Enhanced Biodegradation Rate of Poly(butylene adipate-co-terephthalate) Composites Using Reed Fiber
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Sample Films
2.3. Enzymatic Degradation Tests
2.4. Composting Degradation Tests
2.5. Characterization
2.5.1. Scanning Electron Microscopy
2.5.2. Differential Scanning Calorimetry
2.5.3. Fourier Transform Infrared Spectrometry
3. Results and Discussion
3.1. Enzymatic Degradation
3.1.1. Weight Loss Analysis
3.1.2. SEM Morphology
3.1.3. DSC Analysis
3.1.4. FTIR Analysis
3.2. Composting Biodegradation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, F.; Wong, C.S.; Chen, D.; Lu, X.; Wang, F.; Zeng, E.Y. Interaction of Toxic Chemicals with Microplastics: A Critical Review. Water Res. 2018, 139, 208–219. [Google Scholar] [CrossRef]
- Marinho, V.A.D.; Pereira, C.A.B.; Vitorino, M.B.C.; Silva, A.S.; Carvalho, L.H.; Canedo, E.L. Degradation and Recovery in Poly(Butylene Adipate-Co-Terephthalate)/Thermoplastic Starch Blends. Polym. Test. 2017, 58, 166–172. [Google Scholar] [CrossRef]
- Swetha, T.A.; Ananthi, V.; Bora, A.; Sengottuvelan, N.; Ponnuchamy, K.; Muthusamy, G.; Arun, A. A Review on Biodegradable Polylactic Acid (PLA) Production from Fermentative Food Waste—Its Applications and Degradation. Int. J. Biol. Macromol. 2023, 234, 123703. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, F.V.; Cividanes, L.S.; Gouveia, R.F.; Lona, L.M.F. An Overview on Properties and Applications of Poly(Butylene Adipate-Co-terephthalate)–PBAT Based Composites. Polym. Eng. Sci. 2019, 59, E7–E15. [Google Scholar] [CrossRef]
- Jang, Y.; Kim, M.; Kim, Y.; Yu, J.; Kim, S.-K.; Han, J.; Kim, Y.-H.; Min, J. Enhancing Biodegradation of PBAT through Bio-Stimulation Using Pseudozyma Jejuensis for Effective Plastic Waste Reduction. Chemosphere 2023, 340, 139867. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Wang, Z.H.; Wang, X.R. Effects of biodegradation film mulching on soil temperature, moisture and yield of cotton under drip irrigation in typical oasis area. Trans. Chin. Soc. Agric. Eng. 2017, 33, 135–143. [Google Scholar] [CrossRef]
- Nagarajan, V.; Misra, M.; Mohanty, A.K. New Engineered Biocomposites from Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate) (PHBV)/Poly(Butylene Adipate-Co-Terephthalate) (PBAT) Blends and Switchgrass: Fabrication and Performance Evaluation. Ind. Crops Prod. 2013, 42, 461–468. [Google Scholar] [CrossRef]
- Pandey, J.K.; Ahn, S.H.; Lee, C.S.; Mohanty, A.K.; Misra, M. Recent Advances in the Application of Natural Fiber Based Composites. Macro. Mater. Eng. 2010, 295, 975–989. [Google Scholar] [CrossRef]
- Pinheiro, I.F.; Morales, A.R.; Mei, L.H. Polymeric Biocomposites of Poly (Butylene Adipate-Co-Terephthalate) Reinforced with Natural Munguba Fibers. Cellulose 2014, 21, 4381–4391. [Google Scholar] [CrossRef]
