, S.; Tian, H.; Wang, N.; Chen, B.; Mai, Y.; Feng, X. Patterning Graphene Surfaces with Iron-Oxide-Embedded Mesoporous Polypyrrole and Derived N-Doped Carbon of Tunable Pore Size. Small 2018, 14, 1702755. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Hao, C.; Zhou, S.; Huang, C.; Wang, X. Synthesis and Characterization of Polypyrrole/Nickel Hydroxide/Sulfonated Graphene Oxide Ternary Composite for All-Solid-State Asymmetric Supercapacitor. Electrochim. Acta 2018, 283, 467–477. [Google Scholar] [CrossRef]
- Chen, C.; Qin, H.; Cong, H.; Yu, S. A Highly Stretchable and Real-Time Healable Supercapacitor. Adv. Mater. 2019, 31, 1900573. [Google Scholar] [CrossRef] [PubMed]
- Purkait, T.; Singh, G.; Kamboj, N.; Das, M.; Dey, R.S. All-Porous Heterostructure of Reduced Graphene Oxide–Polypyrrole–Nanoporous Gold for a Planar Flexible Supercapacitor Showing Outstanding Volumetric Capacitance and Energy Density. J. Mater. Chem. A 2018, 6, 22858–22869. [Google Scholar] [CrossRef]
- Singu, B.S.; Yoon, K.R. Highly Exfoliated GO-PPy-Ag Ternary Nanocomposite for Electrochemical Supercapacitor. Electrochim. Acta 2018, 268, 304–315. [Google Scholar] [CrossRef]
- Yang, Q.-Q.; Gao, L.-F.; Zhu, Z.-Y.; Hu, C.-X.; Huang, Z.-P.; Liu, R.-T.; Wang, Q.; Gao, F.; Zhang, H.-L. Confinement Effect of Natural Hollow Fibers Enhances Flexible Supercapacitor Electrode Performance. Electrochim. Acta 2018, 260, 204–211. [Google Scholar] [CrossRef]
- Mo, M.; Chen, C.; Gao, H.; Chen, M.; Li, D. Wet-Spinning Assembly of Cellulose Nanofibers Reinforced Graphene/Polypyrrole Microfibers for High Performance Fiber-Shaped Supercapacitors. Electrochim. Acta 2018, 269, 11–20. [Google Scholar] [CrossRef]
- Zhang, X.; Li, H.; Zhang, W.; Huang, Z.; Tsui, C.P.; Lu, C.; He, C.; Yang, Y. In-Situ Growth of Polypyrrole onto Bamboo Cellulose-Derived Compressible Carbon Aerogels for High Performance Supercapacitors. Electrochim. Acta 2019, 301, 55–62. [Google Scholar] [CrossRef]
- Kulandaivalu, S.; Sulaiman, Y. Designing an Advanced Electrode of Mixed Carbon Materials Layered on Polypyrrole/Reduced Graphene Oxide for High Specific Energy Supercapacitor. J. Power Sources 2019, 419, 181–191. [Google Scholar] [CrossRef]
- Bo, J.; Luo, X.; Huang, H.; Li, L.; Lai, W.; Yu, X. Morphology-Controlled Fabrication of Polypyrrole Hydrogel for Solid-State Supercapacitor. J. Power Sources 2018, 407, 105–111. [Google Scholar] [CrossRef]
- Guo, M.; Zhou, Y.; Sun, H.; Zhang, G.; Wang, Y. Interconnected Polypyrrole Nanostructure for High-Performance All-Solid-State Flexible Supercapacitor. Electrochim. Acta 2019, 298, 918–923. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, P.; Nautiyal, A.; Li, S.; Liu, N.; Yin, J.; Deng, K.; Zhang, X. Tunable Three-Dimensional Nanostructured Conductive Polymer Hydrogels for Energy-Storage Applications. ACS Appl. Mater. Interfaces 2019, 11, 4258–4267. [Google Scholar] [CrossRef] [PubMed]
- Xin, G.; Wang, M.; Zhang, W.; Song, J.; Zhang, B. Preparation of High-Capacitance N,S Co-Doped Carbon Nanospheres with Hierarchical Pores as Supercapacitors. Electrochim. Acta 2018, 291, 168–176. [Google Scholar] [CrossRef]
- Hu, L.; Pasta, M.; La Mantia, F.; Cui, L.; Jeong, S.; Deshazer, H.D.; Choi, J.W.; Han, S.M.; Cui, Y. Stretchable, Porous, and Conductive Energy Textiles. Nano Lett. 2010, 10, 708–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lam, D.V.; Jo, K.; Kim, C.-H.; Kim, J.-H.; Lee, H.-J.; Lee, S.-M. Activated Carbon Textile via Chemistry of Metal Extraction for Supercapacitors. ACS Nano 2016, 10, 11351–11359. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-C.; Hsu, Y.-K.; Lin, Y.-G.; Lin, Y.-K.; Horng, Y.-Y.; Chen, L.-C.; Chen, K.-H. Highly Flexible Supercapacitors with Manganese Oxide Nanosheet/Carbon Cloth Electrode. Electrochim. Acta 2011, 56, 7124–7130. [Google Scholar] [CrossRef]
- Jost, K.; Perez, C.R.; McDonough, J.K.; Presser, V.; Heon, M.; Dion, G.; Gogotsi, Y. Carbon Coated Textiles for Flexible Energy Storage. Energy Environ. Sci. 2011, 4, 5060. [Google Scholar] [CrossRef]
- Feng, D.-Y.; Song, Y.; Huang, Z.-H.; Xu, X.-X.; Liu, X.-X. Rate Capability Improvement of Polypyrrole via Integration with Functionalized Commercial Carbon Cloth for Pseudocapacitor. J. Power Sources 2016, 324, 788–797. [Google Scholar] [CrossRef]
- Sun, J.; Huang, Y.; Fu, C.; Wang, Z.; Huang, Y.; Zhu, M.; Zhi, C.; Hu, H. High-Performance Stretchable Yarn Supercapacitor Based on PPy@CNTs@urethane Elastic Fiber Core Spun Yarn. Nano Energy 2016, 27, 230–237. [Google Scholar] [CrossRef]
- Wang, F.; Zhan, X.; Cheng, Z.; Wang, Z.; Wang, Q.; Xu, K.; Safdar, M.; He, J. Tungsten Oxide@Polypyrrole Core-Shell Nanowire Arrays as Novel Negative Electrodes for Asymmetric Supercapacitors. Small 2015, 11, 749–755. [Google Scholar] [CrossRef]
- Wang, L.; Yang, H.; Liu, X.; Zeng, R.; Li, M.; Huang, Y.; Hu, X. Constructing Hierarchical Tectorum-like α-Fe2O3 /PPy Nanoarrays on Carbon Cloth for Solid-State Asymmetric Supercapacitors. Angew. Chem. Int. Ed. 2017, 56, 1105–1110. [Google Scholar] [CrossRef]
- Zhu, C.; Yang, P.; Chao, D.; Wang, X.; Zhang, X.; Chen, S.; Tay, B.K.; Huang, H.; Zhang, H.; Mai, W.; et al. All Metal Nitrides Solid-State Asymmetric Supercapacitors. Adv. Mater. 2015, 27, 4566–4571. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Sun, J.; Pan, Z.; Zhang, J.; Zhao, J.; Wang, X.; Zhang, C.; Yao, Y.; Lu, W.; Li, Q.; et al. Stretchable Fiber-Shaped Asymmetric Supercapacitors with Ultrahigh Energy Density. Nano Energy 2017, 39, 219–228. [Google Scholar] [CrossRef]
- Noh, J.; Yoon, C.-M.; Kim, Y.K.; Jang, J. High Performance Asymmetric Supercapacitor Twisted from Carbon Fiber/MnO2 and Carbon Fiber/MoO3. Carbon 2017, 116, 470–478. [Google Scholar] [CrossRef]
- Gong, X.; Li, S.; Lee, P.S. A Fiber Asymmetric Supercapacitor Based on FeOOH/PPy on Carbon Fibers as an Anode Electrode with High Volumetric Energy Density for Wearable Applications. Nanoscale 2017, 9, 10794–10801. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Xu, P.; Cao, D.; Zhou, X.; Yang, S.; Li, Y.; Wang, G. Asymmetric Supercapacitors Based on β-Ni(OH)2 Nanosheets and Activated Carbon with High Energy Density. J. Power Sources 2014, 246, 371–376. [Google Scholar] [CrossRef]
- Tang, Z.; Tang, C.; Gong, H. A High Energy Density Asymmetric Supercapacitor from Nano-Architectured Ni(OH)2/Carbon Nanotube Electrodes. Adv. Funct. Mater. 2012, 22, 1272–1278. [Google Scholar] [CrossRef]
- Gao, Z.-H.; Zhang, H.; Cao, G.-P.; Han, M.-F.; Yang, Y.-S. Spherical Porous VN and NiOx as Electrode Materials for Asymmetric Supercapacitor. Electrochim. Acta 2013, 87, 375–380. [Google Scholar] [CrossRef]
- Gao, Z.; Yang, W.; Wang, J.; Song, N.; Li, X. Flexible All-Solid-State Hierarchical NiCo2O4/Porous Graphene Paper Asymmetric Supercapacitors with an Exceptional Combination of Electrochemical Properties. Nano Energy 2015, 13, 306–317. [Google Scholar] [CrossRef]
- Gao, W.; Singh, N.; Song, L.; Liu, Z.; Reddy, A.L.M.; Ci, L.; Vajtai, R.; Zhang, Q.; Wei, B.; Ajayan, P.M. Direct Laser Writing of Micro-Supercapacitors on Hydrated Graphite Oxide Films. Nat. Nanotechnol. 2011, 6, 496–500. [Google Scholar] [CrossRef]
- Yoo, J.J.; Balakrishnan, K.; Huang, J.; Meunier, V.; Sumpter, B.G.; Srivastava, A.; Conway, M.; Mohana Reddy, A.L.; Yu, J.; Vajtai, R.; et al. Ultrathin Planar Graphene Supercapacitors. Nano Lett. 2011, 11, 1423–1427. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Parvez, K.; Feng, X.; Müllen, K. Graphene-Based in-Plane Micro-Supercapacitors with High Power and Energy Densities. Nat. Commun. 2013, 4, 2487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Z.-S.; Zheng, Y.; Zheng, S.; Wang, S.; Sun, C.; Parvez, K.; Ikeda, T.; Bao, X.; Müllen, K.; Feng, X. Stacked-Layer Heterostructure Films of 2D Thiophene Nanosheets and Graphene for High-Rate All-Solid-State Pseudocapacitors with Enhanced Volumetric Capacitance. Adv. Mater. 2017, 29, 1602960. [Google Scholar] [CrossRef]
- Wu, Z.-S.; Parvez, K.; Li, S.; Yang, S.; Liu, Z.; Liu, S.; Feng, X.; Müllen, K. Alternating Stacked Graphene-Conducting Polymer Compact Films with Ultrahigh Areal and Volumetric Capacitances for High-Energy Micro-Supercapacitors. Adv. Mater. 2015, 27, 4054–4061. [Google Scholar] [CrossRef]
- Lv, J.; Liu, Z.; Zhang, L.; Li, K.; Zhang, S.; Xu, H.; Mao, Z.; Zhang, H.; Chen, J.; Pan, G. Multifunctional Polypyrrole and Rose-like Silver Flower-Decorated E-Textile with Outstanding Pressure/Strain Sensing and Energy Storage Performance. Chem. Eng. J. 2022, 427, 130823. [Google Scholar] [CrossRef]
- Vandana, M.; Veeresh, S.; Ganesh, H.; Nagaraju, Y.S.; Vijeth, H.; Basappa, M.; Devendrappa, H. Graphene Oxide Decorated SnO2 Quantum Dots/Polypyrrole Ternary Composites towards Symmetric Supercapacitor Application. J. Energy Storage 2022, 46, 103904. [Google Scholar] [CrossRef]
- Kumar, N.; Ginting, R.T.; Kang, J.-W. Flexible, Large-Area, All-Solid-State Supercapacitors Using Spray Deposited PEDOT:PSS/Reduced-Graphene Oxide. Electrochim. Acta 2018, 270, 37–47. [Google Scholar] [CrossRef]
- He, X.; Yang, W.; Mao, X.; Xu, L.; Zhou, Y.; Chen, Y.; Zhao, Y.; Yang, Y.; Xu, J. All-Solid State Symmetric Supercapacitors Based on Compressible and Flexible Free-Standing 3D Carbon Nanotubes (CNTs)/Poly(3,4-Ethylenedioxythiophene) (PEDOT) Sponge Electrodes. J. Power Sources 2018, 376, 138–146. [Google Scholar] [CrossRef]
- Li, J.; Li, H.; Li, J.; Wu, G.; Shao, Y.; Li, Y.; Zhang, Q.; Wang, H. A Single-Walled Carbon Nanotubes/Poly(3,4-Ethylenedioxythiophene)-Poly(Styrenesulfonate)/Copper Hexacyanoferrate Hybrid Film for High-Volumetric Performance Flexible Supercapacitors. J. Power Sources 2018, 386, 96–105. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, X.; Acauan, L.; Kalfon-Cohen, E.; Ni, X.; Stein, Y.; Gleason, K.K.; Wardle, B.L. Ultrahigh-Areal-Capacitance Flexible Supercapacitor Electrodes Enabled by Conformal P3MT on Horizontally Aligned Carbon-Nanotube Arrays. Adv. Mater. 2019, 31, 1901916. [Google Scholar] [CrossRef]
- Bi, W.; Wu, Y.; Liu, C.; Wang, J.; Du, Y.; Gao, G.; Wu, G.; Cao, G. Gradient Oxygen Vacancies in V2O5 /PEDOT Nanocables for High-Performance Supercapacitors. ACS Appl. Energy Mater. 2019, 2, 668–677. [Google Scholar] [CrossRef]
- Lee, S.H.; Park, C.; Park, J.W.; Kim, S.J.; Im, S.S.; Ahn, H. Synthesis of Conducting Polymer-Intercalated Vanadate Nanofiber Composites Using a Sonochemical Method for High Performance Pseudocapacitor Applications. J. Power Sources 2019, 414, 460–469. [Google Scholar] [CrossRef]
- Chang, Y.; Zhou, W.; Wu, J.; Ye, G.; Zhou, Q.; Li, D.; Zhu, D.; Li, T.; Nie, G.; Du, Y.; et al. High-Performance Flexible-Film Supercapacitors of Layered Hydrous RuO2/Poly(3,4-Ethylenedioxythiophene)-Poly(Styrenesulfonate) through Vacuum Filtration. Electrochim. Acta 2018, 283, 744–754. [Google Scholar] [CrossRef]
- Li, X.-X.; Deng, X.-H.; Li, Q.-J.; Huang, S.; Xiao, K.; Liu, Z.-Q.; Tong, Y. Hierarchical Double-Shelled Poly(3,4-Ethylenedioxythiophene) and MnO 2 Decorated Ni Nanotube Arrays for Durable and Enhanced Energy Storage in Supercapacitors. Electrochim. Acta 2018, 264, 46–52. [Google Scholar] [CrossRef]
- Yun, T.G.; Park, M.; Kim, D.-H.; Kim, D.; Cheong, J.Y.; Bae, J.G.; Han, S.M.; Kim, I.-D. All-Transparent Stretchable Electrochromic Supercapacitor Wearable Patch Device. ACS Nano 2019, 13, 3141–3150. [Google Scholar] [CrossRef]
- Zhang, J.; Seyedin, S.; Qin, S.; Wang, Z.; Moradi, S.; Yang, F.; Lynch, P.A.; Yang, W.; Liu, J.; Wang, X.; et al. Highly Conductive Ti 3C2T_\textrmx MXene Hybrid Fibers for Flexible and Elastic Fiber-Shaped Supercapacitors. Small 2019, 15, 1804732. [Google Scholar] [CrossRef]
- Qin, L.; Tao, Q.; El Ghazaly, A.; Fernandez-Rodriguez, J.; Persson, P.O.Å.; Rosen, J.; Zhang, F. High-Performance Ultrathin Flexible Solid-State Supercapacitors Based on Solution Processable Mo1.33C MXene and PEDOT:PSS. Adv. Funct. Mater. 2018, 28, 1703808. [Google Scholar] [CrossRef] [Green Version]
- Syed Zainol Abidin, S.N.J.; Mamat, M.S.; Rasyid, S.A.; Zainal, Z.; Sulaiman, Y. Electropolymerization of Poly(3,4-Ethylenedioxythiophene) onto Polyvinyl Alcohol-Graphene Quantum Dot-Cobalt Oxide Nanofiber Composite for High-Performance Supercapacitor. Electrochim. Acta 2018, 261, 548–556. [Google Scholar] [CrossRef]
- Mohd Abdah, M.A.A.; Abdul Rahman, N.; Sulaiman, Y. Enhancement of Electrochemical Performance Based on Symmetrical Poly-(3,4-Ethylenedioxythiophene) Coated Polyvinyl Alcohol/Graphene Oxide/Manganese Oxide Microfiber for Supercapacitor. Electrochim. Acta 2018, 259, 466–473. [Google Scholar] [CrossRef]
- Yao, T.; Li, Y.; Liu, D.; Gu, Y.; Qin, S.; Guo, X.; Guo, H.; Ding, Y.; Liu, Q.; Chen, Q.; et al. High-Performance Free-Standing Capacitor Electrodes of Multilayered Co9S8 Plates Wrapped by Carbonized Poly(3,4-Ethylenedioxythiophene):Poly(Styrene Sulfonate)/Reduced Graphene Oxide. J. Power Sources 2018, 379, 167–173. [Google Scholar] [CrossRef]
- Wu, Y.; Yan, D.; Zhang, Z.; Matsushita, M.M.; Awaga, K. Electron Highways into Nanochannels of Covalent Organic Frameworks for High Electrical Conductivity and Energy Storage. ACS Appl. Mater. Interfaces 2019, 11, 7661–7665. [Google Scholar] [CrossRef] [PubMed]
- Ni, D.; Chen, Y.; Song, H.; Liu, C.; Yang, X.; Cai, K. Free-Standing and Highly Conductive PEDOT Nanowire Films for High-Performance All-Solid-State Supercapacitors. J. Mater. Chem. A 2019, 7, 1323–1333. [Google Scholar] [CrossRef]
