Tailoring Pectin-PLA Bilayer Film for Optimal Properties as a Food Pouch Material
Abstract
:1. Introduction
2. Materials and methods
2.1. Materials
2.2. Extraction of Pectin
2.3. Bilayer Film Preparation
2.4. Experimental Design Using Response Surface Methodology (RSM)
2.5. Mechanical Properties of Films
2.6. Water Vapor Permeability (WVP) of Films
2.7. Oxygen Permeability (OP) of Films
2.8. Moisture Content and Water Solubility (WS) of Films
2.9. Thickness, Color, and Light Transmittance of Films
2.10. Structural Analysis of Films
2.11. Heal Seal Properties of Films
2.12. Biodegradation Rate of Films
2.13. Evaluation of Biodegradable Pouches for Packaging as Sauce Dressing Pouch
2.14. Statistical Analysis
3. Results and Discussions
3.1. Optimization of Bilayer Film Consisted of Pectin and PLA
3.1.1. Model Development
3.1.2. RSM Tensile Strength (TS)
3.1.3. RSM Elongation at Break (EAB)
3.1.4. RSM Water Vapor Permeability (WVP)
3.1.5. RSM Oxygen Permeability (OP)
3.1.6. RSM Solubility
3.1.7. Numerical Optimization
3.1.8. Validation Test
3.2. Characterization of Optimized Bilayers against Single Pectin and PLA Films
3.2.1. Physical Properties of Optimized Film
3.2.2. Barrier Properties of Optimized Film
Water Vapor Permeability Properties (WVP)
Oxygen Permeability Properties (OP)
Light Permeability Properties
3.2.3. Structural Analysis (FTIR)
3.2.4. Mechanical Properties
3.2.5. Heat Seal Analysis
3.2.6. Biodegradability Test
3.2.7. Stability and Leakage Test of Films as Food Pouch
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Moshood, T.D.; Nawanir, G.; Mahmud, F.; Mohamad, F.; Ahmad, M.H.; AbdulGhani, A. Sustainability of biodegradable plastics: New problem or solution to solve the global plastic pollution? Curr. Res. Green Sustain. Chem. 2022, 5, 100273. [Google Scholar] [CrossRef]
- Qin, C.; Li, Z.; Zhang, J.; Meng, H.; Zhu, C. Preparation, physicochemical properties, antioxidant, and antibacterial activities of quaternized hawthorn pectin films incorporated with thyme essential oil. Food Packag. Shelf Life 2024, 41, 101235. [Google Scholar] [CrossRef]
- de Souza Falcão, L.; de Lima Oliveira, I.; Gurgel, R.S.; de Souza, A.T.F.; de Souza Mendonça, L.; Usuda, É.O.; do Amaral, T.S.; Veggi, P.C.; Campelo, P.H.; de Vasconcellos, M.C. Development of cassava starch-based films incorporated with phenolic compounds produced by an Amazonian fungus. Int. J. Biol. Macromol. 2024, 258, 128882. [Google Scholar]
- Lim, W.S.; Kim, M.H.; Park, H.J.; Lee, M.H. Characterization of Polyvinyl Alcohol (PVA)/Polyacrylic Acid (PAA) Composite Film-Forming Solutions and Resulting Films as Affected by Beeswax Content. Polymers 2024, 16, 310. [Google Scholar] [CrossRef]
- Ran, R.; Xiong, Y.; Zheng, T.; Tang, P.; Zhang, Y.; Yang, C.; Li, G. Active and intelligent collagen films containing laccase-catalyzed mulberry extract and pickering emulsion for fish preservation and freshness indicator. Food Hydrocoll. 2024, 147, 109326. [Google Scholar] [CrossRef]
- Lakshmi, A.S.; Saravanakumar, M. Sustainable papaya plant waste and green tea residue composite films integrated with starch and gelatin for active food packaging applications. Int. J. Biol. Macromol. 2024, 260, 129153. [Google Scholar]
- Gupta, R.K.; Guha, P.; Srivastav, P.P. Natural polymers in bio-degradable/edible film: A review on environmental concerns, cold plasma technology and nanotechnology application on food packaging-A recent trends. Food Chem. Adv. 2022, 1, 100135. [Google Scholar] [CrossRef]