- Wu, C.-S. Process, Characterization and Biodegradability of Aliphatic Aromatic Polyester/Sisal Fiber Composites. J. Polym. Environ. 2011, 19, 706–713. [Google Scholar] [CrossRef]
- Yokesahachart, C.; Yoksan, R.; Khanoonkon, N.; Mohanty, A.K.; Misra, M. Effect of Jute Fibers on Morphological Characteristics and Properties of Thermoplastic Starch/Biodegradable Polyester Blend. Cellulose 2021, 28, 5513–5530. [Google Scholar] [CrossRef]
- Gupta, A.; Chudasama, B.; Chang, B.P.; Mekonnen, T. Robust and Sustainable PBAT—Hemp Residue Biocomposites: Reactive Extrusion Compatibilization and Fabrication. Compos. Sci. Technol. 2021, 215, 109014. [Google Scholar] [CrossRef]
- Malinowski, R.; Krasowska, K.; Sikorska, W.; Moraczewski, K.; Kaczor, D.; Kosmalska, D.; Królikowski, B. Studies on Manufacturing, Mechanical Properties and Structure of Poly(Butylene Adipate-Co-Terephthalate)-Based Green Composites Modified by Coconut Fibers. Int. J. Precis. Eng. Manuf.-Green Technol. 2020, 7, 1095–1105. [Google Scholar] [CrossRef]
- Moustafa, H.; Guizani, C.; Dufresne, A. Sustainable Biodegradable Coffee Grounds Filler and Its Effect on the Hydrophobicity, Mechanical and Thermal Properties of Biodegradable PBAT Composites. J. Appl. Polym. Sci. 2017, 134, app.44498. [Google Scholar] [CrossRef]
- Nagarajan, V.; Mohanty, A.K.; Misra, M. Sustainable Green Composites: Value Addition to Agricultural Residues and Perennial Grasses. ACS Sustain. Chem. Eng. 2013, 1, 325–333. [Google Scholar] [CrossRef]
- Lamsaf, H.; Singh, S.; Pereira, J.; Poças, F. Multifunctional Properties of PBAT with Hemp (Cannabis Sativa) Micronised Fibres for Food Packaging: Cast Films and Coated Paper. Coatings 2023, 13, 1195. [Google Scholar] [CrossRef]
- Zeng, D.; Zhang, L.; Jin, S.; Zhang, Y.; Xu, C.; Zhou, K.; Lu, W. Mechanical Properties and Tensile Model of Hemp-Fiber-Reinforced Poly(Butylene Adipate-Co-Terephthalate) Composite. Materials 2022, 15, 2445. [Google Scholar] [CrossRef]
- Nunes, M.A.B.S.; Castro-Aguirre, E.; Auras, R.A.; Bardi, M.A.G.; Carvalho, L.H. Effect of Babassu Mesocarp Incorporation on the Biodegradation of a PBAT/TPS Blend. Macromol. Symp. 2019, 383, 1800043. [Google Scholar] [CrossRef]
- Lu, J.; Liu, H.; Song, F.; Xia, F.; Huang, X.; Zhang, Z.; Cheng, Y.; Wang, H. Combining Hydrothermal-Alkaline/Oxygen Pretreatment of Reed with PEG 6,000-Assisted Enzyme Hydrolysis Promote Bioethanol Fermentation and Reduce Enzyme Loading. Ind. Crops Prod. 2020, 153, 112615. [Google Scholar] [CrossRef]