- Wang, S.; Sun, C.; Shao, Y.; Wu, Y.; Zhang, L.; Hao, X. Self-Supporting GaN Nanowires/Graphite Paper: Novel High-Performance Flexible Supercapacitor Electrodes. Small 2017, 13, 1603330. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Xu, C.; Li, Y.; Wu, C.; Jiang, B.; Yang, Q.; Zhou, E.; Kang, F.; Yang, Q.-H. Simultaneous Production of High-Performance Flexible Textile Electrodes and Fiber Electrodes for Wearable Energy Storage. Adv. Mater. 2016, 28, 1675–1681. [Google Scholar] [CrossRef]
- Wang, N.; Han, G.; Song, H.; Xiao, Y.; Li, Y.; Zhang, Y.; Wang, H. Integrated Flexible Supercapacitor Based on Poly (3, 4-Ethylene Dioxythiophene) Deposited on Au/Porous Polypropylene Film/Au. J. Power Sources 2018, 395, 228–236. [Google Scholar] [CrossRef]
- Dong, L.; Liang, G.; Xu, C.; Liu, W.; Pan, Z.-Z.; Zhou, E.; Kang, F.; Yang, Q.-H. Multi Hierarchical Construction-Induced Superior Capacitive Performances of Flexible Electrodes for Wearable Energy Storage. Nano Energy 2017, 34, 242–248. [Google Scholar] [CrossRef]
- Chetana, S.; Upadhyay, S.; Joshi, N.C.; Kumar, N.; Choudhary, P.; Sharma, N.; Thakur, V.N. A Facile Supercritical Fluid Synthesis of Cobalt Sulfide Integrated with MXene and PANI/PEDOT Nanocomposites as Electrode Material for Supercapacitor Applications. FlatChem 2023, 37, 100456. [Google Scholar] [CrossRef]
- Mao, X.; Wang, Z.; Kong, W.; Wang, W. Nickel Foam Supported Hierarchical Co9S8 Nanostructures for Asymmetric Supercapacitors. New J. Chem. 2017, 41, 1142–1148. [Google Scholar] [CrossRef]
- Lin, T.-W.; Dai, C.-S.; Tasi, T.-T.; Chou, S.-W.; Lin, J.-Y.; Shen, H.-H. High-Performance Asymmetric Supercapacitor Based on Co 9 S 8 /3D Graphene Composite and Graphene Hydrogel. Chem. Eng. J. 2015, 279, 241–249. [Google Scholar] [CrossRef]
- Tang, Y.; Chen, T.; Yu, S.; Qiao, Y.; Mu, S.; Zhang, S.; Zhao, Y.; Hou, L.; Huang, W.; Gao, F. A Highly Electronic Conductive Cobalt Nickel Sulphide Dendrite/Quasi-Spherical Nanocomposite for a Supercapacitor Electrode with Ultrahigh Areal Specific Capacitance. J. Power Sources 2015, 295, 314–322. [Google Scholar] [CrossRef]
- Xia, X.; Zhu, C.; Luo, J.; Zeng, Z.; Guan, C.; Ng, C.F.; Zhang, H.; Fan, H.J. Synthesis of Free-Standing Metal Sulfide Nanoarrays via Anion Exchange Reaction and Their Electrochemical Energy Storage Application. Small 2014, 10, 766–773. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Zhang, L.; Wu, H.B.; Lou, X.W.D. Formation of Ni\textrm x Co\textrm 3−xS4 Hollow Nanoprisms with Enhanced Pseudocapacitive Properties. Angew. Chem. Int. Ed. 2014, 53, 3711–3714. [Google Scholar] [CrossRef] [PubMed]
- DeBlase, C.R.; Silberstein, K.E.; Truong, T.-T.; Abruña, H.D.; Dichtel, W.R. β-Ketoenamine-Linked Covalent Organic Frameworks Capable of Pseudocapacitive Energy Storage. J. Am. Chem. Soc. 2013, 135, 16821–16824. [Google Scholar] [CrossRef]
- Zhou, H.; Zhai, H.-J.; Han, G. Adjust the Electrochemical Performances of Graphene Oxide Nanosheets-Loaded Poly(3,4-Ethylenedioxythiophene) Composites for Supercapacitors with Ultralong Cycle Life. J. Mater. Sci. Mater. Electron. 2016, 27, 2773–2782. [Google Scholar] [CrossRef]
- Zhou, H.; Zhi, X.; Zhai, H.-J. Promoted Supercapacitive Performances of Electrochemically Synthesized Poly(3,4-Ethylenedioxythiophene) Incorporated with Manganese Dioxide. J. Mater. Sci. Mater. Electron. 2018, 29, 3935–3942. [Google Scholar] [CrossRef]
- Ma, L.; Liu, R.; Niu, H.; Zhao, M.; Huang, Y. Flexible and Freestanding Electrode Based on Polypyrrole/Graphene/Bacterial Cellulose Paper for Supercapacitor. Compos. Sci. Technol. 2016, 137, 87–93. [Google Scholar] [CrossRef]
- Jena, R.K.; Yue, C.Y.; Sk, M.M.; Ghosh, K. A Novel High Performance Poly (2-Methyl Thioaniline) Based Composite Electrode for Supercapacitors Application. Carbon 2017, 115, 175–187. [Google Scholar] [CrossRef]
- Yang, W.; Zhou, H.; Huang, Z.; Li, H.; Fu, C.; Chen, L.; Li, M.; Liu, S.; Kuang, Y. In Situ Growth of Single-Stranded like Poly (o-Phenylenediamine) onto Graphene for High Performance Supercapacitors. Electrochim. Acta 2017, 245, 41–50. [Google Scholar] [CrossRef]
- Wang, X.; Yang, C.; Jin, J.; Li, X.; Cheng, Q.; Wang, G. High-Performance Stretchable Supercapacitors Based on Intrinsically Stretchable Acrylate Rubber/MWCNTs@conductive Polymer Composite Electrodes. J. Mater. Chem. A 2018, 6, 4432–4442. [Google Scholar] [CrossRef]
- Liu, Y.; Li, L.; Zhu, J.; Xu, J.; Liu, S.; Wang, Y.; Zhang, C.; Liu, T. A Biomimetic Setaria Viridis -Inspired Electrode with Polyaniline Nanowire Arrays Aligned on MoO3@polypyrrole Core–Shell Nanobelts. J. Mater. Chem. A 2018, 6, 13428–13437. [Google Scholar] [CrossRef]
- Yang, Z.; Ma, J.; Bai, B.; Qiu, A.; Losic, D.; Shi, D.; Chen, M. Free-Standing PEDOT/Polyaniline Conductive Polymer Hydrogel for Flexible Solid-State Supercapacitors. Electrochim. Acta 2019, 322, 134769. [Google Scholar] [CrossRef]
- Wang, J.-G.; Liu, H.; Zhang, X.; Li, X.; Liu, X.; Kang, F. Green Synthesis of Hierarchically Porous Carbon Nanotubes as Advanced Materials for High-Efficient Energy Storage. Small 2018, 14, 1703950. [Google Scholar] [CrossRef] [PubMed]
- Karuppannan, M.; Kim, Y.; Sung, Y.-E.; Kwon, O.J. Nitrogen-Rich Hollow Carbon Spheres Decorated with FeCo/Fluorine-Rich Carbon for High Performance Symmetric Supercapacitors. J. Mater. Chem. A 2018, 6, 7522–7531. [Google Scholar] [CrossRef]
- Liu, W.; Ulaganathan, M.; Abdelwahab, I.; Luo, X.; Chen, Z.; Rong Tan, S.J.; Wang, X.; Liu, Y.; Geng, D.; Bao, Y.; et al. Two-Dimensional Polymer Synthesized via Solid-State Polymerization for High-Performance Supercapacitors. ACS Nano 2018, 12, 852–860. [Google Scholar] [CrossRef]
- Khattak, A.M.; Sin, H.; Ghazi, Z.A.; He, X.; Liang, B.; Khan, N.A.; Alanagh, H.R.; Iqbal, A.; Li, L.; Tang, Z. Controllable Fabrication of Redox-Active Conjugated Microporous Polymers on Reduced Graphene Oxide for High Performance Faradaic Energy Storage. J. Mater. Chem. A 2018, 6, 18827–18832. [Google Scholar] [CrossRef]
- Choi, J.; Ko, J.H.; Kang, C.W.; Lee, S.M.; Kim, H.J.; Ko, Y.-J.; Yang, M.; Son, S.U. Enhanced Redox Activity of a Hollow Conjugated Microporous Polymer through the Generation of Carbonyl Groups by Carbonylative Sonogashira Coupling. J. Mater. Chem. A 2018, 6, 6233–6237. [Google Scholar] [CrossRef]
- Liao, Y.; Wang, H.; Zhu, M.; Thomas, A. Efficient Supercapacitor Energy Storage Using Conjugated Microporous Polymer Networks Synthesized from Buchwald-Hartwig Coupling. Adv. Mater. 2018, 30, 1705710. [Google Scholar] [CrossRef]
- Zhang, Y.; Qu, T.; Xiang, K.; Shen, Y.; Chen, S.; Xie, M.; Guo, X. In Situ Formation/Carbonization of Quinone-Amine Polymers towards Hierarchical Porous Carbon Foam with High Faradaic Activity for Energy Storage. J. Mater. Chem. A 2018, 6, 2353–2359. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, S.; Liu, X.; Li, P.; Sun, L.; Yang, R.; Wang, S.; Wu, Z.; Bao, X.; Deng, W. Conductive Microporous Covalent Triazine-Based Framework for High-Performance Electrochemical Capacitive Energy Storage. Angew. Chem. 2018, 130, 8124–8128. [Google Scholar] [CrossRef]
- Wu, J.; Zhou, W.; Jiang, F.; Chang, Y.; Zhou, Q.; Li, D.; Ye, G.; Li, C.; Nie, G.; Xu, J.; et al. Three-Dimensional Porous Carbon Derived from Polyindole Hollow Nanospheres for High-Performance Supercapacitor Electrode. ACS Appl. Energy Mater. 2018, 1, 4572–4579. [Google Scholar] [CrossRef]
- Han, Y.; Hu, N.; Liu, S.; Hou, Z.; Liu, J.; Hua, X.; Yang, Z.; Wei, L.; Wang, L.; Wei, H. Nanocoating Covalent Organic Frameworks on Nickel Nanowires for Greatly Enhanced-Performance Supercapacitors. Nanotechnology 2017, 28, 33LT01. [Google Scholar] [CrossRef] [PubMed]
- Lv, T.; Yao, Y.; Li, N.; Chen, T. Highly Stretchable Supercapacitors Based on Aligned Carbon Nanotube/Molybdenum Disulfide Composites. Angew. Chem. Int. Ed. 2016, 55, 9191–9195. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Lv, T.; Yao, Y.; Li, H.; Liu, K.; Chen, T. Compact Graphene/MoS2 Composite Films for Highly Flexible and Stretchable All-Solid-State Supercapacitors. J. Mater. Chem. A 2017, 5, 3267–3273. [Google Scholar] [CrossRef]
- Tang, Q.; Chen, M.; Yang, C.; Wang, W.; Bao, H.; Wang, G. Enhancing the Energy Density of Asymmetric Stretchable Supercapacitor Based on Wrinkled CNT@MnO2 Cathode and CNT@polypyrrole Anode. ACS Appl. Mater. Interfaces 2015, 7, 15303–15313. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, N.; Su, J.; Li, L.; Long, F.; Zou, Z.; Jiang, X.; Gao, Y. Highly Stretchable and Self-Healable Supercapacitor with Reduced Graphene Oxide Based Fiber Springs. ACS Nano 2017, 11, 2066–2074. [Google Scholar] [CrossRef]
- Chen, L.-F.; Zhang, X.-D.; Liang, H.-W.; Kong, M.; Guan, Q.-F.; Chen, P.; Wu, Z.-Y.; Yu, S.-H. Synthesis of Nitrogen-Doped Porous Carbon Nanofibers as an Efficient Electrode Material for Supercapacitors. ACS Nano 2012, 6, 7092–7102. [Google Scholar] [CrossRef]
- Shen, J.; Yang, C.; Li, X.; Wang, G. High-Performance Asymmetric Supercapacitor Based on Nanoarchitectured Polyaniline/Graphene/Carbon Nanotube and Activated Graphene Electrodes. ACS Appl. Mater. Interfaces 2013, 5, 8467–8476. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, C.; Huang, Z.; Jin, L.; Zhang, J.; Li, Y.; Zhang, L.; Zhang, Q. Rational Design of Polyaniline/MnO2/Carbon Cloth Ternary Hybrids as Electrodes for Supercapacitors. RSC Adv. 2015, 5, 66311–66317. [Google Scholar] [CrossRef]
- Dubal, D.P.; Chodankar, N.R.; Caban-Huertas, Z.; Wolfart, F.; Vidotti, M.; Holze, R.; Lokhande, C.D.; Gomez-Romero, P. Synthetic Approach from Polypyrrole Nanotubes to Nitrogen Doped Pyrolyzed Carbon Nanotubes for Asymmetric Supercapacitors. J. Power Sources 2016, 308, 158–165. [Google Scholar] [CrossRef]
- An, N.; An, Y.; Hu, Z.; Zhang, Y.; Yang, Y.; Lei, Z. Green and All-Carbon Asymmetric Supercapacitor Based on Polyaniline Nanotubes and Anthraquinone Functionalized Porous Nitrogen-Doped Carbon Nanotubes with High Energy Storage Performance. RSC Adv. 2015, 5, 63624–63633. [Google Scholar] [CrossRef]
- Rakhi, R.B.; Lekshmi, M.L. Reduced Graphene Oxide Based Ternary Nanocomposite Cathodes for High-Performance Aqueous Asymmetric Supercapacitors. Electrochim. Acta 2017, 231, 539–548. [Google Scholar] [CrossRef]
- He, W.; Wang, C.; Li, H.; Deng, X.; Xu, X.; Zhai, T. Ultrathin and Porous Ni3S2/CoNi2S43D-Network Structure for Superhigh Energy Density Asymmetric Supercapacitors. Adv. Energy Mater. 2017, 7, 1700983. [Google Scholar] [CrossRef]
- Li, S.; Yu, C.; Yang, J.; Zhao, C.; Zhang, M.; Huang, H.; Liu, Z.; Guo, W.; Qiu, J. A Superhydrophilic “Nanoglue” for Stabilizing Metal Hydroxides onto Carbon Materials for High-Energy and Ultralong-Life Asymmetric Supercapacitors. Energy Environ. Sci. 2017, 10, 1958–1965. [Google Scholar] [CrossRef]
- Deng, D. Li-ion Batteries: Basics, Progress, and Challenges. Energy Sci. Eng. 2015, 3, 385–418. [Google Scholar] [CrossRef]
- Nitta, N.; Wu, F.; Lee, J.T.; Yushin, G. Li-Ion Battery Materials: Present and Future. Mater. Today 2015, 18, 252–264. [Google Scholar] [CrossRef]
- Yu, P.; Zeng, Y.; Zhang, H.; Yu, M.; Tong, Y.; Lu, X. Flexible Zn-Ion Batteries: Recent Progresses and Challenges. Small 2019, 15, 1804760. [Google Scholar] [CrossRef]
- Song, K.; Liu, C.; Mi, L.; Chou, S.; Chen, W.; Shen, C. Recent Progress on the Alloy-Based Anode for Sodium-Ion Batteries and Potassium-Ion Batteries. Small 2021, 17, 1903194. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, J. Prospects of Organic Electrode Materials for Practical Lithium Batteries. Nat. Rev. Chem. 2020, 4, 127–142. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, Y.; Guo, Z. Approaching High-Performance Potassium-Ion Batteries via Advanced Design Strategies and Engineering. Sci. Adv. 2019, 5, eaav7412. [Google Scholar] [CrossRef] [Green Version]
- Song, M.; Tan, H.; Chao, D.; Fan, H.J. Recent Advances in Zn-Ion Batteries. Adv. Funct. Mater. 2018, 28, 1802564. [Google Scholar] [CrossRef]
- Kim, H.; Kim, J.C.; Bianchini, M.; Seo, D.-H.; Rodriguez-Garcia, J.; Ceder, G. Recent Progress and Perspective in Electrode Materials for K-Ion Batteries. Adv. Energy Mater. 2018, 8, 1702384. [Google Scholar] [CrossRef] [Green Version]
- Manthiram, A.; Chung, S.-H.; Zu, C. Lithium-Sulfur Batteries: Progress and Prospects. Adv. Mater. 2015, 27, 1980–2006. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.; Manthiram, A. Current Status and Future Prospects of Metal–Sulfur Batteries. Adv. Mater. 2019, 31, 1901125. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Jiang, Y.; Zhu, J.; Wang, H.; Li, Y.; Zhou, H.; Meng, W.; Dai, L.; Wang, L. N-Doped Carbon Coated LiTi2(PO4)3 as Superior Anode Using PANi as Carbon and Nitrogen Bi-Sources for Aqueous Lithium Ion Battery. Electrochim. Acta 2018, 279, 279–288. [Google Scholar] [CrossRef]
- Wang, B.; Wang, Y.; Peng, Y.; Wang, X.; Wang, J.; Zhao, J. 3-Dimensional Interconnected Framework of N-Doped Porous Carbon Based on Sugarcane Bagasse for Application in Supercapacitors and Lithium Ion Batteries. J. Power Sources 2018, 390, 186–196. [Google Scholar] [CrossRef]
- Sheng, L.; Jiang, H.; Liu, S.; Chen, M.; Wei, T.; Fan, Z. Nitrogen-Doped Carbon-Coated MnO Nanoparticles Anchored on Interconnected Graphene Ribbons for High-Performance Lithium-Ion Batteries. J. Power Sources 2018, 397, 325–333. [Google Scholar] [CrossRef]
- Zhu, G.; Wang, L.; Lin, H.; Ma, L.; Zhao, P.; Hu, Y.; Chen, T.; Chen, R.; Wang, Y.; Tie, Z.; et al. Walnut-Like Multicore-Shell MnO Encapsulated Nitrogen-Rich Carbon Nanocapsules as Anode Material for Long-Cycling and Soft-Packed Lithium-Ion Batteries. Adv. Funct. Mater. 2018, 28, 1800003. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, Y.; Du, C.; Ren, Y.; Mu, T.; Zuo, P.; Yin, G.; Ma, Y.; Cheng, X.; Gao, Y. Polyaniline-Encapsulated Silicon on Three-Dimensional Carbon Nanotubes Foam with Enhanced Electrochemical Performance for Lithium-Ion Batteries. J. Power Sources 2018, 381, 156–163. [Google Scholar] [CrossRef]