- Said, N.S.; Olawuyi, I.F.; Cho, H.-S.; Lee, W.-Y. Novel edible films fabricated with HG-type pectin extracted from different types of hybrid citrus peels: Effects of pectin composition on film properties. Int. J. Biol. Macromol. 2023, 253, 127238. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Gao, X.; Wu, J.; Zhou, T.; Nguyen, T.T.; Wang, Y. Biodegradable polylactic acid and its composites: Characteristics, processing, and sustainable applications in sports. Polymers 2023, 15, 3096. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Li, L.; Cao, Y.; Lan, T.; Chen, H.; Qin, Y. Effects of PLA film incorporated with ZnO nanoparticle on the quality attributes of fresh-cut apple. Nanomaterials 2017, 7, 207. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Huneault, M.A. Effect of nucleation and plasticization on the crystallization of poly (lactic acid). Polymer 2007, 48, 6855–6866. [Google Scholar] [CrossRef]
- Al-Abduljabbar, A.; Farooq, I. Electrospun polymer nanofibers: Processing, properties, and applications. Polymers 2022, 15, 65. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, W.; Zhang, H.; Dai, Y.; Dong, H.; Kong, L.; Hou, H. Effects of preparation conditions on the properties of agar/maltodextrin-beeswax pseudo-bilayer films. Carbohydr. Polym. 2020, 236, 116029. [Google Scholar] [CrossRef]
- Arbeiter, D.; Eickner, T.; Oschatz, S.; Reske, T.; Specht, O.; Teske, M.; Senz, V.; Schmitz, K.-P.; Grabow, N. Physico chemical and phase separation characterization of high molecular PLLA blended with low molecular PCL obtained from solvent cast processes. Mater. Res. Express 2020, 7, 095302. [Google Scholar] [CrossRef]
- Scaffaro, R.; Maio, A.; Gulino, F.E.; Di Salvo, C.; Arcarisi, A. Bilayer biodegradable films prepared by co-extrusion film blowing: Mechanical performance, release kinetics of an antimicrobial agent and hydrolytic degradation. Compos. Part A Appl. Sci. Manuf. 2020, 132, 105836. [Google Scholar] [CrossRef]
- Nilsuwan, K.; Guerrero, P.; de la Caba, K.; Benjakul, S.; Prodpran, T. Properties and application of bilayer films based on poly (lactic acid) and fish gelatin containing epigallocatechin gallate fabricated by thermo-compression molding. Food Hydrocoll. 2020, 105, 105792. [Google Scholar] [CrossRef]
- Liu, L.; Finkenstadt, V.; Liu, C.K.; Jin, T.; Fishman, M.; Hicks, K. Preparation of poly (lactic acid) and pectin composite films intended for applications in antimicrobial packaging. J. Appl. Polym. Sci. 2007, 106, 801–810. [Google Scholar] [CrossRef]
- Jin, T.; Liu, L.; Zhang, H.; Hicks, K. Antimicrobial activity of nisin incorporated in pectin and polylactic acid composite films against Listeria monocytogenes. Int. J. Food Sci. Technol. 2009, 44, 322–329. [Google Scholar] [CrossRef]
- Min, T.; Zhou, L.; Sun, X.; Du, H.; Bian, X.; Zhu, Z.; Wen, Y. Enzyme-responsive food packaging system based on pectin-coated poly (lactic acid) nanofiber films for controlled release of thymol. Food Res. Int. 2022, 157, 111256. [Google Scholar] [CrossRef] [PubMed]
- Çavdaroğlu, E.; Büyüktaş, D.; Farris, S.; Yemenicioğlu, A. Novel edible films of pectins extracted from low-grade fruits and stalk wastes of sun-dried figs: Effects of pectin composition and molecular properties on film characteristics. Food Hydrocoll. 2023, 135, 108136. [Google Scholar] [CrossRef]
- Vityazev, F.V.; Khramova, D.S.; Saveliev, N.Y.; Ipatova, E.A.; Burkov, A.A.; Beloserov, V.S.; Belyi, V.A.; Kononov, L.O.; Martinson, E.A.; Litvinets, S.G. Pectin–glycerol gel beads: Preparation, characterization and swelling behaviour. Carbohydr. Polym. 2020, 238, 116166. [Google Scholar] [CrossRef] [PubMed]
- ASTM International D882-02 2002; Standard Method for Tensile Properties of Thin Plastic Sheeting. Annual Book of ASTM Standards. American Society for Testing and Materials: West Conshohocken, PA, USA, 2002.