- Wang, H.; Liu, X.; Liu, J.; Wu, M.; Huang, Y. Facile Dispersion Strategy to Prepare Polylactic Acid/Reed Straw Nanofiber Composites with Enhanced Mechanical and Thermal Properties. Int. J. Biol. Macromol. 2022, 221, 278–287. [Google Scholar] [CrossRef]
- Fiore, V.; Botta, L.; Scaffaro, R.; Valenza, A.; Pirrotta, A. PLA Based Biocomposites Reinforced with Arundo Donax Fillers. Compos. Sci. Technol. 2014, 105, 110–117. [Google Scholar] [CrossRef]
- Suárez, L.; Ortega, Z.; Romero, F.; Paz, R.; Marrero, M.D. Influence of Giant Reed Fibers on Mechanical, Thermal, and Disintegration Behavior of Rotomolded PLA and PE Composites. J. Polym. Environ. 2022, 30, 4848–4862. [Google Scholar] [CrossRef]
- Xie, L.; Huang, J.; Xu, H.; Feng, C.; Na, H.; Liu, F.; Xue, L.; Zhu, J. Effect of Large Sized Reed Fillers on Properties and Degradability of PBAT Composites. Polym. Compos. 2023, 44, 1752–1761. [Google Scholar] [CrossRef]
- Ferreira, F.V.; Pinheiro, I.F.; Mariano, M.; Cividanes, L.S.; Costa, J.C.M.; Nascimento, N.R.; Kimura, S.P.R.; Neto, J.C.M.; Lona, L.M.F. Environmentally Friendly Polymer Composites Based on PBAT Reinforced with Natural Fibers from the Amazon Forest. Polym. Compos. 2019, 40, 3351–3360. [Google Scholar] [CrossRef]
- Pereira Da Silva, J.S.; Farias Da Silva, J.M.; Soares, B.G.; Livi, S. Fully Biodegradable Composites Based on Poly(Butylene Adipate-Co-Terephthalate)/Peach Palm Trees Fiber. Compos. Part B Eng. 2017, 129, 117–123. [Google Scholar] [CrossRef]
- Nomadolo, N.; Dada, O.E.; Swanepoel, A.; Mokhena, T.; Muniyasamy, S. A Comparative Study on the Aerobic Biodegradation of the Biopolymer Blends of Poly(Butylene Succinate), Poly(Butylene Adipate Terephthalate) and Poly(Lactic Acid). Polymers 2022, 14, 1894. [Google Scholar] [CrossRef] [PubMed]
- GB/T 6672-2001; Plastics Film and Sheeting-Determination of Thickness by Mechanical Scanning. Standards Press of China: Beijing, China, 2002.
- Thothong, S.; Jarerat, A.; Sriroth, K.R.; Tantatherdtam, R. Degradation of Porous Starch Granules and Poly(Butylene Adipate-Co-Terephthalate)(PBAT) Blends: Soil Burial and Enzymatic Tests. AMR 2013, 651, 12–17. [Google Scholar] [CrossRef]
- Mhd Ramle, S.F.; Ahmad, N.A.; Mohammad Rawi, N.F.; Zahidan, N.S.; Geng, B.J. Physical Properties and Soil Degradation of PLA/PBAT Blends Film Reinforced with Bamboo Cellulose. IOP Conf. Ser. Earth Environ. Sci. 2020, 596, 012021. [Google Scholar] [CrossRef]
- Kawashima, N.; Yagi, T.; Kojima, K. Pilot-Scale Composting Test of Polylactic Acid for Social Implementation. Sustainability 2021, 13, 1654. [Google Scholar] [CrossRef]
- GB/T 19277-2011; Determination of the Ultimate Aerobic Biodegradability of Plastic Materials under Controlled Composting Conditions-Method by Analysis of Evolved Carbon Dioxide-Part 1: General Method. Standards Press of China: Beijing, China, 2012.