- Qiao, H.; Li, R.; Yu, Y.; Xia, Z.; Wang, L.; Wei, Q.; Chen, K.; Qiao, Q. Fabrication of PANI-Coated ZnFe2O4 Nanofibers with Enhanced Electrochemical Performance for Energy Storage. Electrochim. Acta 2018, 273, 282–288. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, S.; Shao, Y.; Wu, Y.; Shen, J.; Hao, X. Hollow Triple-Layer Puff-like HCs@Si@C Composites with High Structural Stability for High-Performance Lithium-Ion Battery. ACS Appl. Energy Mater. 2019, 2, 896–904. [Google Scholar] [CrossRef]
- Yan, M.; Chen, H.; Yu, Y.; Zhao, H.; Li, C.-F.; Hu, Z.-Y.; Wu, P.; Chen, L.; Wang, H.; Peng, D.; et al. 3D Ferroconcrete-Like Aminated Carbon Nanotubes Network Anchoring Sulfur for Advanced Lithium-Sulfur Battery. Adv. Energy Mater. 2018, 8, 1801066. [Google Scholar] [CrossRef]
- Wu, F.; Zhao, S.; Chen, L.; Lu, Y.; Su, Y.; Li, J.; Bao, L.; Yao, J.; Zhou, Y.; Chen, R. Electron Bridging Structure Glued Yolk-Shell Hierarchical Porous Carbon/Sulfur Composite for High Performance Li-S Batteries. Electrochim. Acta 2018, 292, 199–207. [Google Scholar] [CrossRef]
- Liu, B.; Bo, R.; Taheri, M.; Di Bernardo, I.; Motta, N.; Chen, H.; Tsuzuki, T.; Yu, G.; Tricoli, A. Metal–Organic Frameworks/Conducting Polymer Hydrogel Integrated Three-Dimensional Free-Standing Monoliths as Ultrahigh Loading Li–S Battery Electrodes. Nano Lett. 2019, 19, 4391–4399. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Fu, L.; Luan, J.; Huang, X.; Tang, Y.; Xie, H.; Wang, H. Surface Engineering Induced Core-Shell Prussian Blue@polyaniline Nanocubes as a High-Rate and Long-Life Sodium-Ion Battery Cathode. J. Power Sources 2018, 395, 305–313. [Google Scholar] [CrossRef]
- Zhao, G.; Zhang, Y.; Yang, L.; Jiang, Y.; Zhang, Y.; Hong, W.; Tian, Y.; Zhao, H.; Hu, J.; Zhou, L.; et al. Nickel Chelate Derived NiS2 Decorated with Bifunctional Carbon: An Efficient Strategy to Promote Sodium Storage Performance. Adv. Funct. Mater. 2018, 28, 1803690. [Google Scholar] [CrossRef]
- Gao, H.; Xue, L.; Xin, S.; Goodenough, J.B. A High-Energy-Density Potassium Battery with a Polymer-Gel Electrolyte and a Polyaniline Cathode. Angew. Chem. 2018, 130, 5547–5551. [Google Scholar] [CrossRef]
- Liu, P.; Lv, R.; He, Y.; Na, B.; Wang, B.; Liu, H. An Integrated, Flexible Aqueous Zn-Ion Battery with High Energy and Power Densities. J. Power Sources 2019, 410–411, 137–142. [Google Scholar] [CrossRef]
- Kim, C.; Ahn, B.Y.; Wei, T.-S.; Jo, Y.; Jeong, S.; Choi, Y.; Kim, I.-D.; Lewis, J.A. High-Power Aqueous Zinc-Ion Batteries for Customized Electronic Devices. ACS Nano 2018, 12, 11838–11846. [Google Scholar] [CrossRef]
- Luo, W.; Li, F.; Gaumet, J.-J.; Magri, P.; Diliberto, S.; Zhou, L.; Mai, L. Bottom-Up Confined Synthesis of Nanorod-in-Nanotube Structured Sb@N-C for Durable Lithium and Sodium Storage. Adv. Energy Mater. 2018, 8, 1703237. [Google Scholar] [CrossRef]
- Sun, H.; Wang, J.-G.; Zhang, Y.; Hua, W.; Li, Y.; Liu, H. Ultrafast Lithium Energy Storage Enabled by Interfacial Construction of Interlayer-Expanded MoS2/N-Doped Carbon Nanowires. J. Mater. Chem. A 2018, 6, 13419–13427. [Google Scholar] [CrossRef]
- Wang, J.-G.; Liu, H.; Zhou, R.; Liu, X.; Wei, B. Onion-like Nanospheres Organized by Carbon Encapsulated Few-Layer MoS2 Nanosheets with Enhanced Lithium Storage Performance. J. Power Sources 2019, 413, 327–333. [Google Scholar] [CrossRef]
- Xie, D.; Zhang, M.; Cheng, F.; Fan, H.; Xie, S.; Liu, P.; Tu, J. Hierarchical MoS2@Polypyrrole Core-Shell Microspheres with Enhanced Electrochemical Performances for Lithium Storage. Electrochim. Acta 2018, 269, 632–639. [Google Scholar] [CrossRef]
- Xing, Y.; Wang, S.; Fang, B.; Song, G.; Wilkinson, D.P.; Zhang, S. N-Doped Hollow Urchin-like Anatase TiO2 @C Composite as a Novel Anode for Li-Ion Batteries. J. Power Sources 2018, 385, 10–17. [Google Scholar] [CrossRef]
- Xiao, P.; Bu, F.; Zhao, R.; Aly Aboud, M.F.; Shakir, I.; Xu, Y. Sub-5 Nm Ultrasmall Metal–Organic Framework Nanocrystals for Highly Efficient Electrochemical Energy Storage. ACS Nano 2018, 12, 3947–3953. [Google Scholar] [CrossRef]
- Luo, S.; Zhang, P.; Yuan, T.; Ruan, J.; Peng, C.; Pang, Y.; Sun, H.; Yang, J.; Zheng, S. Molecular Self-Assembly of a Nanorod N-Li4Ti5O12/TiO2/C Anode for Superior Lithium Ion Storage. J. Mater. Chem. A 2018, 6, 15755–15761. [Google Scholar] [CrossRef]
- Wu, L.; Zheng, J.; Wang, L.; Xiong, X.; Shao, Y.; Wang, G.; Wang, J.-H.; Zhong, S.; Wu, M. PPy-Encapsulated SnS2 Nanosheets Stabilized by Defects on a TiO2 Support as a Durable Anode Material for Lithium-Ion Batteries. Angew. Chem. 2019, 131, 821–825. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, Y.; Shao, J.; Holze, R.; Chen, Z.; Yun, Y.; Qu, Q.; Zheng, H. Ultrasmall Fe3O4 Nanodots within N-Doped Carbon Frameworks from MOFs Uniformly Anchored on Carbon Nanowebs for Boosting Li-Ion Storage. J. Mater. Chem. A 2018, 6, 3659–3666. [Google Scholar] [CrossRef]
- Song, Y.; Wang, H.; Yu, W.; Wang, J.; Liu, G.; Li, D.; Wang, T.; Yang, Y.; Dong, X.; Ma, Q. Synergistic Stabilizing Lithium Sulfur Battery via Nanocoating Polypyrrole on Cobalt Sulfide Nanobox. J. Power Sources 2018, 405, 51–60. [Google Scholar] [CrossRef]
- Jiang, H.; Liu, X.-C.; Wu, Y.; Shu, Y.; Gong, X.; Ke, F.-S.; Deng, H. Metal-Organic Frameworks for High Charge-Discharge Rates in Lithium-Sulfur Batteries. Angew. Chem. 2018, 130, 3980–3985. [Google Scholar] [CrossRef]
- Li, Y.; Shi, B.; Liu, W.; Guo, R.; Pei, H.; Ye, D.; Xie, J.; Kong, J. Hollow Polypyrrole@MnO2 Spheres as Nano-Sulfur Hosts for Improved Lithium-Sulfur Batteries. Electrochim. Acta 2018, 260, 912–920. [Google Scholar] [CrossRef]
- Ansari, Y.; Zhang, S.; Wen, B.; Fan, F.; Chiang, Y.-M. Stabilizing Li-S Battery Through Multilayer Encapsulation of Sulfur. Adv. Energy Mater. 2019, 9, 1802213. [Google Scholar] [CrossRef] [Green Version]
- Lu, K.; Zhang, H.; Gao, S.; Ma, H.; Chen, J.; Cheng, Y. Manipulating Polysulfide Conversion with Strongly Coupled Fe3O4 and Nitrogen Doped Carbon for Stable and High Capacity Lithium-Sulfur Batteries. Adv. Funct. Mater. 2019, 29, 1807309. [Google Scholar] [CrossRef]
- Dong, C.; Guo, L.; He, Y.; Shang, L.; Qian, Y.; Xu, L. Ultrafine Co1−xS Nanoparticles Embedded in a Nitrogen-Doped Porous Carbon Hollow Nanosphere Composite as an Anode for Superb Sodium-Ion Batteries and Lithium-Ion Batteries. Nanoscale 2018, 10, 2804–2811. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, K.; Yang, J.; Lee, G.-H.; Shin, J.; Wing-hei Lau, V.; Kang, Y.-M. Bifunctional Conducting Polymer Coated CoP Core-Shell Nanowires on Carbon Paper as a Free-Standing Anode for Sodium Ion Batteries. Adv. Energy Mater. 2018, 8, 1800283. [Google Scholar] [CrossRef]
- Wang, Z.; Ruan, Z.; Liu, Z.; Wang, Y.; Tang, Z.; Li, H.; Zhu, M.; Hung, T.F.; Liu, J.; Shi, Z.; et al. A Flexible Rechargeable Zinc-Ion Wire-Shaped Battery with Shape Memory Function. J. Mater. Chem. A 2018, 6, 8549–8557. [Google Scholar] [CrossRef]
- Zhu, M.; Wang, Z.; Li, H.; Xiong, Y.; Liu, Z.; Tang, Z.; Huang, Y.; Rogach, A.L.; Zhi, C. Light-Permeable, Photoluminescent Microbatteries Embedded in the Color Filter of a Screen. Energy Environ. Sci. 2018, 11, 2414–2422. [Google Scholar] [CrossRef]
- Zeng, W.; Wang, L.; Peng, X.; Liu, T.; Jiang, Y.; Qin, F.; Hu, L.; Chu, P.K.; Huo, K.; Zhou, Y. Enhanced Ion Conductivity in Conducting Polymer Binder for High-Performance Silicon Anodes in Advanced Lithium-Ion Batteries. Adv. Energy Mater. 2018, 8, 1702314. [Google Scholar] [CrossRef]
- Wang, L.; Liu, T.; Peng, X.; Zeng, W.; Jin, Z.; Tian, W.; Gao, B.; Zhou, Y.; Chu, P.K.; Huo, K. Highly Stretchable Conductive Glue for High-Performance Silicon Anodes in Advanced Lithium-Ion Batteries. Adv. Funct. Mater. 2018, 28, 1704858. [Google Scholar] [CrossRef]
- Kwon, Y.H.; Park, J.J.; Housel, L.M.; Minnici, K.; Zhang, G.; Lee, S.R.; Lee, S.W.; Chen, Z.; Noda, S.; Takeuchi, E.S.; et al. Carbon Nanotube Web with Carboxylated Polythiophene “Assist” for High-Performance Battery Electrodes. ACS Nano 2018, 12, 3126–3139. [Google Scholar] [CrossRef]
- Lai, C.-H.; Ashby, D.S.; Lin, T.C.; Lau, J.; Dawson, A.; Tolbert, S.H.; Dunn, B.S. Application of Poly(3-Hexylthiophene-2,5-Diyl) as a Protective Coating for High Rate Cathode Materials. Chem. Mater. 2018, 30, 2589–2599. [Google Scholar] [CrossRef]
- Chae, B.-J.; Park, J.H.; Song, H.J.; Jang, S.H.; Jung, K.; Park, Y.D.; Yim, T. Thiophene-Initiated Polymeric Artificial Cathode-Electrolyte Interface for Ni-Rich Cathode Material. Electrochim. Acta 2018, 290, 465–473. [Google Scholar] [CrossRef]
- Lee, Y.; Yoo, J.-K.; Oh, Y.; Park, H.; Go, W.; Myung, S.-T.; Kim, J. Unexpectedly High Electrochemical Performances of a Monoclinic Na2.4V2 (PO43/Conductive Polymer Composite for Na-Ion Batteries. J. Mater. Chem. A 2018, 6, 17571–17578. [Google Scholar] [CrossRef]
- Xu, D.; Wang, H.; Li, F.; Guan, Z.; Wang, R.; He, B.; Gong, Y.; Hu, X. Conformal Conducting Polymer Shells on V2O5 Nanosheet Arrays as a High-Rate and Stable Zinc-Ion Battery Cathode. Adv. Mater. Interfaces 2019, 6, 1801506. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, J.; Liu, Q.; He, W.; Lai, Z.; Zhang, X.; Yu, M.; Tong, Y.; Lu, X. Extracting Oxygen Anions from ZnMn2O4: Robust Cathode for Flexible All-Solid-State Zn-Ion Batteries. Energy Storage Mater. 2019, 21, 154–161. [Google Scholar] [CrossRef]
- Zhao, Y.; Ma, L.; Zhu, Y.; Qin, P.; Li, H.; Mo, F.; Wang, D.; Liang, G.; Yang, Q.; Liu, W.; et al. Inhibiting Grain Pulverization and Sulfur Dissolution of Bismuth Sulfide by Ionic Liquid Enhanced Poly(3,4-Ethylenedioxythiophene):Poly(Styrenesulfonate) for High-Performance Zinc-Ion Batteries. ACS Nano 2019, 13, 7270–7280. [Google Scholar] [CrossRef] [PubMed]
- Werner, J.G.; Rodríguez-Calero, G.G.; Abruña, H.D.; Wiesner, U. Block Copolymer Derived 3-D Interpenetrating Multifunctional Gyroidal Nanohybrids for Electrical Energy Storage. Energy Environ. Sci. 2018, 11, 1261–1270. [Google Scholar] [CrossRef]
- Xie, J.; Chen, W.; Long, G.; Gao, W.; Xu, Z.J.; Liu, M.; Zhang, Q. Boosting the Performance of Organic Cathodes through Structure Tuning. J. Mater. Chem. A 2018, 6, 12985–12991. [Google Scholar] [CrossRef]
- Otteny, F.; Kolek, M.; Becking, J.; Winter, M.; Bieker, P.; Esser, B. Unlocking Full Discharge Capacities of Poly(Vinylphenothiazine) as Battery Cathode Material by Decreasing Polymer Mobility Through Cross-Linking. Adv. Energy Mater. 2018, 8, 1802151. [Google Scholar] [CrossRef]
- Liu, T.; Tong, C.-J.; Wang, B.; Liu, L.-M.; Zhang, S.; Lin, Z.; Wang, D.; Lu, J. Trifunctional Electrode Additive for High Active Material Content and Volumetric Lithium-Ion Electrode Densities. Adv. Energy Mater. 2019, 9, 1803390. [Google Scholar] [CrossRef]
- Sun, Z.; Li, Z.; Gao, L.; Zhao, X.; Han, D.; Gan, S.; Guo, S.; Niu, L. Grafting Benzenediazonium Tetrafluoroborate onto LiNi\textrmxCo\textrmyMn\textrmzO2 Materials Achieves Subzero-Temperature High-Capacity Lithium-Ion Storage via a Diazonium Soft-Chemistry Method. Adv. Energy Mater. 2019, 9, 1802946. [Google Scholar] [CrossRef]
- Wei, W.; Chang, G.; Xu, Y.; Yang, L. An Indole-Based Conjugated Microporous Polymer: A New and Stable Lithium Storage Anode with High Capacity and Long Life Induced by Cation–π Interactions and a N-Rich Aromatic Structure. J. Mater. Chem. A 2018, 6, 18794–18798. [Google Scholar] [CrossRef]
- Mery, A.; Bernard, P.; Valero, A.; Alper, J.P.; Herlin-Boime, N.; Haon, C.; Duclairoir, F.; Sadki, S. A Polyisoindigo Derivative as Novel N-Type Conductive Binder inside Si@C Nanoparticle Electrodes for Li-Ion Battery Applications. J. Power Sources 2019, 420, 9–14. [Google Scholar] [CrossRef]
- Zhang, P.; Yue, W.; Li, R. Uniform Yolk-Shell Fe3O4@nitrogen-Doped Carbon Composites with Superior Electrochemical Performance for Lithium-Ion Batteries. Electrochim. Acta 2018, 282, 595–601. [Google Scholar] [CrossRef]
- Luo, Z.; Liu, L.; Ning, J.; Lei, K.; Lu, Y.; Li, F.; Chen, J. A Microporous Covalent-Organic Framework with Abundant Accessible Carbonyl Groups for Lithium-Ion Batteries. Angew. Chem. Int. Ed. 2018, 57, 9443–9446. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Lin, G.; Ding, H.; Liao, H.; Wang, C. Impregnation of Sulfur into a 2D Pyrene-Based Covalent Organic Framework for High-Rate Lithium–Sulfur Batteries. J. Mater. Chem. A 2018, 6, 17186–17191. [Google Scholar] [CrossRef]
- Jiang, Q.; Li, Y.; Zhao, X.; Xiong, P.; Yu, X.; Xu, Y.; Chen, L. Inverse-Vulcanization of Vinyl Functionalized Covalent Organic Frameworks as Efficient Cathode Materials for Li–S Batteries. J. Mater. Chem. A 2018, 6, 17977–17981. [Google Scholar] [CrossRef]
- Hwang, J.-Y.; Kim, H.M.; Sun, Y.-K. High Performance Potassium–Sulfur Batteries Based on a Sulfurized Polyacrylonitrile Cathode and Polyacrylic Acid Binder. J. Mater. Chem. A 2018, 6, 14587–14593. [Google Scholar] [CrossRef]
- Patra, B.C.; Das, S.K.; Ghosh, A.; Raj, K.A.; Moitra, P.; Addicoat, M.; Mitra, S.; Bhaumik, A.; Bhattacharya, S.; Pradhan, A. Covalent Organic Framework Based Microspheres as an Anode Material for Rechargeable Sodium Batteries. J. Mater. Chem. A 2018, 6, 16655–16663. [Google Scholar] [CrossRef] [Green Version]
- Gu, T.; Zhou, M.; Huang, B.; Liu, M.; Xiong, X.; Wang, K.; Cheng, S.; Jiang, K. Highly Conjugated Poly(N -Heteroacene) Nanofibers for Reversible Na Storage with Ultra-High Capacity and a Long Cycle Life. J. Mater. Chem. A 2018, 6, 18592–18598. [Google Scholar] [CrossRef]