- ASTM E96; Standard Test Methods for Water Vapor Transmission of Materials. ASTM International: West Conshohocken, PA, USA, 1993.
- Zhang, P.; Zhao, Y.; Shi, Q. Characterization of a novel edible film based on gum ghatti: Effect of plasticizer type and concentration. Carbohydr. Polym. 2016, 153, 345–355. [Google Scholar] [CrossRef] [PubMed]
- Said, N.S.; Mhd Sarbon, N. A comparative study: Development and characterization of active biodegradable chicken skin and mammalian gelatin composite films incorporated with curcumin extracts. J. Food Process. Preserv. 2021, 45, e15771. [Google Scholar] [CrossRef]
- Bai, W.; Vidal, N.P.; Roman, L.; Portillo-Perez, G.; Martinez, M.M. Preparation and characterization of self-standing biofilms from compatible pectin/starch blends: Effect of pectin structure. Int. J. Biol. Macromol. 2023, 251, 126383. [Google Scholar] [CrossRef] [PubMed]
- Mao, S.; Zhang, L.; Feng, J.; Han, P.; Lu, C.; Zhang, T. Development of pH-responsive intelligent and active films based on pectin incorporating Schiff base (Phenylalanine/syringaldehyde) for monitoring and preservation of fruits. Food Chem. 2024, 435, 137626. [Google Scholar] [CrossRef] [PubMed]
- Nilsuwan, K.; Benjakul, S.; Prodpran, T. Physical/thermal properties and heat seal ability of bilayer films based on fish gelatin and poly (lactic acid). Food Hydrocoll. 2018, 77, 248–256. [Google Scholar] [CrossRef]
- Janjarasskul, T.; Tananuwong, K.; Phupoksakul, T.; Thaiphanit, S. Fast dissolving, hermetically sealable, edible whey protein isolate-based films for instant food and/or dry ingredient pouches. LWT 2020, 134, 110102. [Google Scholar] [CrossRef]
- Said, N.S.; Sarbon, N.M. Response surface methodology (RSM) of chicken skin gelatin based composite films with rice starch and curcumin incorporation. Polym. Test. 2020, 81, 106161. [Google Scholar] [CrossRef]
- Carley, K.M.; Kamneva, N.Y.; Reminga, J. Response Surface Methodology: CASOS Technical Report; Center for Computational Analysis of Social and Organizational Systems, Carnegie Mellon University: Pittsburgh, PA, USA, 2004; Volume 750. [Google Scholar]
- Nisar, T.; Wang, Z.-C.; Alim, A.; Iqbal, M.; Yang, X.; Sun, L.; Guo, Y. Citrus pectin films enriched with thinned young apple polyphenols for potential use as bio-based active packaging. CyTA-J. Food 2019, 17, 695–705. [Google Scholar] [CrossRef]
- Yang, S.; Ma, H.; Chen, Y.; Sun, M.; Liu, H.; Zhou, X. Optimization of processing parameters in poly (lactic acid)-reinforced acetylated starch composite films by response surface methodology. Iran. Polym. J. 2023, 32, 251–261. [Google Scholar] [CrossRef]
- Zhu, J.-Y.; Tang, C.-H.; Yin, S.-W.; Yang, X.-Q. Development and characterization of novel antimicrobial bilayer films based on Polylactic acid (PLA)/Pickering emulsions. Carbohydr. Polym. 2018, 181, 727–735. [Google Scholar] [CrossRef]
- Zhou, X.; Yang, R.; Wang, B.; Chen, K. Development and characterization of bilayer films based on pea starch/polylactic acid and use in the cherry tomatoes packaging. Carbohydr. Polym. 2019, 222, 114912. [Google Scholar] [CrossRef]
- Bertuzzi, M.A.; Vidaurre, E.C.; Armada, M.; Gottifredi, J. Water vapor permeability of edible starch based films. J. Food Eng. 2007, 80, 972–978. [Google Scholar] [CrossRef]