- Colli-Gongora, P.E.; Moo-Tun, N.M.; Herrera-Franco, P.J.; Valadez-Gonzalez, A. Assessing the Effect of Cellulose Nanocrystal Content on the Biodegradation Kinetics of Multiscale Polylactic Acid Composites under Controlled Thermophilic Composting Conditions. Polymers 2023, 15, 3093. [Google Scholar] [CrossRef]
- Weng, Y.-X.; Jin, Y.-J.; Meng, Q.-Y.; Wang, L.; Zhang, M.; Wang, Y.-Z. Biodegradation Behavior of Poly(Butylene Adipate-Co-Terephthalate) (PBAT), Poly(Lactic Acid) (PLA), and Their Blend under Soil Conditions. Polym. Test. 2013, 32, 918–926. [Google Scholar] [CrossRef]
- Wang, H.; Wei, D.; Zheng, A.; Xiao, H. Soil Burial Biodegradation of Antimicrobial Biodegradable PBAT Films. Polym. Degrad. Stab. 2015, 116, 14–22. [Google Scholar] [CrossRef]
- Karimi-Avargani, M.; Bazooyar, F.; Biria, D.; Zamani, A.; Skrifvars, M. The Promiscuous Potential of Cellulase in Degradation of Polylactic Acid and Its Jute Composite. Chemosphere 2021, 278, 130443. [Google Scholar] [CrossRef]
- Biundo, A.; Hromic, A.; Pavkov-Keller, T.; Gruber, K.; Quartinello, F.; Haernvall, K.; Perz, V.; Arrell, M.S.; Zinn, M.; Ribitsch, D.; et al. Characterization of a Poly(Butylene Adipate-Co-Terephthalate)-Hydrolyzing Lipase from Pelosinus Fermentans. Appl. Microbiol. Biotechnol. 2016, 100, 1753–1764. [Google Scholar] [CrossRef]
- Soulenthone, P.; Tachibana, Y.; Suzuki, M.; Mizuno, T.; Ohta, Y.; Kasuya, K. Characterization of a Poly(Butylene Adipate-Co-Terephthalate) Hydrolase from the Mesophilic Actinobacteria Rhodococcus Fascians. Polym. Degrad. Stab. 2021, 184, 109481. [Google Scholar] [CrossRef]
- Stepczyńska, M.; Rytlewski, P. Enzymatic Degradation of Flax-Fibers Reinforced Polylactide. Int. Biodeterior. Biodegrad. 2018, 126, 160–166. [Google Scholar] [CrossRef]
- Kijchavengkul, T.; Auras, R.; Rubino, M.; Selke, S.; Ngouajio, M.; Fernandez, R.T. Biodegradation and Hydrolysis Rate of Aliphatic Aromatic Polyester. Polym. Degrad. Stab. 2010, 95, 2641–2647. [Google Scholar] [CrossRef]
- Jia, H.; Zhang, M.; Weng, Y.; Li, C. Degradation of Polylactic Acid/Polybutylene Adipate-Co-Terephthalate by Coculture of Pseudomonas Mendocina and Actinomucor Elegans. J. Hazard. Mater. 2021, 403, 123679. [Google Scholar] [CrossRef] [PubMed]
- Giri, J.; Lach, R.; Grellmann, W.; Susan, M.A.B.H.; Saiter, J.; Henning, S.; Katiyar, V.; Adhikari, R. Compostable Composites of Wheat Stalk Micro- and Nanocrystalline Cellulose and Poly(Butylene Adipate-Co-terephthalate): Surface Properties and Degradation Behavior. J. Appl. Polym. Sci. 2019, 136, 48149. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, J.; Yang, Y.; Wang, Q.; Zhang, X.; Hu, H.; Zhu, J. Bio-Based Poly(Butylene Diglycolate-Co-Furandicarboxylate) Copolyesters with Balanced Mechanical, Barrier and Biodegradable Properties: A Prospective Substitute for PBAT. Polym. Degrad. Stab. 2022, 202, 110010. [Google Scholar] [CrossRef]