- Wu, T.; Ding, Z.; Jing, M.; Zou, G.; Hou, H.; Tian, Y.; Jiang, Y.; Hong, W.; Ji, X. Chem-Bonding and Phys-Trapping Se Electrode for Long-Life Rechargeable Batteries. Adv. Funct. Mater. 2019, 29, 1809014. [Google Scholar] [CrossRef]
- Zhang, C.; Qiao, Y.; Xiong, P.; Ma, W.; Bai, P.; Wang, X.; Li, Q.; Zhao, J.; Xu, Y.; Chen, Y.; et al. Conjugated Microporous Polymers with Tunable Electronic Structure for High-Performance Potassium-Ion Batteries. ACS Nano 2019, 13, 745–754. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xu, X.; Niu, C.; Meng, J.; Huang, M.; Liu, X.; Liu, Z.; Mai, L. Earth Abundant Fe/Mn-Based Layered Oxide Interconnected Nanowires for Advanced K-Ion Full Batteries. Nano Lett. 2017, 17, 544–550. [Google Scholar] [CrossRef]
- Han, J.; Niu, Y.; Bao, S.; Yu, Y.-N.; Lu, S.-Y.; Xu, M. Nanocubic KTi2 (PO43 Electrodes for Potassium-Ion Batteries. Chem. Commun. 2016, 52, 11661–11664. [Google Scholar] [CrossRef] [PubMed]
- Vaalma, C.; Giffin, G.A.; Buchholz, D.; Passerini, S. Non-Aqueous K-Ion Battery Based on Layered K0.3MnO2 and Hard Carbon/Carbon Black. J. Electrochem. Soc. 2016, 163, A1295–A1299. [Google Scholar] [CrossRef] [Green Version]
- Bie, X.; Kubota, K.; Hosaka, T.; Chihara, K.; Komaba, S. A Novel K-Ion Battery: Hexacyanoferrate(\textlessspan Style=“font-Variant:Small-Caps;”\textgreaterii\textless/Span\textgreater)/Graphite Cell. J. Mater. Chem. A 2017, 5, 4325–4330. [Google Scholar] [CrossRef]
- Xue, L.; Li, Y.; Gao, H.; Zhou, W.; Lü, X.; Kaveevivitchai, W.; Manthiram, A.; Goodenough, J.B. Low-Cost High-Energy Potassium Cathode. J. Am. Chem. Soc. 2017, 139, 2164–2167. [Google Scholar] [CrossRef]
- Eftekhari, A. Potassium Secondary Cell Based on Prussian Blue Cathode. J. Power Sources 2004, 126, 221–228. [Google Scholar] [CrossRef]
- Wu, X.; Jian, Z.; Li, Z.; Ji, X. Prussian White Analogues as Promising Cathode for Non-Aqueous Potassium-Ion Batteries. Electrochem. Commun. 2017, 77, 54–57. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Li, G.-N.; Liu, F.; Wang, M.; Zhang, Y.; Hu, L.; Dai, C.; Xu, M. Investigation of K3V2(PO43/C Nanocomposites as High-Potential Cathode Materials for Potassium-Ion Batteries. Chem. Commun. 2017, 53, 1805–1808. [Google Scholar] [CrossRef]
- Liu, Y.; Yan, W.; An, X.; Du, X.; Wang, Z.; Fan, H.; Liu, S.; Hao, X.; Guan, G. A Polypyrrole Hollow Nanosphere with Ultra-Thin Wrinkled Shell: Synergistic Trapping of Sulfur in Lithium-Sulfur Batteries with Excellent Elasticity and Buffer Capability. Electrochim. Acta 2018, 271, 67–76. [Google Scholar] [CrossRef]
- Wu, L.; Hu, X.; Qian, J.; Pei, F.; Wu, F.; Mao, R.; Ai, X.; Yang, H.; Cao, Y. Sb–C Nanofibers with Long Cycle Life as an Anode Material for High-Performance Sodium-Ion Batteries. Energy Environ. Sci. 2014, 7, 323–328. [Google Scholar] [CrossRef]
- Zhu, Y.; Han, X.; Xu, Y.; Liu, Y.; Zheng, S.; Xu, K.; Hu, L.; Wang, C. Electrospun Sb/C Fibers for a Stable and Fast Sodium-Ion Battery Anode. ACS Nano 2013, 7, 6378–6386. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Liu, Y.; Lu, Y.; Han, X.; Cheng, F.; Chen, J. Spherical Nano-Sb@C Composite as a High-Rate and Ultra-Stable Anode Material for Sodium-Ion Batteries. Nano Res. 2015, 8, 3384–3393. [Google Scholar] [CrossRef]
- Zhou, X.; Zhong, Y.; Yang, M.; Hu, M.; Wei, J.; Zhou, Z. Sb Nanoparticles Decorated N-Rich Carbon Nanosheets as Anode Materials for Sodium Ion Batteries with Superior Rate Capability and Long Cycling Stability. Chem. Commun. 2014, 50, 12888–12891. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Dai, Z.; Bao, J.; Guo, Y.-G. Wet Milled Synthesis of an Sb/MWCNT Nanocomposite for Improved Sodium Storage. J. Mater. Chem. A 2013, 1, 13727. [Google Scholar] [CrossRef]
- Hu, L.; Zhu, X.; Du, Y.; Li, Y.; Zhou, X.; Bao, J. A Chemically Coupled Antimony/Multilayer Graphene Hybrid as a High-Performance Anode for Sodium-Ion Batteries. Chem. Mater. 2015, 27, 8138–8145. [Google Scholar] [CrossRef]
- Liu, J.; Yu, L.; Wu, C.; Wen, Y.; Yin, K.; Chiang, F.-K.; Hu, R.; Liu, J.; Sun, L.; Gu, L.; et al. New Nanoconfined Galvanic Replacement Synthesis of Hollow Sb@C Yolk–Shell Spheres Constituting a Stable Anode for High-Rate Li/Na-Ion Batteries. Nano Lett. 2017, 17, 2034–2042. [Google Scholar] [CrossRef]
- Song, Y.; Xu, J.-L.; Liu, X.-X. Electrochemical Anchoring of Dual Doping Polypyrrole on Graphene Sheets Partially Exfoliated from Graphite Foil for High-Performance Supercapacitor Electrode. J. Power Sources 2014, 249, 48–58. [Google Scholar] [CrossRef]
- Huang, Y.; Zhu, M.; Pei, Z.; Huang, Y.; Geng, H.; Zhi, C. Extremely Stable Polypyrrole Achieved via Molecular Ordering for Highly Flexible Supercapacitors. ACS Appl. Mater. Interfaces 2016, 8, 2435–2440. [Google Scholar] [CrossRef]
- Choudhury, N.A.; Sampath, S.; Shukla, A.K. Hydrogel-Polymer Electrolytes for Electrochemical Capacitors: An Overview. Energy Environ. Sci. 2009, 2, 55–67. [Google Scholar] [CrossRef] [Green Version]
- Adam, M.; Erdem, T.; Stachowski, G.M.; Soran-Erdem, Z.; Lox, J.F.L.; Bauer, C.; Poppe, J.; Demir, H.V.; Gaponik, N.; Eychmüller, A. Implementation of High-Quality Warm-White Light-Emitting Diodes by a Model-Experimental Feedback Approach Using Quantum Dot–Salt Mixed Crystals. ACS Appl. Mater. Interfaces 2015, 7, 23364–23371. [Google Scholar] [CrossRef]
- Zhang, C.; He, Y.; Mu, P.; Wang, X.; He, Q.; Chen, Y.; Zeng, J.; Wang, F.; Xu, Y.; Jiang, J.-X. Toward High Performance Thiophene-Containing Conjugated Microporous Polymer Anodes for Lithium-Ion Batteries through Structure Design. Adv. Funct. Mater. 2018, 28, 1705432. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, W.; Hu, P.; Huang, C.; Shang, C.; Zhang, C.; Yang, R.; Cui, G. Conjugated Microporous Polymers with Excellent Electrochemical Performance for Lithium and Sodium Storage. J. Mater. Chem. A 2015, 3, 1896–1901. [Google Scholar] [CrossRef]
- Xu, F.; Chen, X.; Tang, Z.; Wu, D.; Fu, R.; Jiang, D. Redox-Active Conjugated Microporous Polymers: A New Organic Platform for Highly Efficient Energy Storage. Chem. Commun. 2014, 50, 4788–4790. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Chen, Z.; Pan, F.; Cui, Y.; Amine, K. High-Performance Anode Materials for Rechargeable Lithium-Ion Batteries. Electrochem. Energy Rev. 2018, 1, 35–53. [Google Scholar] [CrossRef]
- Ryu, K.S.; Lee, S.H.; Koo, B.K.; Lee, J.W.; Kim, K.M.; Park, Y.J. Effects of Co3(PO4)2 Coatings on LiNi0.8Co0.16Al0.04O2 Cathodes during Application of High Current. J. Appl. Electrochem. 2008, 38, 1385–1390. [Google Scholar] [CrossRef]
- Xie, J.; Sendek, A.D.; Cubuk, E.D.; Zhang, X.; Lu, Z.; Gong, Y.; Wu, T.; Shi, F.; Liu, W.; Reed, E.J.; et al. Atomic Layer Deposition of Stable LiAlF4 Lithium Ion Conductive Interfacial Layer for Stable Cathode Cycling. ACS Nano 2017, 11, 7019–7027. [Google Scholar] [CrossRef]
- Ma, X.; Wang, C.; Han, X.; Sun, J. Effect of AlPO4 Coating on the Electrochemical Properties of LiNi0.8Co0.2O2 Cathode Material. J. Alloys Compd. 2008, 453, 352–355. [Google Scholar] [CrossRef]
- Xia, S.; Li, F.; Chen, F.; Guo, H. Preparation of FePO4 by Liquid-Phase Method and Modification on the Surface of LiNi0.80Co0.15Al0.05O2 Cathode Material. J. Alloys Compd. 2018, 731, 428–436. [Google Scholar] [CrossRef]
- Chao, D.; Zhu, C.R.; Song, M.; Liang, P.; Zhang, X.; Tiep, N.H.; Zhao, H.; Wang, J.; Wang, R.; Zhang, H.; et al. A High-Rate and Stable Quasi-Solid-State Zinc-Ion Battery with Novel 2D Layered Zinc Orthovanadate Array. Adv. Mater. 2018, 30, 1803181. [Google Scholar] [CrossRef]
- Alfaruqi, M.H.; Gim, J.; Kim, S.; Song, J.; Pham, D.T.; Jo, J.; Xiu, Z.; Mathew, V.; Kim, J. A Layered δ-MnO2 Nanoflake Cathode with High Zinc-Storage Capacities for Eco-Friendly Battery Applications. Electrochem. Commun. 2015, 60, 121–125. [Google Scholar] [CrossRef]
- Jiang, B.; Xu, C.; Wu, C.; Dong, L.; Li, J.; Kang, F. Manganese Sesquioxide as Cathode Material for Multivalent Zinc Ion Battery with High Capacity and Long Cycle Life. Electrochim. Acta 2017, 229, 422–428. [Google Scholar] [CrossRef]
- Alfaruqi, M.H.; Mathew, V.; Song, J.; Kim, S.; Islam, S.; Pham, D.T.; Jo, J.; Kim, S.; Baboo, J.P.; Xiu, Z.; et al. Electrochemical Zinc Intercalation in Lithium Vanadium Oxide: A High-Capacity Zinc-Ion Battery Cathode. Chem. Mater. 2017, 29, 1684–1694. [Google Scholar] [CrossRef]
- Lu, K.; Song, B.; Zhang, J.; Ma, H. A Rechargeable Na-Zn Hybrid Aqueous Battery Fabricated with Nickel Hexacyanoferrate and Nanostructured Zinc. J. Power Sources 2016, 321, 257–263. [Google Scholar] [CrossRef]
- Guo, X.; Fang, G.; Zhang, W.; Zhou, J.; Shan, L.; Wang, L.; Wang, C.; Lin, T.; Tang, Y.; Liang, S. Mechanistic Insights of Zn2+ Storage in Sodium Vanadates. Adv. Energy Mater. 2018, 8, 1801819. [Google Scholar] [CrossRef]
- Zhang, N.; Cheng, F.; Liu, Y.; Zhao, Q.; Lei, K.; Chen, C.; Liu, X.; Chen, J. Cation-Deficient Spinel ZnMn2O4 Cathode in Zn(CF3SO32 Electrolyte for Rechargeable Aqueous Zn-Ion Battery. J. Am. Chem. Soc. 2016, 138, 12894–12901. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, F.; Wang, L.; Li, M.; Wang, Y.; Chen, B.; Zhu, Y.; Fu, L.; Zha, L.; Zhang, L.; et al. An Aqueous Rechargeable Zn//Co3O4 Battery with High Energy Density and Good Cycling Behavior. Adv. Mater. 2016, 28, 4904–4911. [Google Scholar] [CrossRef]
- Cho, D.; Yashiro, H.; Sun, Y.-K.; Myung, S.-T. Electrochemical Properties of Polyaniline-Coated Li-Rich Nickel Manganese Oxide and Role of Polyaniline Coating Layer. J. Electrochem. Soc. 2014, 161, A142–A148. [Google Scholar] [CrossRef]
- Cho, W.; Kim, S.-M.; Song, J.H.; Yim, T.; Woo, S.-G.; Lee, K.-W.; Kim, J.-S.; Kim, Y.-J. Improved Electrochemical and Thermal Properties of Nickel Rich LiNi0.6Co0.2Mn0.2O2 Cathode Materials by SiO2 Coating. J. Power Sources 2015, 282, 45–50. [Google Scholar] [CrossRef]
- Aurbach, D.; Srur-Lavi, O.; Ghanty, C.; Dixit, M.; Haik, O.; Talianker, M.; Grinblat, Y.; Leifer, N.; Lavi, R.; Major, D.T.; et al. Studies of Aluminum-Doped LiNi0.5Co0.2Mn0.3O2: Electrochemical Behavior, Aging, Structural Transformations, and Thermal Characteristics. J. Electrochem. Soc. 2015, 162, A1014–A1027. [Google Scholar] [CrossRef]
- Zhou, F.; Zhao, X.; Lu, Z.; Jiang, J.; Dahn, J.R. The Effect of Al Substitution on the Reactivity of Delithiated LiNi1/3Mn1/3Co(1/3−z)AlzO2 with Non-Aqueous Electrolyte. Electrochem. Commun. 2008, 10, 1168–1171. [Google Scholar] [CrossRef]
- Kim, K.J.; Jo, Y.N.; Lee, W.J.; Subburaj, T.; Prasanna, K.; Lee, C.W. Effects of Inorganic Salts on the Morphological, Structural, and Electrochemical Properties of Prepared Nickel-Rich Li[Ni0.6Co0.2Mn0.2]O2. J. Power Sources 2014, 268, 349–355. [Google Scholar] [CrossRef]
- Madec, L.; Xia, J.; Petibon, R.; Nelson, K.J.; Sun, J.-P.; Hill, I.G.; Dahn, J.R. Effect of Sulfate Electrolyte Additives on LiNi1/3Mn 1/3Co1/3O2/Graphite Pouch Cell Lifetime: Correlation between XPS Surface Studies and Electrochemical Test Results. J. Phys. Chem. C 2014, 118, 29608–29622. [Google Scholar] [CrossRef]
- Madec, L.; Ma, L.; Nelson, K.J.; Petibon, R.; Sun, J.-P.; Hill, I.G.; Dahn, J.R. The Effects of a Ternary Electrolyte Additive System on the Electrode/Electrolyte Interfaces in High Voltage Li-Ion Cells. J. Electrochem. Soc. 2016, 163, A1001–A1009. [Google Scholar] [CrossRef]
- Stalder, R.; Mei, J.; Graham, K.R.; Estrada, L.A.; Reynolds, J.R. Isoindigo, a Versatile Electron-Deficient Unit For High-Performance Organic Electronics. Chem. Mater. 2014, 26, 664–678. [Google Scholar] [CrossRef]
- Stalder, R.; Mei, J.; Subbiah, J.; Grand, C.; Estrada, L.A.; So, F.; Reynolds, J.R. N-Type Conjugated Polyisoindigos. Macromolecules 2011, 44, 6303–6310. [Google Scholar] [CrossRef]
- Grenier, F.; Berrouard, P.; Pouliot, J.-R.; Tseng, H.-R.; Heeger, A.J.; Leclerc, M. Synthesis of New N-Type Isoindigo Copolymers. Polym. Chem. 2013, 4, 1836. [Google Scholar] [CrossRef]
- Kulkarni, A.; Siahrostami, S.; Patel, A.; Nørskov, J.K. Understanding Catalytic Activity Trends in the Oxygen Reduction Reaction. Chem. Rev. 2018, 118, 2302–2312. [Google Scholar] [CrossRef]
- Wang, J.; Liu, W.; Luo, G.; Li, Z.; Zhao, C.; Zhang, H.; Zhu, M.; Xu, Q.; Wang, X.; Zhao, C.; et al. Synergistic Effect of Well-Defined Dual Sites Boosting the Oxygen Reduction Reaction. Energy Environ. Sci. 2018, 11, 3375–3379. [Google Scholar] [CrossRef]
- Martinez, U.; Komini Babu, S.; Holby, E.F.; Chung, H.T.; Yin, X.; Zelenay, P. Progress in the Development of Fe-Based PGM-Free Electrocatalysts for the Oxygen Reduction Reaction. Adv. Mater. 2019, 31, 1806545. [Google Scholar] [CrossRef]
- Singh, S.K.; Takeyasu, K.; Nakamura, J. Active Sites and Mechanism of Oxygen Reduction Reaction Electrocatalysis on Nitrogen-Doped Carbon Materials. Adv. Mater. 2019, 31, 1804297. [Google Scholar] [CrossRef]
- Gong, L.; Yang, Z.; Li, K.; Xing, W.; Liu, C.; Ge, J. Recent Development of Methanol Electrooxidation Catalysts for Direct Methanol Fuel Cell. J. Energy Chem. 2018, 27, 1618–1628. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, H.; Yang, J. A Selective Electrocatalyst–Based Direct Methanol Fuel Cell Operated at High Concentrations of Methanol. Sci. Adv. 2017, 3, e1700580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, F.; Zhang, Y.; Song, P.; Wang, J.; Yan, B.; Sun, Q.; Li, L.; Zhu, X.; Du, Y. Shape-Control of One-Dimensional PtNi Nanostructures as Efficient Electrocatalysts for Alcohol Electrooxidation. Nanoscale 2019, 11, 4831–4836. [Google Scholar] [CrossRef]