- Pirouzifard, M.; Yorghanlu, R.A.; Pirsa, S. Production of active film based on potato starch containing Zedo gum and essential oil of Salvia officinalis and study of physical, mechanical, and antioxidant properties. J. Thermoplast. Compos. Mater. 2020, 33, 915–937. [Google Scholar] [CrossRef]
- Huang, J.; Hu, Z.; Hu, L.; Li, G.; Yao, Q.; Hu, Y. Pectin-based active packaging: A critical review on preparation, physical properties and novel application in food preservation. Trends Food Sci. Technol. 2021, 118, 167–178. [Google Scholar] [CrossRef]
- Wang, P.; Fei, P.; Zhou, C.; Hong, P. Stearic acid esterified pectin: Preparation, characterization, and application in edible hydrophobic pectin/chitosan composite films. Int. J. Biol. Macromol. 2021, 186, 528–534. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Liu, Z.; Zhang, L.; Wang, X.; Li, L. Effects of plasticizer type and concentration on rheological, physico-mechanical and structural properties of chitosan/zein film. Int. J. Biol. Macromol. 2020, 143, 334–340. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.F.; Kaveh, F.; Schmid, M. Facile fabrication of transparent high-barrier poly (lactic acid)-based bilayer films with antioxidant/antimicrobial performances. Food Chem. 2022, 384, 132540. [Google Scholar] [CrossRef]
- Nikmanesh, A.; Baghaei, H.; Mohammadi Nafchi, A. Development and characterization of antioxidant and antibacterial films based on potato starch incorporating Viola odorata extract to improve the oxidative and microbiological quality of chicken fillets during refrigerated storage. Foods 2023, 12, 2955. [Google Scholar] [CrossRef]
- Jamshidian, M.; Tehrany, E.A.; Imran, M.; Jacquot, M.; Desobry, S. Poly-lactic acid: Production, applications, nanocomposites, and release studies. Compr. Rev. Food Sci. Food Saf. 2010, 9, 552–571. [Google Scholar] [CrossRef] [PubMed]
- Supreetha, R.; Bindya, S.; Deepika, P.; Vinusha, H.; Hema, B. Characterization and biological activities of synthesized citrus pectin-MgO nanocomposite. Results Chem. 2021, 3, 100156. [Google Scholar] [CrossRef]
- Satsum, A.; Busayaporn, W.; Rungswang, W.; Soontaranon, S.; Thumanu, K.; Wanapu, C. Structural and mechanical properties of biodegradable poly (lactic acid) and pectin composites: Using bionucleating agent to improve crystallization behavior. Polym. J. 2022, 54, 921–930. [Google Scholar] [CrossRef]
- Galus, S.; Kadzińska, J. Moisture sensitivity, optical, mechanical and structural properties of whey protein-based edible films incorporated with rapeseed oil. Food Technol. Biotechnol. 2016, 54, 78–89. [Google Scholar] [CrossRef]
- Ozdemir, M.; Floros, J.D. Optimization of edible whey protein films containing preservatives for mechanical and optical properties. J. Food Eng. 2008, 84, 116–123. [Google Scholar] [CrossRef]
- Nastasi, J.R.; Kontogiorgos, V.; Daygon, V.D.; Fitzgerald, M.A. Pectin-based films and coatings with plant extracts as natural preservatives: A systematic review. Trends Food Sci. Technol. 2022, 120, 193–211. [Google Scholar] [CrossRef]