- Wang, H.-T.; Chen, E.-C.; Wu, T.-M. Crystallization and Enzymatic Degradation of Maleic Acid-Grafted Poly(Butylene Adipate-Co-Terephthalate)/Organically Modified Layered Zinc Phenylphosphonate Nanocomposites. J. Polym. Environ. 2020, 28, 834–843. [Google Scholar] [CrossRef]
- Kalita, N.K.; Hazarika, D.; Kalamdhad, A.; Katiyar, V. Biodegradation of Biopolymeric Composites and Blends under Different Environmental Conditions: Approach towards End-of-Life Panacea for Crop Sustainability. Bioresour. Technol. Rep. 2021, 15, 100705. [Google Scholar] [CrossRef]
Properties | Value |
---|---|
Ph | 7.20 ± 0.02 |
Total dry solids (%) a | 50.1 ± 0.13 |
Volatile solids (%) b | 18.6 ± 0.09 |
Total organic carbon content (%) | 12.62 ± 0.07 |
Cabon/nitrogen ratio | 14.9 ± 0.1 |
Samples | Time (Days) | Tm1 (°C) | Tm2 (°C) | ΔHm (J/g) | Xc (%) | Samples | Time (Days) | Tm1 (°C) | Tm2 (°C) | ΔHm (J/g) | Xc (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
PBAT-LIP | 0 | - | 126.5 | 21.57 | 18.92 | PBAT/RF-Lip | 0 | - | 125.5 | 20.25 | 22.20 |
3 | - | 127.5 | 23.18 | 20.33 | 3 | - | 128.1 | 22.84 | 25.04 | ||
9 | 124.1 | 128.5 | 24.82 | 21.77 | 9 | 123.5 | 129.8 | 23.66 | 25.94 | ||
15 | 123.9 | 129.2 | 25.77 | 22.61 | 15 | 123.3 | 130.2 | 24.75 | 27.14 | ||
PBAT-CEL | 0 | - | 126.1 | 20.66 | 18.12 | PBAT/RF-Cel | 0 | - | 125.8 | 20.98 | 23.00 |
3 | - | 126.7 | 20.84 | 18.28 | 3 | - | 126.8 | 20.27 | 22.23 | ||
9 | - | 127.3 | 21.67 | 19.01 | 9 | - | 127.2 | 22.15 | 24.29 | ||
15 | - | 127.1 | 22.51 | 19.25 | 15 | - | 127.6 | 22.84 | 25.04 | ||
PBAT-PRO | 0 | - | 125.5 | 21.53 | 18.89 | PBAT/RF-Pro | 0 | - | 126.6 | 22.07 | 24.20 |
3 | - | 126.0 | 21.89 | 19.20 | 3 | - | 127.2 | 23.17 | 25.41 | ||
9 | - | 126.2 | 22.17 | 19.45 | 9 | - | 128.8 | 24.06 | 26.38 | ||
15 | - | 127.8 | 24.67 | 21.64 | 15 | - | 129.5 | 25.59 | 28.06 | ||
PBAT-EET | 0 | - | 126.2 | 21.75 | 19.08 | PBAT/RF-Est | 0 | - | 126.4 | 22.65 | 24.84 |
3 | - | 126.8 | 22.44 | 19.68 | 3 | - | 128.0 | 23.29 | 25.54 | ||
9 | - | 126.8 | 23.66 | 20.75 | 9 | - | 128.1 | 24.95 | 27.36 | ||
15 | - | 128.3 | 24.59 | 21.57 | 15 | - | 129.1 | 25.81 | 28.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Feng, K.; Li, Y.; Xie, J.; Wang, Y.; Zhang, Z.; Hu, Q. Enhanced Biodegradation Rate of Poly(butylene adipate-co-terephthalate) Composites Using Reed Fiber. Polymers 2024, 16, 411. https://doi.org/10.3390/polym16030411
Xu J, Feng K, Li Y, Xie J, Wang Y, Zhang Z, Hu Q. Enhanced Biodegradation Rate of Poly(butylene adipate-co-terephthalate) Composites Using Reed Fiber. Polymers. 2024; 16(3):411. https://doi.org/10.3390/polym16030411
Chicago/Turabian StyleXu, Jia, Kunpeng Feng, Yuan Li, Jixing Xie, Yingsai Wang, Zhiqiang Zhang, and Qing Hu. 2024. "Enhanced Biodegradation Rate of Poly(butylene adipate-co-terephthalate) Composites Using Reed Fiber" Polymers 16, no. 3: 411. https://doi.org/10.3390/polym16030411
APA StyleXu, J., Feng, K., Li, Y., Xie, J., Wang, Y., Zhang, Z., & Hu, Q. (2024). Enhanced Biodegradation Rate of Poly(butylene adipate-co-terephthalate) Composites Using Reed Fiber. Polymers, 16(3), 411. https://doi.org/10.3390/polym16030411