- Liu, S.; Amiinu, I.S.; Liu, X.; Zhang, J.; Bao, M.; Meng, T.; Mu, S. Carbon Nanotubes Intercalated Co/N-Doped Porous Carbon Nanosheets as Efficient Electrocatalyst for Oxygen Reduction Reaction and Zinc–Air Batteries. Chem. Eng. J. 2018, 342, 163–170. [Google Scholar] [CrossRef]
- Lin, Z.; Qiao, X. Coral-like Co3O4 Decorated N-Doped Carbon Particles as Active Materials for Oxygen Reduction Reaction and Supercapacitor. Sci. Rep. 2018, 8, 1802. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Qiao, Z.; Hwang, S.; Liu, Z.; Zhang, H.; Su, D.; Xu, H.; Wu, G.; Wang, G. Mn- and N- Doped Carbon as Promising Catalysts for Oxygen Reduction Reaction: Theoretical Prediction and Experimental Validation. Appl. Catal. B Environ. 2019, 243, 195–203. [Google Scholar] [CrossRef]
- Deng, Z.; Yi, Q.; Li, G.; Chen, Y.; Yang, X.; Nie, H. NiCo-Doped C-N Nano-Composites for Cathodic Catalysts of Zn-Air Batteries in Neutral Media. Electrochim. Acta 2018, 279, 1–9. [Google Scholar] [CrossRef]
- Khalid, M.; Honorato, A.M.B.; Varela, H.; Dai, L. Multifunctional Electrocatalysts Derived from Conducting Polymer and Metal Organic Framework Complexes. Nano Energy 2018, 45, 127–135. [Google Scholar] [CrossRef]
- Zhao, C.; Jin, Y.; Du, X.; Du, W. In Situ Prepared Amorphous FeCoO-Polyaniline/Multiwalled Carbon Nanotube Nanohybrids as Efficient Oxygen Evolution Catalysts for Rechargeable Zn-Air Batteries. J. Power Sources 2018, 399, 337–342. [Google Scholar] [CrossRef]
- Hu, B.-C.; Wu, Z.-Y.; Chu, S.-Q.; Zhu, H.-W.; Liang, H.-W.; Zhang, J.; Yu, S.-H. SiO2-Protected Shell Mediated Templating Synthesis of Fe–N-Doped Carbon Nanofibers and Their Enhanced Oxygen Reduction Reaction Performance. Energy Environ. Sci. 2018, 11, 2208–2215. [Google Scholar] [CrossRef]
- Huang, Z.; Pan, H.; Yang, W.; Zhou, H.; Gao, N.; Fu, C.; Li, S.; Li, H.; Kuang, Y. In Situ Self-Template Synthesis of Fe–N-Doped Double-Shelled Hollow Carbon Microspheres for Oxygen Reduction Reaction. ACS Nano 2018, 12, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Mashkani, F.A.; Gharibi, H.; Amani, M.; Zhiani, M.; Morsali, A. A Novel Electrocatalyst Based on Fe-ZIF-PPY Nanocomposite for Oxygen Reduction Reaction in Air-Breathing Direct-Ethanol Fuel Cell. Appl. Surf. Sci. 2022, 584, 152529. [Google Scholar] [CrossRef]
- Yuan, K.; Sfaelou, S.; Qiu, M.; Lützenkirchen-Hecht, D.; Zhuang, X.; Chen, Y.; Yuan, C.; Feng, X.; Scherf, U. Synergetic Contribution of Boron and Fe–N\textrm x Species in Porous Carbons toward Efficient Electrocatalysts for Oxygen Reduction Reaction. ACS Energy Lett. 2018, 3, 252–260. [Google Scholar] [CrossRef]
- Shehnaz; Wu, D.; Guo, Y.; Song, X.; Yang, Y.; Mao, Q.; Ren, S.; Hao, C. Synergistic Effect of Heat Treatments and KOH Activation Enhances the Electrochemistry Performance of Polypyrrole Nanochains (PPy-NCs). Electrochim. Acta 2018, 266, 151–160. [Google Scholar] [CrossRef]
- Bhange, S.N.; Unni, S.M.; Kurungot, S. Graphene with Fe and S Coordinated Active Centers: An Active Competitor for the Fe–N–C Active Center for Oxygen Reduction Reaction in Acidic and Basic PH Conditions. ACS Appl. Energy Mater. 2018, 1, 368–376. [Google Scholar] [CrossRef]
- Kaviani, S.; Mohammadi Ghaleni, M.; Tavakoli, E.; Nejati, S. Electroactive and Conformal Coatings of Oxidative Chemical Vapor Deposition Polymers for Oxygen Electroreduction. ACS Appl. Polym. Mater. 2019, 1, 552–560. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, K.; Xu, H.; Du, Y.; Goh, M.C. Anchoring Gold Nanoparticles on Poly(3,4-Ethylenedioxythiophene) (PEDOT) Nanonet as Three-Dimensional Electrocatalysts toward Ethanol and 2-Propanol Oxidation. J. Colloid Interface Sci. 2019, 541, 258–268. [Google Scholar] [CrossRef]
- Zhang, R.-C.; Sun, D.; Zhang, R.; Lin, W.-F.; Macias-Montero, M.; Patel, J.; Askari, S.; McDonald, C.; Mariotti, D.; Maguire, P. Gold Nanoparticle-Polymer Nanocomposites Synthesized by Room Temperature Atmospheric Pressure Plasma and Their Potential for Fuel Cell Electrocatalytic Application. Sci. Rep. 2017, 7, 46682. [Google Scholar] [CrossRef] [Green Version]
- Miglbauer, E.; Wójcik, P.J.; Głowacki, E.D. Single-Compartment Hydrogen Peroxide Fuel Cells with Poly(3,4-Ethylenedioxythiophene) Cathodes. Chem. Commun. 2018, 54, 11873–11876. [Google Scholar] [CrossRef] [Green Version]
- Fukuzumi, S.; Yamada, Y.; Karlin, K.D. Hydrogen Peroxide as a Sustainable Energy Carrier: Electrocatalytic Production of Hydrogen Peroxide and the Fuel Cell. Electrochim. Acta 2012, 82, 493–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamada, Y.; Fukunishi, Y.; Yamazaki, S.; Fukuzumi, S. Hydrogen Peroxide as Sustainable Fuel: Electrocatalysts for Production with a Solar Cell and Decomposition with a Fuel Cell. Chem. Commun. 2010, 46, 7334. [Google Scholar] [CrossRef] [PubMed]
- Mousavi Shaegh, S.A.; Nguyen, N.-T.; Mousavi Ehteshami, S.M.; Chan, S.H. A Membraneless Hydrogen Peroxide Fuel Cell Using Prussian Blue as Cathode Material. Energy Environ. Sci. 2012, 5, 8225. [Google Scholar] [CrossRef] [Green Version]
- Yamada, Y.; Yoneda, M.; Fukuzumi, S. High Power Density of One-Compartment H2O2 Fuel Cells Using Pyrazine-Bridged Fe[M(CN)4] (M = Pt 2+ and Pd 2+) Complexes as the Cathode. Inorg. Chem. 2014, 53, 1272–1274. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Chen, W.; Xiao, H.; Gong, Y.; Li, Z.; Zheng, L.; Zheng, X.; Yan, W.; Cheong, W.; Shen, R.; et al. Fe Isolated Single Atoms on S, N Codoped Carbon by Copolymer Pyrolysis Strategy for Highly Efficient Oxygen Reduction Reaction. Adv. Mater. 2018, 30, 1800588. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, D.; Wang, C.; Guo, J.; Yan, F. Rational Design of Fe1−x\textrmxS/Fe3O4/Nitrogen and Sulfur-Doped Porous Carbon with Enhanced Oxygen Reduction Reaction Catalytic Activity. Adv. Mater. Interfaces 2018, 5, 1701641. [Google Scholar] [CrossRef]
- Li, J.; Chen, S.; Li, W.; Wu, R.; Ibraheem, S.; Li, J.; Ding, W.; Li, L.; Wei, Z. A Eutectic Salt-Assisted Semi-Closed Pyrolysis Route to Fabricate High-Density Active-Site Hierarchically Porous Fe/N/C Catalysts for the Oxygen Reduction Reaction. J. Mater. Chem. A 2018, 6, 15504–15509. [Google Scholar] [CrossRef]
- Liu, X.; Li, W.; Zou, S. Cobalt and Nitrogen-Codoped Ordered Mesoporous Carbon as Highly Efficient Bifunctional Catalysts for Oxygen Reduction and Hydrogen Evolution Reactions. J. Mater. Chem. A 2018, 6, 17067–17074. [Google Scholar] [CrossRef]
- Wu, R.; Song, Y.; Huang, X.; Chen, S.; Ibraheem, S.; Deng, J.; Li, J.; Qi, X.; Wei, Z. High-Density Active Sites Porous Fe/N/C Electrocatalyst Boosting the Performance of Proton Exchange Membrane Fuel Cells. J. Power Sources 2018, 401, 287–295. [Google Scholar] [CrossRef]
- Tian, H.; Wang, N.; Xu, F.; Zhang, P.; Hou, D.; Mai, Y.; Feng, X. Nitrogen-Doped Carbon Nanosheets and Nanoflowers with Holey Mesopores for Efficient Oxygen Reduction Catalysis. J. Mater. Chem. A 2018, 6, 10354–10360. [Google Scholar] [CrossRef]
- Roy, S.; Bandyopadhyay, A.; Das, M.; Ray, P.P.; Pati, S.K.; Maji, T.K. Redox-Active and Semi-Conducting Donor–Acceptor Conjugated Microporous Polymers as Metal-Free ORR Catalysts. J. Mater. Chem. A 2018, 6, 5587–5591. [Google Scholar] [CrossRef]
- Xu, Q.; Tang, Y.; Zhang, X.; Oshima, Y.; Chen, Q.; Jiang, D. Template Conversion of Covalent Organic Frameworks into 2D Conducting Nanocarbons for Catalyzing Oxygen Reduction Reaction. Adv. Mater. 2018, 30, 1706330. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Zhou, T.; Xing, L.; Xu, K.; Tong, Y.; Xie, H.; Zhang, L.; Yan, W.; Chu, W.; Wu, C.; et al. Atomically Dispersed Iron-Nitrogen Species as Electrocatalysts for Bifunctional Oxygen Evolution and Reduction Reactions. Angew. Chem. Int. Ed. 2017, 56, 610–614. [Google Scholar] [CrossRef] [PubMed]
- Guan, B.Y.; Yu, L.; Lou, X.W. (David) Formation of Asymmetric Bowl-Like Mesoporous Particles via Emulsion-Induced Interface Anisotropic Assembly. J. Am. Chem. Soc. 2016, 138, 11306–11311. [Google Scholar] [CrossRef]
- Yuan, K.; Zhuang, X.; Fu, H.; Brunklaus, G.; Forster, M.; Chen, Y.; Feng, X.; Scherf, U. Two-Dimensional Core-Shelled Porous Hybrids as Highly Efficient Catalysts for the Oxygen Reduction Reaction. Angew. Chem. Int. Ed. 2016, 55, 6858–6863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Z.-Y.; Xu, X.-X.; Hu, B.-C.; Liang, H.-W.; Lin, Y.; Chen, L.-F.; Yu, S.-H. Iron Carbide Nanoparticles Encapsulated in Mesoporous Fe-N-Doped Carbon Nanofibers for Efficient Electrocatalysis. Angew. Chem. Int. Ed. 2015, 54, 8179–8183. [Google Scholar] [CrossRef]
- Xiang, Z.; Xue, Y.; Cao, D.; Huang, L.; Chen, J.-F.; Dai, L. Highly Efficient Electrocatalysts for Oxygen Reduction Based on 2D Covalent Organic Polymers Complexed with Non-Precious Metals. Angew. Chem. Int. Ed. 2014, 53, 2433–2437. [Google Scholar] [CrossRef]
- Xia, B.Y.; Yan, Y.; Li, N.; Wu, H.B.; Lou, X.W.; Wang, X. A Metal–Organic Framework-Derived Bifunctional Oxygen Electrocatalyst. Nat. Energy 2016, 1, 15006. [Google Scholar] [CrossRef]
# | Electrodes (Anode//Cathode) | Electrolyte; Potential Windows | Capacitance or Capacity | Current Density | Power Density | Energy Density | Cycling Rate (%) | Ref |
---|---|---|---|---|---|---|---|---|
01 | Nanofibers-PANI/ rGO | KOH 6 M; −1.0 a 0.0 V (vs. SCE) | 445.7 F g−1, 0.5 A g−1 | ~68%, 20 A g−1 | - | - | - | [208] |
02 | Nanofibers-PANI/ rGO//NiO/rGO | KOH 6 M; 1.6 V | 270.1 F g−1, 1 A g−1 | 54.2%, 20 A g−1 | 13,794 W kg−1 | 81 Wh kg−1 | ~100%, 100,000 cycles, 5 A g−1 | [208] |
03 | FrGO/ Nanofibers-PANI | H2SO4 1 M; 0.4 V | 692 F g−1/629.7 mF cm−2, 1 A g−1 | 53.5%, 40 A g−1 | - | - | 83.3%, 1000 cycles, 10 A g−1 | [209] |
04 | FrGO/ Nanofibers-PANI // FrGO/ Nanofibers-PANI | Gel H2SO4/PVA; 0.4 V | 324.4 F g−1, 1 A g−1 | - | 300 W kg−1 | 16.3 Wh kg−1 | - | [209] |
05 | CF@rGO/ Nanofibers-PANI // CF@rGO/ Nanofibers-PANI | H2SO4 1 M; 0.8 V | 868.5 F g−1 a 1 A g−1 | ~95.4%, 5 A g−1 | - | - | 94.1%, 2000 cycles, 10 A g−1 | [210] |
06 | SS/rGO/ Nanofibers-PANI | H2SO4 1 M; 0 a 0.8 V (vs. SCE) | 603.7 F g−1 a 1.1 A g−1/4969.7 mF cm−2 (8.9 mA cm−2) | 80%, 53.6 mA cm2 | - | - | - | [211] |
07 | SS/rGO/ Nanofibers-PANI//SS/rGO/ Nanofibers-PANI | Gel H2SO4/PVA; 0.8 V | 1506.6 mF cm−2, 6 mA cm−2 | 54%, 30 mA cm−2 | - | - | 92%, 5000 cycles, 50 mA cm−2 | [211] |
08 | Gel rGO@PANI 3D porous | H2SO4 1 M; 0.0 a 0.8 V (vs. SCE) | 824 F g−1, 2.22 A g−1/5830 mF cm−2 a 15.72 mA cm−2 | 98%, 53.33 A g−1 | - | - | 73%, 5000 cycles | [212] |
09 | Hydrogels PANI/rGO | H2SO4 1 M: 0.8 V | ~300 F g−1, 0.42 A g−1 | ~53%, 4.20 A g−1 | - | - | 93%, 5000 cycles, 4.2 A g−1 | [213] |
10 | Hydrogels PANI/rGO// Hydrogels PANI/rGO | Gel H2SO4/PVA; 1.0 V | 112 F g−1, 0.08 A g−1 | ~54%, 1.26 A g−1 | 30.77 mW cm−3 | 8.80 mWh cm−3 (max) | 86%, 17,000 cycles, 1.26 A g−1 | [213] |
11 | Hydrogels NG/PANI | H2SO4 2 M; −0.2–0.6 V (vs. Ag/AgCl) | 514.3 F g−1, 1 A g−1 | ~80%, 20 A g−1 | - | - | 87.1%, 1000 cycles, 10 A g−1 | [214] |
12 | Hydrogels NG/PANI//Hydrogels NG/PANI | Gel H2SO4/PVA; 1.0 V | 584.7 mF cm−2, 1 mA cm−2 | 62.9%, 20 mA cm−2 | 500–9999 µW cm−2 | 81.28–51.08 µWh cm−2 | - | [214] |
13 | Gels GO/PANI//Gels GO/PANI | Gel H2SO4/PVA; 0.8 V | ~44 mF cm−2, 0.1 mA cm−2 | ~34%, 2.5 mA cm−2 | - | - | - | [215] |
14 | Nano-arrangements of PANI/GO-H2SO4 | H2SO4 1 M; −0.2–0.8 V (vs. SCE) | 727 F g−1, 1 A g−1 | ~60%, 20 A g−1 | - | - | - | [216] |
15 | Nano-arrangements of PANI/GO-H2SO4//Nano-rods of PANI/GO-H2SO4 | H2SO4 1 M; 0.8 V | 447 F g−1, 0.5 A g−1 | ~54%, 20 A g−1 | 0.4–15.3 kW kg−1 | 40–19.8 Wh kg−1 | 95.7%, a 5000 cycles, 100 mV s−1 | [216] |
16 | rGO/ nanoparticles- PANI//rGO/ nanoparticles- PANI | Gel H2SO4/PVA; −0.2–0.8 V (vs. SCE) | 850 mF cm−2/424.4 F g−1, 0.5 A g−1 | ~35%, 4 A g−1 | - | - | ~80%, 2000 cycles, a 7 mA cm−2 | [217] |
17 | G/nanorods- PANI/nanofibers- PANI | H2SO4 1 M; 0.8 V | 578 F g−1, 1 A g−1 | 72.7%, 10 A g−1 | - | - | - | [218] |
18 | Nano-sheets-G//G/nano-rods- PANI/nanofibers PANI | H2SO4 1 M; 1.0 V | 135 F g−1, 1 A g−1 | 73%, 10 A g−1 | 1–10 kW kg−1 | 18.8–13.6 Wh kg−1 | 93%, 10,000 cycles, 2 A g−1 | [218] |
19 | Nanorods- PANI/G | H3PO4 1 M; 0.8 V | 729 mF cm−2, 0.1 mA cm−2 | ~73%, 1 mA cm−2 | - | - | - | [219] |
20 | Nanorods- PANI/G//Nanorods- PANI/G | Gel H3PO4/PVA; 0.8 V | 230 mF cm−2, 0.1 mA cm−2 | ~71%, 1 mA cm−2 | - | - | 86.9%, 8000 cycles, 0.8 mA cm−2 | [219] |
21 | Nanorods- PANI/G//Nanorods- PANI/G | Gel EMITFSI/PVDF-HFP; 3.0 V | 119 mF cm−2, 0.6 mA cm−2 | ~40%, 10 mA cm−2 | 0.9–15 mW cm−2 | 37.2–14.1 µWh cm−2 | - | [219] |
22 | Nanofibers-PVA/G/nanowires-PANI/G//Nanofiber-PVA/G/nanowires-PANI/G | H2SO4 1 M; 0.8 V (vs. anode) | 90.0 F g−1/310 mF cm−2, 3 mA | ~73.2%, 30 A g−1 | ~0.8–5.8 qaµW cm−2 | ~26–19 µWh cm−2 | 75.6%, 88,000 cycles | [220] |
23 | G@PANI// G@PANI | EMIMBF4 | 176 F g−1, 0.5 A g−1 | 80.7%, 10 A g−1 | 451–10,000 W kg−1 | 38–75 Wh kg−1 | 80.3%, 10,000 cycles, 10 A g−1 | [221] |
24 | G@PANI// G@PANI | Polymer gel EMIMBF4/PVDF-HEP | 180 F g−1, 1 A g−1 | 86%, 10 A g−1 | - | - | 85%, 10,000 cycles, 10 A g−1 | [221] |
25 | Fibers of cotton/G/ Nanowires-PANI | H2SO4 1 M; −0.2–0.8 V (vs. SCE) | 246 mF cm−2, 5 mV s−1 | ~24%, 100 mV s−1 | - | - | 98%, 3800 cycles, 1 A g−1 | [222] |
26 | Fibers of cotton/G/ Nanowires-PANI // Fibers of cotton/G/ Nanowires-PANI | Gel H3PO4/PVA; −0.2–0.8 V (vs. SCE) | 70.1 mF cm−2, 5 mV s−1 (0.22 A g−1) | ~36%, 0.30 A g−1 | 840.9 µW cm−2 | 9.74 µWh cm−2 (max) | - | [222] |
27 | 3D PC-G/PANI | H2SO4 1 M; 0.8 V | 1198 F g−1, 2 A g−1 | 83.5%, 30 A g−1 | - | - | - | [223] |
28 | 3D PC-G/PANI//3D PC-G/PANI | H2SO4 1 M; 1.0 V | 220 F g−1, 2 A g−1 | 72%, 20 A g−1 | 15 kW kg−1 max. | 61 Wh kg−1 max. | 94%, 10,000 cycles, 5 A g−1 | [223] |
29 | Nano-arrangements of PANI/G | H2SO4 1 M; −0.2–0.8 V (vs. SCE) | 912 F g−1, 1 A g−1 | 86.4%, 20 A g−1 | - | - | 89.5%, 10,000 cycles, 10 A g−1 | [224] |
30 | Nano-arrangements of PANI/G | Gel H2SO4/PVA; 0.8 V | 120 F g−1, 1 A g−1 | - | 850–3200 W kg−1 | 13.5–30 Wh kg−1 | 90%, 5000 cycles, 10 A g−1 | [224] |
31 | Fibers-CNTs/3D porous-CNTs@ nano-granos-PANI// Fibers-CNTs/3D porous-CNTs@ nanoparticles-PANI | Gel H3PO4/PVA; 0.8 V | 67.31 mF cm−2, 0.5 mA cm−2 | ~89.2%, 4.0 mA cm−2 | - | - | 90%, 5000 cycles, 1 mA cm−2 | [225] |
32 | CNF@CNT@PANI | H2SO4 1 M; 0.8 V | 1119 F g−1, 1 A g−1 | ~71%, 5 A g−1 | - | - | ~98%, 2000 cycles, 10 A g−1 | [226] |
33 | SWCNTs/PANI | H2SO4/PVA; 1.0 V | 15.8 mF cm−2, 0.044 mA cm−2 | 39.3%, 0.44 mA cm−2 | - | - | ~82%, 2400 cycles, 0.13 mA cm−2 | [227] |
34 | Nano CNT/G@PANI | Gel H3PO4/PVA; 0.8 V | 182.6 F g−1, 0.2 A g−1 | 13%, 8 A g−1 | - | - | 77.3%, 5000 cycles, 1 A g−1, 800% | [228] |
35 | G/nanorods -PANI/CNTs | H2SO4 1 M; 0.7 V | 638 F g−1, 0.5 A g−1 | 88.2%, 10.0 A g−1 | - | - | 93%, 2000 cycles, 0.5 A g−1 | [229] |
36 | fibers-CF@CNF@ Nano-hilos-PANI | Gel H2SO4/PVA; 0,8 V | 234 mF cm−2, 0.1 mA cm−2/159.67 F g−1, 5 mV s−1 | ~68.4%, 1 mA cm−2 | 0.2–2 W m−2 | 3.6–5.2 µWh cm−2 | 90%, 8000 cycles | [230] |
37 | 3D Nanorods PANI/C mesoporous | H2SO4 1 M; −0.2–0.8 V (vs. SCE) | 715 F g−1, 1 A g−1 | 60%, 10 A g−1 | 250–5000 W kg−1 | 24.64–13.79 Wh kg−1 | 93.6%, 10,000 cycles, 100 mV s−1 | [231] |
# | Electrodes (Anode//Cathode) | Electrolyte; Potential Windows | Capacitance or Capacity | Current Density | Power Density | Energy Density | Cycling Rate (%) | Ref |
---|---|---|---|---|---|---|---|---|
01 | 3D coaxial Fe3O4/PANI | H2SO4 1.0 M; 0–0.8 V (vs. SCE) | 620 F g−1, 1.0 A g−1 | 42.3%, 10 A g−1 | ~400–1300 W kg−1 | 52.4–22.1 Wh kg−1 | 85%, 2000 cycles, 2.0 A g−1 | [232] |
02 | Hydrogels 3D α-Fe2O3/PANI | Na2SO4 1.0 M; −1.0–0.0 V (SCE) | 473.6 F g−1/236.8 mF cm−2, 1 A g−1 | ~52%, 250 mV s−1 | - | - | 98.2%, 5000 cycles, 100 mV s−1 | [233] |
03 | Hydrogels 3D α-Fe2O3/PANI//de PANI Gels | LiCl/PVA Gels; 1.8 V | 202.7 C g−1, 1 A g−1 | 82.6%, 10 A g−1 | 67.1 mW cm−3 | 0.31 mWh cm−3 máx, | 80.3%, 5000 cycles, 10 A g−1 | [233] |
04 | PANI 3D-porous@ Nanosheet- MnO2 | Na2SO4 1.0 M; 0.0–0.8 V (SCE) | 467.9 F g−1/117.7 F cm−3/3883.5 mF cm−2, 1 A g−1 | 48.7%, 150 mV s−1 | - | - | 98.5%, 10,000 cycles, 50 mV s−1 | [234] |
05 | Nanofibers of MnFe2O4/PANI | H2SO4 1.0 M; −0.2–1.0 V (vs. SCE) | 329 F g−1, 1 A g−1 | ~83.3%, 10 A g−1 | - | - | - | [235] |
06 | Nanofibers of MnFe2O4/PANI//Nanofibers of MnFe2O4/PANI | H2SO4 1.0 M; 1.2 V | 269 F g−1, 0.5 A g−1 | ~77%, 10 A g−1 | 298.6–5419.0 W kg−1 | 13.3–8.4 Wh kg−1 | 97%, 10,000 cycles, 5 A g−1 | [235] |
07 | Microspheres MoS2/PANI | H2SO4 1.0 M; −0.2–0.6 V (vs. Ag/AgCl) | 360 F g−1, 0.8 A g −1 | ~72%, 20 A g−1 | 32–23.1 W kg−1 | 8320–320 Wh kg−1 | 85.4%, 8000 cycles, 10 A g−1 | [236] |
08 | Microspheres MoS2/PANI//Microspheres MoS2/PANI | H2SO4 1.0 M; −0.2–0.6 V (vs. Ag/AgCl) | 231 F g−1, 0.2 A g−1 | ~10.8%, 2 A g−1 | - | - | 80.4%, 5000 cycles, 1 A g−1 | [236] |
09 | 2D Nanosheet MXeno Ti3C2Tx/ PANI | H2SO4 3 M; −0.7–0.2 V (vs. Ag/AgCl) | ~412 F g−1/1353 F cm−3, 1 A g−1 | ~64%, 50 A g−1 | - | - | 98.3%, 10,000 cycles, 20 mV s−1 | [237] |
10 | 2D Nanosheet MXeno Ti3C2Tx/ PANI// 2D Nanosheet MXeno Ti3C2Tx/ PANI | H2SO4 3 M; −0.7–0.2 V (vs. Ag/AgCl) | 130 F g−1/~575 F cm−3, 2 mV s−1 | ~38.5%, 10 V s−1 | ~575 W L−1 | 79.8 Wh L−1 | - | [237] |
11 | Nanocomposite of rGO/Cu2O-CuO/ PANI // Nanocomposite of rGO/Cu2O-CuO/ PANI | H2SO4 0.4 M; 1.2 V | 684.93 F g−1, 0.25 A g−1 | ~26%, 10 A g−1 | 1315,76 W kg−1 | 136.98 Wh kg−1 máx, | 84.3%, 5000 cycles, 700 mV s−1 | [238] |
12 | Nanofiber-PANI/ MnO2-rGO/ nanofibers-PANI // Nano-fibers-PANI/ MnO2-rGO/ nanofibers-PANI | Gels KOH/PVA; 1.0 V | 148 F g−1, 1 A g−1 | 73.6%, 5 A g−1 | 0.521 kW kg−1 | 20.5 Wh kg−1 máx, | ~78%, 5000 cycles, 5 A g−1 | [239] |
13 | Nanofibers-PANI/ MnO2-rGO/ nanofibers-PANI//MoO3/GF | Gels KOH/PVA; 1.6 V | 146 F g−1, 1 A g−1 | ~73.3%, 5 A g−1 | 0.838–4.368 kW kg−1 | 51.91–38.15 Wh kg−1 | 82%, 5000 cycles, 5 A g−1 | [239] |
14 | Layer by layer of G/Fe3O4/PANI:PSS | 0.1 M HCl; −0.1–0.6 V (vs. Ag/AgCl) | 768.6 F g−1, 1 A g−1 | ~22.3%, 5 A g−1 | 350–1750 W kg−1 | 52.3–11.7 Wh kg−1 | 84%, 1600 cycles, 3 A g−1 | [240] |
15 | Nanocomposite LaMnO3/rGO/PANI | KOH 3 M; 0.0–0.5 V (vs. Ag/AgCl) | 802 F g−1, 1 A g−1 | 55%, 15 A g−1 | - | - | - | [241] |
16 | rGO//Nanocomposite LaMnO3/rGO/PANI | Gels KOH/PVA; 1.8 V | 111 F g−1, 2.5 A g−1 | 50%, 20 A g−1 | 2.25–18 kW kg−1 | 50–25 Wh kg−1 | 116%, 100,000 cycles, 20 A g−1 | [241] |
17 | 3D CC/NiCo2O4@ NiMoO4/ nanorods- PANI // 3D CC/NiCo2O4@ NiMoO4/ nanorods- PANI | H3PO4/PVA Gels; 0.1–0.8 V (vs. SCE) | 1322.2 F g−1/2380 mF cm−2, 1.0 mA cm−2 | 63.4%, 10.0 mA cm−2 | 443.2 W kg−1 | 90 Wh kg−1 max, | 92.36%, 5000 cycles, 1.0 mA cm−2 | [242] |
18 | Nanowires-Ag@C@nanowires-PANI | H2SO4 1 M; −0.3–0.7 V (vs. SCE) | 785 C g−1, 0.5 A g−1 | 47.1%, 10 A g−1 | - | - | 94.1%, 3000 ciclos, a 1 A g−1 | [243] |
19 | Ti@G@ Nanowires-PANI | H2SO4 0.5 M; 0.0–0.8 V (vs. Ag/AgCl) | 623.1 F g−1, 1 A g−1 | ~86%, 40 A g−1 | - | - | - | [244] |
20 | Ti@G@ Nanowires-PANI // Ti@G@ Nanowires-PANI | H2SO4 0.5 M; 0.8 V | 320.8 F g−1, 1 A g−1 | ~90%, 20 A g−1 | 383–4170 W kg−1 | 26.14–6.95 Wh kg−1 | 86%, 10,000 cycles, 4 A g−1 | [244] |
21 | Nanosheet MoS2/PANI/rGO | H2SO4 1 M; −0.2–0.7 V (vs. Ag/AgCl) | 520.0 F g−1, 1 A g−1 | ~44.9%, 30 A g−1 | - | - | 81.9%, 40,000 cycles, 10 A g−1 | [245] |
22 | Nanosheet MoS2/PANI/rGO // Nanosheet MoS2/PANI/rGO | H2SO4 1 M; 0.9 V | 111.1 F g−1, 0.5 A g−1 | ~60%, 4.0 A g−1 | - | - | 84.2%, 20,000 cycles, 2 A g−1 | [245] |
23 | CC/MoS2@ nanosheet-PANI | H2SO4 1 M; −0.2–0.6 V (vs. Ag/AgCl) | 972 F g−1, 1 A g−1 | 75%, 20 A g−1 | - | - | 87%, 5000 cycles, 10 A g−1 | [246] |
24 | CC/MoS2@ nanosheet-PANI // CC/MoS2@ nanosheet-PANI | H2SO4/PVA Gels | 193.3 F g−1, 1 A g−1 | 75.9%, 20 A g−1 | 14–0.42 kW kg−1 | 8.56–17.18Wh kg−1 | 81%, 2000 cycles, 10 A g−1 | [246] |
25 | Hydrogels of Nanofibers of cellulose@PANI-PVA | H2SO4 1.0 M; 0.0–0.4 V (vs. SCE) | 226.1 F g−1, 0.2 A g−1 | ~80.7%, 2.0 A g−1 | - | - | 74%, 5000 cycles, 5.0 A g−1 | [247] |
26 | Hydrogels 3D PANI/phytic acid | H2SO4 1.0 M; 0.0–0.8 V (vs. SCE) | 311.3 F g−1/561.7 mF cm−2, 1 mA cm−2 | 67.5%, 10 mA cm−2 | - | - | - | [248] |
27 | Hydrogels 3D PANI/phytic acid// Hidrogels 3D PANI/phytic acid | H2SO4/PVA Gels; 0.8 V | 77.6 F g−1, 0.5 A g−1/135.9 mF cm−2, 0.5 mA cm−2 | 72%, 5 A g−1 | 0.4–4 mW cm−2 | 40.0–33.7 µWh cm−2 | 76%, 10,000 cycles, 2 mA cm−2 | [248] |
28 | Microspheres of NC/ Nanowires-PANI | H2SO4 1.0 M; 0.0–0.8 V (vs. Ag/AgCl) | 500 F g−1, 1 A g−1 | 77%, 20 A g−1 | - | - | 91.8%, 5000 cycles, 5 A g−1 | [249] |
29 | Microspheres of NC/ Nanowires-PANI // Microspheres of NC/ Nanowires-PANI | H2SO4 1.0 M; 1.1 V | 100 F g−1, 1 A g−1 | 75.6%, 7 A g−1 | - | - | 95.4%, 5000 cycles, 5 A g−1 | [249] |
30 | PLA/CNTs/PANI porous | H2SO4 1.0 M; −0.2–0.8 V (vs. SCE) | 510.3 F g−1, 1.0 A g−1 | 80.9%, 10.0 A g−1 | - | - | 111.5%, 2000 cycles, 100 mV s−1 | [250] |
31 | Macroporous carbon 3D of kenaf/rGO/PANI | H2SO4 1.0 M; −0–2- 0.8 V (vs. SCE) | 1224 F g−1, 0.3 A g−1 | ~51%, 5.0 A g−1 | 0.218–74.15 kW kg−1 | 144.4–1.86 Wh kg−1 | 87%, 5000 cycles, 1.0 A g−1 | [251] |
32 | Red 3D Cellulose bacterial/PANI/ NiCo-LDH | KOH 2 M; 0–0.45 V (vs. SCE) | 1690 F g−1, 1 A g−1 | ~46%, 15 A g−1 | - | - | 83.2%, 5000 cycles, 10 mV s−1 | [252] |
33 | NC(cellulose) bacterial/CC//Red 3D Celullose bacterial/PANI/ NiCo-LDH | KOH/PVA Gels; 1.6 V | 133.1 F g−1, 1 A g−1 | ~60%, 10 A g−1 | 828.9–8263.3 W kg−1 | 47.3–28.4 Wh kg−1 | 91.4%, 3000 cycles, 5 A g−1 | [252] |
34 | Hydrogels of PANI | H2SO4 1.0 M | 636 F g−1, 2.0 A g−1/1.54 F cm−2, 5.0 mA cm−2 | 98.4%, 25.0 A g−1 | - | - | 83.3%, 10,000 cycles, 35 A g−1 | [253] |
35 | PANI//PR-Br | Polymer gels SPAn-PMMA (5%) | 1.27 mF cm−2/123 F g−1 | - | 58.8 kW kg−1 | 13.5 Wh kg−1 | - | [254] |
36 | Nanowires-NC/CP | H2SO4 1.0 M; −0.2–0.8 V (vs. SCE) | 404.0 F g−1, 1.0 A g−1 | 78%, 0–10 A g−1 | - | - | 98.1%, 5000 cycles, 1.0 A g−1 | [255] |
37 | Nanowires-BNC/CP | 1.0 M H2SO4; −0.2–0.8 (vs. SCE) | 504.0 F g−1, 1.0 A g−1 | 36.3%, 100.0 A g−1 | 0.125–12.5 kW kg−1 | 17.5–6.35 Wh kg−1 | 97.4%, 10,000 cycles, 1.0 A g−1 | [256] |
38 | Nanowires-BNC/CP//Nanowires-BNC/CP | H2SO4/PVA Gels; 1.6 V | 255.7 F g−1, 1.0 A g−1 | 62.1%, 10.0 A g−1 | 0.2–2.0 kW kg−1 | 22,7–14,1 Wh kg−1 | 90.9%, 5000 cycles, 5,0 A g−1 | [256] |
39 | Fe/PANI carbonaceous (cathode) | KOH 6 M; 0,0 a 0.45 V (vs. Ag/AgCl) | 1130.8 F g−1, 5 mV s−1 | ~18% a 100 mV s−1 | - | - | 78%, 5000 cycles, 5 A g−1 | [257] |
40 | Fe/PANI carbonaceous (anode) | KOH 6 M; −1.2–0.0 V (vs. Ag/AgCl) | 486.5 F g−1, 5 mV s−1 | ~62%, 100 mV s−1 | - | - | 78%, 5000 cycles, 5 A g−1 | [257] |
41 | Fe/PANI carbonaceous//Fe/PANI carbonaceous | KOH 6 M; 1.65 V | - | - | 0.232–469 kW kg−1 | 41.3 Wh kg−1 máx, | 72%, 10,000 cycles, 5 A g−1 | [257] |
# | Electrodes (Anode//Cathode) | Electrolyte; Potential Windows | Capacitance or Capacity | Current Density | Power Density | Energy Density | Cycling Rate (%) | Ref |
---|---|---|---|---|---|---|---|---|
01 | PPy Nanosheet/rGO//PPy Nanosheet/rGO | KCl 3 M; 0.9 V | 290.1 F g−1, 0.2 A g−1 | ~85.2%, 12.8 A g−1 | - | - | 97.5%, 20,000 cycles, 2 A g−1 | [290] |
02 | PPy/rGO/M-PEFT | Na2SO4 1.0 M; −0.4–0.6 V (vs. SCE) | 1117 mF cm−2/ 329.5 F g−1/ 46.6 F g−1, 1 mA cm−2 | 80.6%, 50 mA cm−2 | - | - | ~100%, 10,000 cycles, 20 mA cm−2 | [291] |
03 | PPy/rGO/M-PEFT//PPy/rGO/M-PEFT | H2SO4/PVA Gels; 0.0–1.0 V (vs. SCE) | 474 mF cm−2, 1 mA cm−2 | 73.8%, 50 mA cm−2 | 0.5–25 mW cm−2 | 0.0658–0.0486 mWh cm−2 | ~100%, 10,000 cycles, 20 mA cm−2 | [291] |
04 | PPy/rGO/M-PEFY | Na2SO4 1.0 M; −0.4–0.6 V (vs. SCE) | 175.7 mF cm−1/699.6 mF cm−2/239.6 F g−1/35.0 F cm−3, 1 mA cm−2 | 106.7 mF cm−1, 424.6 mF cm−2, 145.5 F g−1, 21.2 F cm−3, 13.33 mA cm−2 | - | - | - | [291] |
05 | PPy/rGO/M-PEFY//PPy/rGO/M-PEFY | Gel H2SO4/PVA; 0.0–1.0 V (vs. SCE) | 85.3 mF cm−1/339.7 mF cm−2/116.4 F g−1/17.0 F cm−3, 1 mA cm−2 | - | 26.5 mW cm−2 | 0.0472 mWh cm−2 | 100%, 10,000 cycles, 6.67 mA cm−2 | [291] |
06 | PET/rGO/PPy//PET/rGO/PPy | H2SO4/PVA Gels; 1.0 V | 230 mF cm−2 a 1 mV s−1/5.5 F cm−3, 1.6 mA cm−3 | - | 2 mW cm−2 | ~12 µWh cm−2 | 76%, 6000 cycles, 2 mV s−1 | [292] |
07 | Nanotube-PPy@ Nanosheet-G | KCl 3 M; −0.2–0.7 V (vs. SCE) | 530 F g−1, 1 A g−1 | ~77.3%, 10 A g−1 | - | - | 93%, 1000 cycles, 10 A g−1 | [293] |
08 | Nanotube-PPy@ Nanosheet-G // Nanotube-PPy@ Nanosheet-G | LiCl/PVA Gels; 0.8 V | 161 mF cm−2, 0.18 mA cm−2 | ~79.5%, 1.9 mA cm−2 | 720 µW cm−2 | 11.4 µWh cm−2 | 80%, 5000 cycles, 1.8 mA cm−2 | [293] |
09 | PPy/GF | Na2SO4 0.5 M; 0.0–0.8 V (vs. Ag/AgCl) | 1169 mF cm−2, 130 F g−1, 5 mA cm−2 | - | - | - | - | [294] |
10 | PPy/GF//PPy/GF | ACN-PC-PMMA-LiClO4; 1.4 V | 89.6 mF cm−2, 0.6 mA cm−2 | 16.7%, 3.3 mA cm−2 | 0.39–2.3 mW cm−2 | 24–3.2 µWh cm−2 | 75%, 10,000 cycles, 5 mA cm−2 | [294] |
11 | PPy Nanocomposite/G/CNTs//PPy Nanocomposite/G/CNTs | KCl 1 M; 0.8 V | 196.7 mF cm−2, 0.5 mA cm−2 | 71.3%, 10 mA cm−2 | 8.1 mW cm−2 | 10.9 µWh cm−2 | 95.2%, 5000 cycles, 3 mA cm−2 | [292] |
12 | Nanostructures 3D: CuPcTs-PPy/ MWCNTs | H2SO4 3 M; 0.0–0.8 V (vs. Ag/AgCl) | 488 F g−1, 5 A g−1 | ~15%, 20 A g−1 | - | - | 80%, 3000 cycles, 5 A g−1 | [295] |
13 | CNF/PPy/ Co3[Fe(CN)6]2 | Na2SO4 1 M; −0.1–1.1 V (vs. Ag/AgCl) | 512 F g−1, 0.5 A g−1 | 60.7%, 2.5 A g−1 | 638.8–2894.8 W kg−1 | 102.5–62.3 Wh kg−1 | 87.8%, 2000 cycles, 0.5 A g−1 | [296] |
14 | PPy/CCF | Na2SO4 1.0 M; 1.0 V | 3596 mF cm−2, 2 mA cm−2 | 78.98%, 10 mA cm−2 | - | - | 96.5%, 4000 cycles, 0.1 V s−1 | [297] |
15 | PPy/CCF//PPy/CCF | LiCl/PVA Gel; 1.2 V | 500,06 mF cm−2, 5.9 F cm−3, 2 mA cm−2 | ~3.4 F cm−3, 10 mA cm−2 | 18–84.4 mW cm−2 | 0.68–1.18 mWh cm−2 | 73.6%, 2000 cycles, 0.1 V s−1 | [12] |
16 | Nanostructure of Fe2O3@PPy | Na2SO4 1 M; 0.8 V | 560 F g−1, 5 A g−1 | ~62.5%, 40 A g−1 | - | - | 97.3%, 20,000 cycles, 40 A g−1 | [298] |
17 | N-CNTs -PPy/MnO2 | Li2SO4 0.5 M; 0.0–1.0 V (vs. SCE) | 366.5 F g−1, 0.5 A g−1 | 67%, 25 A g−1 | 500–10,000 W kg−1 | 12.5–6.6 Wh kg−1 | 91.2%, 6000 cycles, 5 A g−1 | [299] |
18 | N-CNTs//N-CNTs PPy/MnO2 | Li2SO4 0.5 M; −0.8–1.0 V (vs. SCE) | 48.6 F g−1/560 mF cm−2, 1 mA cm−2 | 73.7%, 40 mA cm−2 | 224 W kg−1 | 20.9 Wh kg−1 | 91.6%, 5000 cycles, 5 mA cm−2 | [299] |
19 | V2O5/NG-gel Nanowires-PPy | LiCl 8 M; 1.0 V | 710.5 F g−1, 0.5 A g−1 | ~50%, 10 A g−1 | 250–5000 W kg−1 | 98.6–50 Wh kg−1 | 95%, 20,000 cycles, 10 A g−1 | [300] |
20 | NiCo2S4@Ni(OH)2@PPy Nanotube | KOH 2 M; 0.0–0.4 V (vs. SCE) | 2838.8 F g−1/9112.5 mF cm−2, 5 mA cm−2 | ~43%, 60 mA cm−2 | - | - | 96.2%, 3000 cycles, 60 mA cm−2 | [300] |
21 | AC//NiCo2S4@Ni(OH)2@PPy Nanotube | KOH 2 M; 1.6 V | 3246.8 mF cm−2, 5 mA cm−2 | ~35%, 60 mA cm−2 | 34.67 W kg−1 | 120.127 Wh kg−1 | 98.87%, 30,000 cycles, 60 mA cm−2 | [301] |
22 | CF//CoSe2@PPy Nanofibers | Gel LiCl/PVA; 1.6 V | 226 mF cm−2, 18 mA cm−2 | - | 0.42–14 mW cm−2 | 2.63–0.08 mWh cm−2 | 80.1%, 15,000 cycles, 106 mA cm−2 | [302] |
23 | Graphite/ Nanobelt- MnCo2O4@ Nanosheet-PPy | KOH 6 M; −0.1–0.4 V (vs. SCE) | 2364 F g−1, 1 A g−1 | 55.2%, 50 A g−1 | - | - | 85.3%, 1000 cycles, 30 A g−1 | [303] |
24 | a-MEGO//Graphite/ Nanobelt- MnCo2O4@ Nanosheet-PPy | KOH 6 M; 1.6 V | 288.8 F g−1, 0.5 A g−1 | - | 16.1 kW kg−1 | 25.7 Wh kg−1 | 85.5%, 10,000 cycles, 5 A g−1 | [303] |
25 | rGO@PPy/Fe3O4 Nanosheet | KOH 6 M; 0.0–0.36 V (vs. SCE) | 1006 F g−1, 1 A g−1 | ~74.5%, 20 A g−1 | - | - | 85%, 5000 cycles, 10 A g−1 | [304] |
26 | 3D nanostructured GO-sulfonated/ Ni(OH)2/PPy | KOH 6 M; 0.0–0.4 V (vs. SCE) | 1632 F g−1, 1 A g−1 | - | - | - | 86%, 1000 cycles, 10 A g−1 | [305] |
27 | AC//3D nanostructured GO-sulfonated/ Ni(OH)2/PPy | Gel KOH/PVA; 1.6 V | 224 F g−1, 1 A g−1 | ~61.2%, 10 A g−1 | 0.8–7.97 kW kg−1 | 79.6–48.7 Wh kg−1 | 60%, 5000 cycles, 10 A g−1 | [305] |
28 | Nanoparticles Hydrogel -Au/CNT/PAM@PPy// Nanoparticles Hydrogel -Au/CNT/PAM@PPy | Hydrogel of Na2SO4/ Nanoparticles- Au/PAM | 885 mF cm−2, 1 mA cm−2 | ~66%, 9 mA cm−2 | 0.5–4.9 mW cm−2 | 123–81 µWh cm−2 | 93%, 10,000 cycles, 10 mA cm−2 | [306] |
29 | PPy/3D-rGO/Au nanoporous // PPy/3D-rGO/Au nanoporous | HClO4/PVA; 1.7 V | 29.21 mF cm−2, 0.07 mA cm−2/386.94 F g−1, 0.92 A g−1 | 48%, 2.8 mA cm−2 | 2.36 mW cm−2 | 11.72 µWh cm−2/98.48 mWh cm−3 | 85.9%, 10,000 cycles, 5 mA cm−2 | [307] |
30 | GO-exfoliated/nanoparticles-PPy-Ag | H2SO4 1 M; 0.8 V | 287.5 F g−1, 1 A g−1 | 87.4%, 10 A g−1 | 399–3994 W kg−1 | 25.5–22.3 Wh kg−1 | 93%, 5000 cycles, 2 A g−1 | [308] |
31 | CC/CG hollow fibers/PPy//CC/CG hollow fibers/PPy | Gel H2SO4/PVA; 1 V | 341.64 F g−1;785.78 mF cm−2, 4 mA cm−2 | >85%, 10 mA cm−2 | 100 mW cm−3 | 0.374 mWh cm−3 | 90%, 100 cycles | [309] |
32 | Cellulose Nanofibers/rGO@PPy microfibers//Cellulose Nanofibers/rGO@PPy microfibers | H2SO4 1 M; 0.8 V | 334 mF cm−2, 0.1 mA cm−2 | ~98.8%, 1 mA cm−2 | 20 µW cm−2 | 7.4 µWh cm−2 | 100%, 2000 cycles, 1 mA cm−2 | [310] |
33 | cellulose nanofibers/rGO@PPy microfibers//cellulose Nanofibers/rGO@PPy microfibers | Gel H3PO4/PVA; 0.8 V | 218 mF cm−2; 218 mF cm−3, 0.1 mA cm−2 | - | - | 4.8 µWh cm−2 | 95.2%, 3000 cycles, 1 mA cm−2 | [310] |
34 | CA@PPy// CA@PPy | H2SO4 1 M; −0.2–0.6 V (vs. Ag/AgCl) | 268.5 F g−1, 0.5 A g−1 | 82.4%, 10 A g−1 | 450.4–8018.2 W kg−1 | 23.8–19.6 Wh kg−1 | 88%, 10,000 cycles, 10 A g−1 | [311] |
35 | Bilayer: rGO/PPy|MWCNTs/rGO/cellulose nanocrystal | KCl 1.0 M; 1.0 V | ~330 F g−1, 0.5 A g−1 | 92.5%, 6 A g−1 | 2889.9 W kg−1 | 44.6 Wh kg−1 | 90%, 10,000 cycles, 200 mV s−1 | [312] |
36 | PPy nanofibers hydrogel | H2SO4 1 M; 0.0–0.8 V (vs. Ag/AgCl) | 328 F g−1, 1 A g−1 | 75%, 8 A g−1 | - | - | 90%, 3000 cycles, 2 A g−1 | [312] |
37 | PPy Hydrogel//PPy Hydrogel | Gel H2SO4/PVA; 0.8 V | ~170 F g−1, 1 A g−1 | ~59%, 8 A g−1 | 0.27–2.31 kW kg−1 | 4.13–2.24 Wh kg−1 | 90%, 3000 cycles, 1 A g−1 | [313] |
38 | PPy nanofibers hydrogel | H2SO4 1 M; 0.0–0.8 V (vs. Ag/AgCl) | 324 F g−1/486 mF cm−2, 1.25 mA cm−2 | ~53.5%, 12.5 mA cm−2 | - | - | - | [314] |
39 | PPy nanofibers hydrogel// PPy nanofibers hydrogel | Gel H2SO4/PVA; 0.8 V | 168 F g−1/~505 mF cm−2, 2.0 mA cm−2 | ~50%, 20.0 mA cm−2 | 0.2–8 mW cm−2 | 44.9–22.2 µWh cm−2 | 53%, 10,000 cycles | [314] |
40 | PPy nanofibers hydrogel -TB | H2SO4 1 M; −0.2–0.8 V (vs. Ag/AgCl) | 707 F g−1, 0.5 A g−1 | ~76.4%, 5 A g−1 | - | - | - | [315] |
41 | NS-C nanosphere-PPy | KOH 6 M; −0.8–0.0 V (vs. Hg/HgO) | 416 F g−1, 0.2 A g−1 | 75.2%, 10 A g−1 | - | - | 95.8%, 5000 cycles, 1 A g−1 | [316] |
42 | NS-C nanospheres PPy // NS-C nanospheres PPy | KOH 6 M; 1.0 V | - | - | 100 W kg−1 | 18.1 Wh kg−1 | 98.3%, 5000 cycles, 1 A g−1 | [316] |
# | Electrodes (Anode//Cathode) | Electrolyte; Potential Window | Capacitance or Capacity | Current Density | Power Density | Energy Density | Cycling Rate (%) | Ref |
---|---|---|---|---|---|---|---|---|
01 | CC/PEDOT:PSS/ rGO (porous) | H3PO4/PVA (gel); 1.8 V | 170 F g−1/3000 mF cm−2, 10 mV s−1 | - | - | - | ~100%, 2000 cycles, 400 mV s−1 | [340] |
02 | CC/PEDOT:PSS/ rGO //CC/PEDOT:PSS/rGO (porous) | H3PO4/PVA (gel); 1.8 V | 82 F g−1, 100 mV s−1 | ~78%, 1000 mV s−1 | 4460 W kg−1 | 11.0 Wh kg−1 | - | [340] |
03 | MWCNTs/PEDOT (sponge shape) | H2SO4 1 M; −0.2 to 0.8 V (vs. Ag/AgCl) | 147 F g−1, 0.5 A g−1 | 70%, 10 A g−1 | - | - | 94.7%, 3000 cycles, 1 A g−1 | [341] |
04 | MWCNTs/PEDOT (sponge shape) // MWCNTs/PEDOT (sponge shape) | H2SO4/PVA (gel); 1.4 V | 51 F g−1, 0.5 A g−1 | - | 1.2 kW kg−1 | 12.6 Wh kg−1 | - | [341] |
05 | SWCNTs (Nanostructure)/ PEDOT:PSS/CuHCF | H2SO4 1 M; −0.2–0.8 V (vs. Ag/AgCl) | 969.8 mF cm−2, 5 mV s−1 | ~69.9%, 500 mV s−1 | - | - | 95%, 15,000 cycles, 10 mA cm−2 | [342] |
06 | Mo-WO3/SWCNTs//SWCNTs (nanostructured)/ PEDOT:PSS/CuHCF | H2SO4 1 M; 1.4 V | 530.3 mF cm−2, 10 mV s−1 | 75.1%, 1000 mV s−1 | 4.25–10.79 kW L−1 | 30.08–29.01 Wh L−1 | 88.3%, 10,000 cycles, 10 mA cm−2 | [342] |
07 | CNTs@P3MT | TEATFB 1 M: −1.7 to 1.5 V (vs. Ag/AgCl) | ~3110 mF cm−2, 5 mA cm−2 | 58%, 200 mA cm−2 | - | - | - | [343] |
08 | CNTs@P3MT//CNTs | TEATFB 1 M: −1.7 to 1.5 V (vs. Ag/AgCl) | ~640 mF cm−2, 5 mA cm−2 | ~50%, 500 mA cm−2 | 1.75 W cm−2 | 1.08 mWh cm−2 | 92%, 5000 cycles, 100 mA cm−2 | [343] |
09 | Nanowire V2O5@PEDOT//Nanowire V2O5@PEDOT | Na2SO4 1 M; 2 V | 614 F g−1 a 0.5 A g−1 | ~49%, 10 A g−1 | 250 W kg−1 | 85 Wh kg−1 | 122%, 50,000 cycles, 10 A g−1 | [344] |
10 | Nanowire of (NH4)2V6O16/PEDOT | KCl 2 M; 0.0–0.9 V (vs. SCE) | 202 F g−1, 3 mV s−1 | 65%, 100 mV s−1 | - | - | - | [345] |
11 | AC//nanowire of (NH4)2V6O16/PEDOT | KCl 2 M; 1.8 V | 45.9 F g−1/62 mF cm−1, 0.67 A g−1 | 40%, 20 A g−1 | 600–18,000 W kg−1/ 0.8–24.3 mW cm−2 | 20.7–8.2 Wh kg−1/ 27.9–11.2 µWh cm−2 | 87%, 1000 cycles, 2 A g−1 | [345] |
12 | Nanoparticles- RuO2·1.18H2O/nanosheets- PEDOT:PSS | H2SO4 1 M; −0.2–0.8 V (vs. SCE) | 630 F g−1, 15 A g−1 | - | - | - | - | [346] |
13 | Nanoparticles- RuO2·1.18H2O/ nanosheets- PEDOT:PSS // Nanoparticles- RuO2·1.18H2O/ nanosheets- PEDOT:PSS | H2SO4 1 M; 1.0 V | 540 F g−1, 2 A g−1 | 94%, 20 A g−1 | 500–5000 W kg−1 | 19–18 Wh kg−1 | 91.5%, 5000 cycles, 10 A g−1 | [346] |
14 | Nanotube-Ni@ MnO2@PEDOT | LiCl 1 M; 0.0–0.7 V (vs. SCE) | 442.85 F g−1, 2.5 A g−1/88.71 mF cm−2, 0.5 mA cm−2 | ~55.8%, 10 A g−1 | - | - | 80.37%, 15,000 cycles, 100 mV s−1 | [347] |
15 | AC//Nanotube-Ni@ MnO2@PEDOT | LiCl 1 M; 1.7 V | 1.47 F cm−3, 4 mA cm−2 | ~61%, 10 mA cm−2 | 84.96 mW cm−3 | 0.59 mWh cm−3 | 81.16%, 10,000 cycles, 100 mV s−1 | [347] |
16 | Ag nanowire/WO3@PEDOT:PSS (nanotubes) | LiClO4 1 M; −2.4–0.0 V (vs. Ag/AgCl) | 471.0 F g−1, 1 A g−1 | ~85%, 16 A g−1 | 7.7–19.1 kW kg−1 | 52.6–44.67 Wh kg−1 | 79.5%, 50,000 cycles | [348] |
17 | Nanosheets of MXeno Ti3C2Tx/PEDOT:PSS | H2SO4 1 M; −0.7–0.2 V (vs. Ag/AgCl) | 614.5 F cm−3/258.2 F g−1, 5 mV s−1 | ~61%, 1000 mV s−1 | - | - | - | [349] |
18 | Nanosheets of MXeno Ti3C2Tx/PEDOT:PSS// Nanosheets of MXeno Ti3C2Tx/PEDOT:PSS | Gel H2SO4/PVA; 0.6 V | 361.4 F cm−3, 2 mV s−1 | ~53%, 200 mV s−1 | 142.16–8249 mW cm−3 | 7.13–5.04 mWh cm−3 | ~95%, 10,000 cycles, 100 mV s−1 | [349] |
19 | MXeno Mo1,33C/PEDOT nanosheet | H2SO4 1 M; −0.35–0.30 V (vs. Ag/AgCl) | 452 F g−1/1310 F cm−3, 2 mV s−1 | ~45%, 1000 mV s−1 | - | - | - | [350] |
20 | MXeno Mo1,33C/PEDOT nanosheets// MXeno Mo1,33C/PEDOT nanosheets | Gel H2SO4/PVA; 0.0–0.65 V (vs. Ag/AgCl) | 568 F cm−3, 0.5 A cm−3 | 74.1%, 30 A cm−3 | 1947.0 mW cm−3 | 33.2 mWh cm−3 | 90%, 10,000 cycles, 5 A cm−3 | [350] |
21 | PVA-GQDs-Co3O4@PEDOT (nanofibers) | H2SO4 1 M; 0.0–1.0 V (vs. Ag/AgCl) | 361.97 F g−1, 25 mV s−1 | ~89%, 200 mV s−1 | 496.10–2396.99 W kg−1 | 19.98–16.51 Wh kg−1 | 96%, 1000 cycles, 100 mV s−1 | [351] |
22 | PVA-GO-MnO2 (microfibers)/ PEDOT (nanoparticles)//PVA-GO-MnO2 (microfibers)/ PEDOT (nanoparticles) | KCl 1.0 M; 0.0–1.0 V (vs. Ag/AgCl) | 144.66 F g−1, 50 mV s−1 | ~55%, 200 mV s−1 | 243.72–475.09 W kg−1 | 9.60–9.21 Wh kg−1 | 91.18%, 1000 cycles, 100 mV s−1 | [352] |
23 | Multicapas Co9S8/PEDOT:PSS- carbonizado/ rGO | KOH 2 M; 0.0–0.45 V (vs. Ag/AgCl) | 788.9 F g−1, 1.0 A g−1 | ~56.9%, 20.0 A g−1 | - | - | >100%, 10,000 cycles, 15.0 A g−1 | [353] |
24 | AC//multilayer Co9S8/PEDOT:PSS/ rGO | KOH 2 M; 1.6 V | 55.0 F g−1, 0.5 A g−1 | - | 400.9–8030.7 W kg−1 | 19.6–8.7 Wh kg−1 | 94.2%, 10,000 cycles, 5 A g−1 | [353] |
25 | Nanocomposite of PEDOT@AQ-COF | H2SO4 1 M; −0.2–0.6 V (vs. Ag/AgCl) | 1663 F g−1, 1 A g−1 | 60%, 500 A g−1 | - | - | ~118%, 10,000 cycles, 50 A g−1 | [354] |
26 | PEDOT nanowires | H2SO4 1 M/PDA; −0.4–0.5 V (vs. Ag/AgCl) | 667.5 mF cm−2, 1 mA cm−2 | ~74.9%, 20 mA cm−2 | - | - | 88.1%, 5000 cycles, 20 mA cm−2 | [355] |
27 | PEDOT nanowires//PEDOT nanowires | Gel H2SO4/PVA/PDA; 0.9 V | 413.5 mF cm−2, 1 mA cm−2 | ~74%, 50 mA cm−2 | 0.22–16.8 mW cm−2 | 48.3–19.1 µWh cm−2 | - | [355] |
# | Electrodes (Anode//Cathode) | Electrolyte; Potential Window | Capacitance or Capacity | Current Density | Power Density | Energy Density | Cycling Rate (%) | Ref |
---|---|---|---|---|---|---|---|---|
01 | rGO/CNT@PMTA//rGO/CNT@PMTA | KOH 6 M; 1.0 V | 658 F g−1, 0.5 A g−1 | 90.5%, 2 A g−1 | ~120 W kg−1 | 23 Wh kg−1 | 92%, 1000 cycles, 2 A g−1 | [370] |
02 | rGO-aniline/ QDs-PoPD//rGO-aniline/ QDs-PoPD | H2SO4 1 M; 1.0 V | 420 F g−1, 0.5 A g−1 | ~61%, 20 A g−1 | 125.2–5027.6 W kg−1 | 14.6–8.1 Wh kg−1 | 90%, 5000 cycles, 1 A g−1 | [371] |
03 | ACM/MWCNTs@ PDAA | Et4NBF4 1 M in CH3CN; −1.8–0.45 V (vs. Ag/AgCl) | 20.2 F cm−3, 1 mA cm−2 | 58%, 20 mA cm−2 | - | - | - | [372] |
04 | ACM/MWCNTs@ PANI//ACM/MWCNTs@ PDAA | Quasi-solid polymeric electrolyte ACM/Et4NBF4-CH3CN; 2.7 V | 2.2 F cm−3, 1 mA cm−2 | 86%, 20 mA cm−2 | 0.021–0.50 mW cm−3 | 2.14–1.13 mWh cm−3 | 80.3%, 5000 cycles, 4 mA cm−2 | [372] |
05 | MoO3/PPy nano-ribbons with nano-wires-PANI | H2SO4 0.5 M; −0.2–0.8 V (vs. SCE) | 1315 F g−1, 0.5 A g−1 | ~51.1%, 10 A g−1 | - | - | 86%, 20,000 cycles, 10 A g−1 | [373] |
06 | MoO3/PPy nano-ribbons with nano-wires-PANI// MoO3/PPy nano-ribbons with nano-wires-PANI | H2SO4 0.5 M; 1.0 V | 908.1 F g−1, 0.5 A g−1 | ~55.5%, 20 A g−1 | 250 W kg−1 | 63 Wh kg−1 | 100%, 3000 cycles, 2 A g−1 | [373] |
07 | PEDOT/PANI/Phytic acid hydrogels | H2SO4 1 M; −0.2–0.8 (vs. Ag/AgCl) | 112.6 F g−1, 5 mV s−1 | - | - | - | 80.8%, 5000 cycles, 7.5 A g−1 | [374] |
08 | PEDOT/PANI/Phytic acid hydrogels// PEDOT/PANI/Phytic acid hydrogels | H2SO4(Gel)/PVA; 1.0 V | 242.2 mF cm−2; 3.5 F cm−3, 1 mA cm−2 | ~50%, 15 mA cm−2 | 62.39–937 W kg−1 | 0.48–0.25 mWh cm−3; 4.20–2.18 Wh kg−1 | 82,5%, 5000 cycles, 15 mA cm−2 | [374] |
09 | Hierarchically porous CNTs derived from MnO2@PPy-co-PANI | KOH 6 M; −1.1–0.1 V (vs. Hg/HgO) | 286 F g−1, 0.1 A g−1 | ~71%, 50 A g−1 | - | - | 100%, 10,000 cycles, 20 A g−1 | [375] |
10 | NHCS/ Nano-crystals of FeCo@ F-enriched C nano-layer derived from P(ANI-co-F-ANI) (NHCS/FeCo@FC) | KOH 6 M; −1.0–0.0 V (vs. Ag/AgCl) | 302 F g−1, 0.2 A g−1 | 61.4%, 10 A g−1 | - | - | 100%, 5000 cycles, 5 A g−1 | [376] |
11 | NHCS/FeCo@FC//NHCS/FeCo@FC | KOH/PVA; 1.5 V | 51.2 F g−1, 0.2 A g−1 | 81.33%, 10 A g−1 | 11.1 W kg−1 | 15.3 Wh kg−1 | ~93%, 10,000 cycles, 2 A g−1 | [376] |
12 | 2D-CAP nano-porous P(3-TBQP) | KCl 2 M; 0.0–1.0 V (vs. SCE) | 240 F g−1, 1 A g−1 | - | - | - | - | [377] |
13 | AC//2D-CAP nano-porous P(3-TBQP) | KCl 2 M; 1.6 V | 233 F g−1, 1 A g−1 | ~59%, 10 A g−1 | 8.7 kW kg−1 | 23 Wh kg−1 | ~80%, 10,000 cycles, 2 A g−1 | [377] |
14 | 2D-CMP poly(1,3,5-triethynyl benzene-ferrocene)/rGO | H2SO4 1 M; 0.0–0.8 V (vs. Ag/AgCl) | 470 F g−1, 0.5 A g−1 | ~66%, 10 A g−1 | - | - | - | [378] |
15 | 2D-CMP poly(1,3,5-triethynyl benzene-ferrocene)/rGO// 2D-CMP poly(1,3,5-triethynyl benzene-ferrocene)/rGO | H2SO4 1 M; 1.0 V | 231 F g−1; 238 mF cm−3, 0.5 A g−1 | ~58%, 10 A g−1 | 124–2532 W kg−1 | 8–5 Wh kg−1 | 91%, 8000 cycles, 5 A g−1 | [378] |
16 | Hollow spheres with nano-layers of CMP-BPPB//Hollow spheres with nano-layers of CMP-BPPB | H2SO4 1 M; −0.5–0.5 V (vs. Ag/AgNO3) | 220 F g−1, 0.5 A g−1 | 49%, 20 A g−1 | - | - | 85%, 10,000 cycles, 6 A g−1 | [379] |
17 | 3D-CMP PAQTA | H2SO4 0.5 M; 0.2–0.8 V (vs. Ag/AgCl) | 576 F g−1, 1.0 A g−1 | ~71.2%, 10.0 A g−1 | - | - | ~80%, 6000 cycles, 2 A g−1 | [380] |
18 | AC//3D-CMP PAQT | H2SO4 0.5 M; 1.6 V (vs. Ag/AgCl) | 168 F g−1, 1.0 A g−1 | ~63.1, 10.0 A g−1 | 1300 W kg−1 | 60 Wh kg−1 máx. | ~95.5%, 2000 cycles, 2.0 A g−1 | [380] |
19 | N,O-PC foam derived from PAQ | H2SO4 1 M; 0.0 a 1.0 V (vs. Ag/AgCl) | 410 F g−1, 1 A g−1 | ~55%, 50 A g−1 | - | - | - | [381] |
20 | N,O-PC foam derived from PAQ//N,O-PC foam derived from PAQ | H2SO4 1 M; 1.0 V | 321 F g−1, 1 A g−1 | 69%, 50 A g−1 | - | - | 98%, 15,000 cycles, 5 A g−1 | [381] |
21 | N,O-PC foam derived from PAQ//N,O-PC foam derived from PAQ | Li2SO4 1 M; 1.6 V | 216 F g−1, 0.5 A g−1 | 56%, 20 A g−1 | 0.4–8.0 kW kg−1 | 15.91–10.67 Wh kg−1 | 96%, 15,000 cycles, 5 A g−1 | [381] |
22 | Microporous CTF-TCNQ | KOH 1 M; −0.8–1.0 V (vs. Hg/HgO) | 383 F g−1, 0.2 A g−1 | ~45%, 10 A g−1 | - | - | ~100%, 10,000 cycles, 10 mV s−1 | [382] |
23 | Microporous CTF-TCNQ//Microporous CTF-TCNQ | IL EMIMBF4; 3.5 V | ~100 F g−1, 0.1 A g−1 | ~40%, 10 A g−1 | 8750 W kg−1 | 42,8 Wh kg−1 | 92%, 5000 cycles, 7 A g−1 | [382] |
24 | 3D-PC derived from PIn nanospheres | H2SO4 1,0 M; −0,2–1.0 V (vs. SCE) | 328 F g−1, 1.0 A g−1 | - | - | - | - | [383] |
25 | 3D-PC derived from PIn nanospheres// 3D-PC derived from PIn nanospheres | H2SO4 1.0 M; 1.2 V | ~295 F g−1, 0.2 A g−1 | 66%, 10 A g−1 | 120–6000 W kg−1 | 15–9.4 Wh kg−1 | 91.1%, 10,000 cycles, 10 A g−1 | [383] |
# | Active Cathode Material; form (Mass Loading of Active Materials a) | Active Anode Material; form (Mass Loading of Active Materials a) | Electrolyte | Medium Operating Potential; Potential Window/V | Specific Initial Discharge Capacity b; Coulombic Efficiency | Long-Term Performance: Reversible Capacity b; Cycles; Speed or Current Density; Coulombic Efficiency; Energy Density | Speed Capability: Specific Capabilities; Velocities and Current Densities | Ref |
---|---|---|---|---|---|---|---|---|
01 | LiMn2O4 | LiTi2(PO4)3@NC; nanoparticles (5–8) | Li2SO4 in saturated aqueous solution | 1.5; 0–1.85 g | 115.2; - | 94.6; 100; 2 C; ~100%; 141.9 | 122.4–95.3; 0.2 C–10 C | [407] |
02 | Li | NSBDC (~2.21) | LiPF6 1 M EC:DEC (1:1 v/v) | -; 0.01–3.0 g | 1513; ~75.8% | 357; 200; 5.0 c; ~96%; - | 1111–363; 0.1–5.0 c | [408] |
03 | Li | IGR-MnO-NC (~1) | LiPF6 1 M EC:DMC (1:1 v/v) | -; 0.01–3.0 g | 1802; 56% | 904; 500; 0.5 c; ~99%; - | 1055–547; 0.1–2.0 c | [409] |
04 | Li | MnO@NC; nanocapsules (1.0) | LiPF6 1 M EC:DMC (1:1 v/v) | 0.49; 0.01–3.0 g | 1139; ~54% | 624; 1000; 1000 d; ~100%; - | 762–458; 100–5000 d | [410] |
05 | LiFePO4 | nO@NC; nanocapsules (1.0) | LiPF6 1 M EC:DMC (1:1 v/v) | -; 0.01–3.8 g | 127; - | 60; 200; 85 d; -; - | - | [410] |
06 | Li | CNTs@Si@PANI | LiPF6 1 M EC:DEC:DMC (1:1:1 v/v) | 0.2; 0.01–2.0 g | 1954; 65.0% | 727; 100; 0,1 c; ~99%; - | 720–258; 0.1–1.0 c | [411] |
07 | Li | ZnFe2O4@PANI; nanofibber | LiPF6 1 M EC:DEC:EMC (1:1:1 v/v) | 0.7; 0.01–3.0 g | 1470; 85.7% | 1142; 50; 50 d; -; 799.4 | 1470–539; 50–5000 d | [412] |
08 | Li | HCs@Si@C (1.0) | LiPF6 1 M | -; 0.01–3.0 g | 2708; 67.7% | 1216.8; 600; 420 d; 99.5%; - | 2055.4–827; 0.1–4.2 c | [413] |
09 | LiFePO4 | HCs@Si@C (1.0) | LiPF6 1 M | ~2.7; 1.5–3.6 g | 111.6 f; ~78.2% | 117.7 f; 100; 0.1 c; ~99%; 317.8 f | 133–76 f; 0.1–1 c | [413] |
10 | 3D EDA-CNTs/S@ NIBP; coated nanotube networks (2.0) | Li | LiTFSI 1 M DME:DOL (1:1 v/v) | ~2.1; 1.4–2.8 g | 1215 f; ~90% | 975 f; 200; 0.2 C; ~100%; - | 1259–462 f; 0.2 C–3.0 C | [414] |
11 | C-porous@ S-NIBP; coated nanospheres (2.1 ± 0.2) | Li | LiTFSI 1 M and LiNO3 0.2 M DME:DOL (1:1 v/v) | -; 1.5–2.8 | 1182.5 f; - | 494.5 f; 500; 2 c; ~98%; - | 1131.2–665.2 f; 0.2–5 c | [415] |
12 | S-impregnated NP-C/HKUST-1MOF; 3D monolithic structure (18.8) | Li | LiTFSI 1 M y LiNO3 0.1 M DME:DOL (1:1 v/v) | -; 1.7–2.8 g | 923 f (17.6 k; 0.2 C); - | 757 f; 300; 0.2 C; 98.83%; 2843.4 l | 1377–541 f; 0.05 C–0.60 C | [416] |
13 | PB@NIBP; coated cubes (1.5) | Na | NaPF6 1 M EC:DEC:DMC (1:1:1 v/v) | -; 2.0–3.6 h | ~108 f; 95.4% | 101.1 f; 500; 100 d; ~100%; - | 116.5–63.3 f; 60–5000 d | [417] |
14 | Na | NiS2@NC@NC; coated stick | NaClO4 1 M PC | -; 0.01–3.0 h | 840.7; 79.65% | 580.8; 100; 0.1 c; 100%; - | 694–448; 0.05–1.6 c | [418] |
15 | NIBP; nano-fibers (3.0) | K | KPF6/PMMA (Gel) | ~3.2; 2.0–4.0 i | -; ~99% | 98% *; 100; 50 d; 99.3%; ~442 f | 138–95 f; 10–200 d | [419] |
16 | NIBP; nano-pillars (0.8) | Zn | ZnCl2 2 M y NH4Cl 3 M | -; 0.7–1.7 j | - | ~130 f; 1000; 8 c; 100%; 233.4 f, | 203.5–118.7 f; 0.5–16 c | [420] |
17 | CF@NIBP; coated fibers | Zn | ZnCl2 1 M | -; 0.7–1.7 j | - | 80% *; 100; 1 C; -; 389 | 165–31.4 f; 1 C–600 C | [421] |
# | Active Cathode Material; form (Mass Loading of Active Materials a) | Active Anode Material; form (Mass Loading of Active Materials a) | Electrolyte | Medium Operating Potential; Potential Window/V | Specific Initial Discharge Capacity b; Coulombic Efficiency | Long-Term Performance: Reversible Capacity b; Cycles; Speed or Current Density; Coulombic Efficiency; Energy Density | Speed Capability: Specific Capabilities; Velocities and Current Densities | Ref |
---|---|---|---|---|---|---|---|---|
01 | Li | Sb@NC; nanorods (1.2) | LiPF6 1 M EC:DMC:EMC (1:1:1 v/v) | 0.79; 0.01–3.0 g | 831.5; 78.3% | 395; 3000; 2 c; ~100%; 312.1 | 641.2–343.3; 0.2–20 c | [422] |
02 | Li | MoS2/NC; nanowires | LiPF6 1 M EC:DMC:EMC (1:1:1 v/v) | -; 0.01–3.0 g | 1024; 72.6% | 520; 500; 5 c; ~100%; - | 822–453; 0.2–10 c | [423] |
03 | Li | MoS2@NC; nanospheres (1.6) | LiPF6 1 M EC:DMC (1:1 v/v) | -; 0.01–3.0 g | 1344; 75% | 530; 500; 2 c; ~100%; - | 1112–616; 0.1–2 c | [424] |
04 | Li | MoS2@PPy (2.5) | LiPF6 1 M EC:DMC (1:1 v/v) | -; 0.01–3.0 g | 1427; 79.0% | 1012; 200; 200 d; 99%; - | 1062–600; 200–4000 d | [425] |
05 | Li | HUTS@C | LiPF6 1 M EC:DEC (1:1 v/v) | 1.75; 1.0–3.0 g | 227.2; 80.4% | 165.1; 200; 1 C; ~98%; ~289 | 181.0–111.7; 2 C–10 C | [426] |
06 | Li | MOF-Co@NC/G; encapsulated nanocrystals (1.5) | LiPF6 1 M EC:DMC (1:1 v/v) | -; 0.01–3.0 g | 1978; 60.6% | 739; 2000; 5 c; ~100%; - | 1301–494; 0.1–40 c | [427] |
07 | Li | Li4Ti5O12/C doped with N and TiO2; nanorods | LiPF6 1 M EC:DMC (1:1 v/v) | 1.55; 1.0–3.0 g | - | ~150; 3000; 10 C; -; - | 1963–105.5; 0.5 C–100 C | [428] |
08 | LiFePO4 | Li4Ti5O12/C doped with N and TiO2; nanorods | LiPF6 1 M EC:DMC (1:1 v/v) | ~1.8; 0.5–3.0 g | 150.7; - | ~148; 100; 10 C; -; ~266 | - | [428] |
09 | Li | H-TiO2@SnS2@PPy; encapsulated nanosheets | LiPF6 1 M EC:DMC (1:1 v/v) | -; 0.01–3.0 g | ~967; 71.2% | 508.7; 2000; 2.0 c; ~100%; - | 701.2–356.2; 0.2–10 c | [429] |
10 | Li | 3D NCW@Fe3O4/ NC (0.20) | LiPF6 1 M EC:DMC (1:1 v/v) | 0.01–3.0 g | 2867; 55.3% | 1741; 600; 1 C; 99%; - | 1309–723; 0.1 C–10 C | [430] |
11 | S/CoS@PPy; coated buckets (1.4–1.2) | Li | LiTFSI 1 M DME:DOL (1:1 v/v) | 2.1; 1.7–2.8 g | 1165 f; ~95% | 700 f; 500; 0.2 C; 99%; 1470 | ~1000–450 f; 0.2 C–4 C | [431] |
12 | S-PPy at PCN-224; nanocages (0.8–1.4) | Li | LiTFSI 1 M, LiNO3 0.1 M DME:DOL (1:1 v/v) | 2.2; 1.8–2.7 g | 1330 f; - | 440 f; 1000; 10.0 C; ~99%; - | 1330–640 f; 0.5 C–5.0 C | [432] |
13 | S@MnO2@PPy; encapsulated nanoparticles (3.3) | Li | LiTFSI 0.8 M LiNO3 0.2 M DME:DOL (1:1 v/v) | ~2.0; 1.5–2.8 g | 1500 f (0.1 C); - | ~704.1 f; 500; 0.5 C; 99%; - | 1488.1–736.7 f; 0.1–1 C | [433] |
14 | S@MnO2@ PPy; encapsulated spheres (0.5) | Li | LiTFSI 1 M DME:DOL (1:1 v/v) | -; 1.7–3.0 g | 1367 f (0.2 C); >95% | ~800 f; 500; 0.5 C; ~98%; - | 1367–1050 f; 0.2 C–0.5 C | [434] |
15 | AC@Fe3O4-NC@; coated fibers (4.7) | Li | LiTFSI 1 M DME:DOL (1:1 v/v) | 2.1; 1.7–2.8 g | ~1316 f; ~100% | 780 f; 1000; 0.2 C; 100%; - | ~1316–531 f; 0.1 C–4 C | [435] |
17 | S-Fe@PPy; coaxial tubes (4.0) | Li | LiTFSI 1 M en DME:DOL (1:1 v/v) | ~2.0; 1.7–2.8 g | 1117 f; - | 525 f; 200; 1 C; 90.9%; - | 859–284 f; 0.1 C–5 C | [436] |
18 | Na | Co1−xS/NC; nano-esferas (1–1.5) | CF3NaO3S 1 M en TGM | -; 0.01–3.0 k | - | 472; 120; 500 d; -; - | 513.5–220.4; 100–2000 d | [436] |
19 | Na | Nano-hilos- CoP@PPy/CP (1.8) | NaClO4 1 M en EC:DEC (1:1 v/v) | -; 0.01–2.5 k | 1318 h; 69.06% | 0.443 h; 1000; 1.5 i; ~99.5%; - | 0.636–0.285 h; 0.15–3 i | [437] |
20 | SS@MnO2@ PPy | NT@Zn | Gel de ZnSO4 y MnSO4 en gelatina-bórax | -; 0.8–1.9 l | - | 60% *; 1000; 2 C; ~99%; - | 174.2–60.0 f; 0.5 C–4 C | [438] |
21 | MnOx/PPy (0.35) | Zn | ZnSO4 en gelatina-bórax | 0.9; 0.6–1.5 l | 110 j;f; - | 21 mWh cm−3 | 110–38.5 j;f; 0.2–1.0 i | [439] |
# | Active Cathode Material; form (Mass Loading of Active Materials a) | Active Anode Material; form (Mass Loading of Active Materials a) | Electrolyte | Medium Operating Potential; Potential Window/V | Specific Initial Discharge Capacity b; Coulombic Efficiency | Long-Term Performance: Reversible Capacity b; Cycles; Speed or Current Density; Coulombic Efficiency; Energy Density | Speed Capability: Specific Capabilities; Velocities and Current Densities | Ref |
---|---|---|---|---|---|---|---|---|
01 | Li | PEO-PEDOT:PSS/PEI/Si; coated nanoparticles (1.0) | LiPF6 1 M EC:DEC (1:1 p/p) | -; 0.01–1.0 g | 2440; 82.0% | 2027; 500; 1.0 c; 100%; - | ~3000–1500; 0.2–8.0 c | [440] |
02 | Li | Si@PEDOT-VAA-D-Sorbitol; coated nanoparticles (1.0) | LiPF6 1 M EC:DEC (1:1 v/v) | -; 0.01–1.0 g | 3788; 80% | 1500; 700; 0.2 C; ~100%; - | 2739–737; 0.1 C–2 C | [441] |
03 | Li | Spheres-Fe3O4@ PEG/CB/FWNT/ PPBT; linked networks (2.1–2.5) | LiPF6 1.2 M EC:DEC (1:1 v/v) | -; 0.01–3.0 g | ~1000; 92% | 880; 200; 0.5 C; ~99%; - | ~900–100; 0.1 C–3.0 C | [442] |
04 | Li | NCA@P3HT-CNT; covered particles | LiPF6 1 M EC:DMC (1:1 v/v) | -; 2.7–4.2 g | 156 (1 C); 85% | 80% *; 1000; 16 C; -; - | 156–83; 1 C–32 C | [443] |
05 | NCM811@poly(3-alkylthiophene); coated particles (10.0) | Li | LiPF6 1 M EC:EMC (1:1 v/v) | -; 3.0–4.3 g | ~183.8 h; - | 174.4 h; 50; 1 C; -; - | - | [444] |
06 | M-NVP@ PEDOT; coated particles (3.0) | Na | NaPF6 0.5 M en PC | -; 4.5–2.2 l | 138.8 h (1 C); - | 112.4 h; 500; 1 C; -; - | 143.3–109.8 h; C/50–10 C | [445] |
07 | DC/V2O5@ PEDOT; nanosheets (2.0) | Zn | Zn(CH3O3F)2 2.5 M | -; 0.2–1.6 i | 448.2 h; 76.6% | 223.6 h; 1000; 5.0 c; ~100%; 243.3 | 356.2–232.1 h; 0.1–20.0 c | [446] |
08 | OD-ZnMn2O4@PEDOT; coated fibers (6.0) | Zn | ZnSO4 1 M | -; 0.8–1.9 i | 221 h (0.5 mA cm−2); - | 93% *; 300; 8 j; -; - | 221–62.5 h; 0.5–10 j | [447] |
09 | OD-ZnMn2O4@PEDOT; coated fibers (6.547) | Zn | LiCl; ZnCl2; MnSO4 in PVA | ~1.3; 0.8–1.9 i | - | 80.5% *; 300; 8 j; ~100%; 273.4 | 207–140 h; 0.5–10 j | [447] |
10 | [EMIM]PF6- PEDOT:PSS/ Bi2S3 | Zn | Zn(TSFI)2 1 M + LiTFSI 21 M | 1.4; 0.1–2.3 i | 137.5 h (2 c); - | 131 h; 5300; 2 c; 100%; - | 275–105 h; 0.3–6 c | [448] |
11 | [EMIM]PF6- PEDOT:PSS/ Bi2S3 | Zn | Zn(TSFI)2 y LiTFSI en PAM | 1.4; 0.1–2.3 i | 192.4 h (1 c); - | 177 h; 5300; 1 c; 100%; 315 máx, | 101–50 h; 0.3–6 c | [448] |
12 | S/PEDOT; 3D mesoporous (2.4) | C; 3D double mesoporous gyroid | Li+ conductive PPO polymer | 2.5; 1.0–3.0 g | 0.9 k (0.125 j); - | 375 h; 20; 30 d; -; - | - | [449] |
# | Active Cathode Material; form (Mass Loading of Active Materials a) | Active Anode Material; form (Mass Loading of Active Materials a) | Electrolyte | Medium Operating Potential; Potential Window/V | Specific Initial Discharge Capacity b; Coulombic Efficiency | Long-Term Performance: Reversible Capacity b; Cycles; Speed or Current Density; Coulombic Efficiency; Energy Density | Speed Capability: Specific Capabilities; Velocities and Current Densities | Ref |
---|---|---|---|---|---|---|---|---|
01 | PPTO; nanoparticles (1.5–2.5) | Li | LiTFSI 1.0 M DOL/DME (1:1 v/v) | 2.44; 1.5–3.5 f | ~180 h; 77% | 97 h; 1000; 100 d; 100%; 530 | 230–22 h; 20–300 d | [450] |
02 | PEPTO; nanoparticles (1.5–2.5) | Li | LiTFSI 1.0 M DOL/DME (1:1 v/v) | 2.47; 1.5–3.5 f | ~185 h; 76% | 110 h; 1000; 800 d; 99.8%; 507 | 249–98 h; 20–1500 d | [448] |
03 | X-PVMPT; nanoparticles (0.41–0.74) | Li4Ti5O12 | LiPF6 1.0 M EC:DMC (1:1 v/v) | 1.9; 1.3–2.3 f | 84 (1 C); ~95% | 83.5; 100; 1 C; 100%; - | - | [451] |
04 | X-PVMPT; nanopartículas (0.41–0.74) | Li4Ti5O12 | LiPF6 1,0 M en EC:DMC (1:1 v/v) | 1.9; 1.3–2.3 f | 84 (1 C); ~95% | 83.5; 100; 1 C; 100%; - | - | [451] |
05 | LiFePO4-PFA; coated particles (1.56–5.19) | Li | LiPF6 1.0 M EC:DEC (1:1 v/v) | 3.3; 2.5–4.2 f | ~140 h (0.5 C); - | 80% *; 500; 2 C; 99.9%; 1350.5 g | 160.3–103.4 h; 0.1 C–5 C | [452] |
06 | LiFePO4-PFA; coated particles (1.56–5.19) | Graphite | LiPF6 1.0 M EC:DEC (1:1 v/v) | 3.3; 2.5–4.2 f | 70.5 h; 98.1% | 53.2 h; 100; -; 99%; - | - | [452] |
07 | LiNi0.6Co0.2Mn0.2 O2@ polyphenylene; coated particles (3.0) | Li | LiPF6 1.0 M EC:DEC (1:1 v/v) | -; 3.0–4.4 f | 148 h (0.1 C); - | 113 h; 1150; 0.5 C; 100%; -; (−20 °C) | 128–43 h; 0.5 C–2 C | [453] |
08 | Li | CMP-PBIM; nanosheets | LiPF6 1.0 M EC:DEC (1:1 p/p) | -; 0.0–3.0 f | 1567; 55.07% | 510; 1000; 1000 d; ~99%; - | 807–214; 0.05 C–2.5 C | [454] |
09 | Li | Si@C/derivative of P(iso); agglutinated nanoparticles | LiPF6 1.0 M EC:DEC (1:1 v/v) | -; 0.01–1.0 f | 3507; 49% | ~1450; 300; 0.2 C; 99.56%; - | ~1400–100; 0.2 C–2 C | [455] |
10 | Fe3O4@NC- derived from PoPD; nanospheres (2.5) | Li | LiPF6 1.0 M EC:DEC:DMC (1:1:1 v/v) | -; 0.01–3.0 f | ~1550 h; 62.5% | 918 h; 200; 0.1 C; ~99%; - | 902 h-458; 0.1 C–2 C | [456] |
11 | COF-PIBN/ graphene; microporous (2.0) | Li | LiTFSI 1.0 M DOL/DME (1:1 v/v) | ~2.3; 1.5–3.5 f | 242.3 h (1 C); - | 182.3 h; 300; 5 C; ~100%; 601 | 271–244,8 h; 0.1 C–10 C | [457] |
12 | Py-COF/S; microporous (0.8–1.2) | Li | LiTFSI 1.0 M DOL:DME (1:1 v/v) | ~2.0; 1.8–2.7 f | 1200 h (1.0 C); ~90% | 418 h; 500; 5.0 C; ~100%; - | 1145–659 h; 0.5 C–5.0 C | [458] |
13 | S-TAPB-DVA-COF(S-COF-V); Microporous (~0.7) | Li | LiTFSI 1.0 M DOL:DME (1:1 v/v) | ~2.0; 1.7–2.8 f | 1400 h; 94.5% | 416 h; 1000; 1 C; ~100%; - | 1324–431 h; 0.2 C–6 C | [459] |
14 | SPAN; nanoparticles (0.8) | K | KPF6 0.5 M EC:DMC (1:1 v/v) | -; 0.01–3.0 j | ~1700 h; - | 1050 h; 100; 0.5 C; ~99% | 1050–550 h 0.5 C–3 C | [460] |
15 | Na | MOF-TFPB- TAPT; microporous microspheres (1.65) | NaPF6 1.0 M EC:DMC (1:1 v/v) | 0.65; 0.01–1.6 i | 770; 44% | 125; 500; 30 d; ~98%; 81.25 | 245–145; 30–200 d | [461] |
16 | Na | cPAN; nanofibers (~1.3) | NaPF6 1.0 M DME | -; 0.001–3.0 i | 547; 53.9% | 196; 3500; 5 c; 99.9%; - | 527–200; 0.05–5 c | [462] |
17 | Se-CPSe; nanosheets (~2.0) | Na | NaClO4 1.0 M EC:PC (1:1 v/v) | ~1.2; 0.5–3.0 i | 420 h (1000 d); 71% | 382 h; 1000; 1000 d; ~100%; - | 570–325 h; 100–3200 d | [463] |
18 | K | CMP-PyBT; nanoparticles | KPF6 0.6 M EC:DEC (1:1 v/v) | -; 0.1–3 j | ~1050; ~40% | 272; 500; 50 d; 99.5%; - | 428–104; 30–500 d | [464] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
del Valle, M.A.; Gacitúa, M.A.; Hernández, F.; Luengo, M.; Hernández, L.A. Nanostructured Conducting Polymers and Their Applications in Energy Storage Devices. Polymers 2023, 15, 1450. https://doi.org/10.3390/polym15061450
del Valle MA, Gacitúa MA, Hernández F, Luengo M, Hernández LA. Nanostructured Conducting Polymers and Their Applications in Energy Storage Devices. Polymers. 2023; 15(6):1450. https://doi.org/10.3390/polym15061450
Chicago/Turabian Styledel Valle, M. A., M. A. Gacitúa, F. Hernández, M. Luengo, and L. A. Hernández. 2023. "Nanostructured Conducting Polymers and Their Applications in Energy Storage Devices" Polymers 15, no. 6: 1450. https://doi.org/10.3390/polym15061450
APA Styledel Valle, M. A., Gacitúa, M. A., Hernández, F., Luengo, M., & Hernández, L. A. (2023). Nanostructured Conducting Polymers and Their Applications in Energy Storage Devices. Polymers, 15(6), 1450. https://doi.org/10.3390/polym15061450