- Souza, V.G.L.; Mello, I.P.; Khalid, O.; Pires, J.R.A.; Rodrigues, C.; Alves, M.M.; Santos, C.; Fernando, A.L.; Coelhoso, I. Strategies to improve the barrier and mechanical properties of pectin films for food packaging: Comparing nanocomposites with bilayers. Coatings 2022, 12, 108. [Google Scholar] [CrossRef]
- Khwaldia, K.; Basta, A.H.; Aloui, H.; El-Saied, H. Chitosan–caseinate bilayer coatings for paper packaging materials. Carbohydr. Polym. 2014, 99, 508–516. [Google Scholar] [CrossRef] [PubMed]
- Slavutsky, A.M.; Gamboni, J.E.; Bertuzzi, M.A. Formulation and characterization of bilayer films based on Brea gum and Pectin. Braz. J. Food Technol. 2018, 21, e2017213. [Google Scholar] [CrossRef]
- Murmu, S.B.; Mishra, H.N. Engineering evaluation of thickness and type of packaging materials based on the modified atmosphere packaging requirements of guava (Cv. Baruipur). LWT 2017, 78, 273–280. [Google Scholar] [CrossRef]
- Sun, L.; Sun, J.; Chen, L.; Niu, P.; Yang, X.; Guo, Y. Preparation and characterization of chitosan film incorporated with thinned young apple polyphenols as an active packaging material. Carbohydr. Polym. 2017, 163, 81–91. [Google Scholar] [CrossRef]
- Riaz, A.; Lagnika, C.; Luo, H.; Dai, Z.; Nie, M.; Hashim, M.M.; Liu, C.; Song, J.; Li, D. Chitosan-based biodegradable active food packaging film containing Chinese chive (Allium tuberosum) root extract for food application. Int. J. Biol. Macromol. 2020, 150, 595–604. [Google Scholar] [CrossRef]
- Samir, A.; Ashour, F.H.; Hakim, A.A.; Bassyouni, M. Recent advances in biodegradable polymers for sustainable applications. npj Mater. Degrad. 2022, 6, 68. [Google Scholar] [CrossRef]
- Sadeghi, A.; Razavi, S.M.A.; Shahrampour, D. Fabrication and characterization of biodegradable active films with modified morphology based on polycaprolactone-polylactic acid-green tea extract. Int. J. Biol. Macromol. 2022, 205, 341–356. [Google Scholar] [CrossRef] [PubMed]
- Chaichi, M.; Badii, F.; Mohammadi, A.; Hashemi, M. Water resistance and mechanical properties of low methoxy-pectin nanocomposite film responses to interactions of Ca2+ ions and glycerol concentrations as crosslinking agents. Food Chem. 2019, 293, 429–437. [Google Scholar] [CrossRef]
- Vargas-Torrico, M.F.; von Borries-Medrano, E.; Aguilar-Méndez, M.A. Development of gelatin/carboxymethylcellulose active films containing Hass avocado peel extract and their application as a packaging for the preservation of berries. Int. J. Biol. Macromol. 2022, 206, 1012–1025. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Chang, X.; Ding, Z.; Xu, H.; Kong, H.; Chen, F.; Wang, R.; Shan, Y.; Ding, S. Fabrication and Characterization of Eco-Friendly Polyelectrolyte Bilayer Films Based on Chitosan and Different Types of Edible Citrus Pectin. Foods 2022, 11, 3536. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xu, J.; Zhang, M.; Zheng, H.; Li, L. Preservation of soy protein-based meat analogues by using PLA/PBAT antimicrobial packaging film. Food Chem. 2022, 380, 132022. [Google Scholar] [CrossRef] [PubMed]
- Sanyang, M.; Sapuan, S.; Jawaid, M.; Ishak, M.; Sahari, J. Development and characterization of sugar palm starch and poly (lactic acid) bilayer films. Carbohydr. Polym. 2016, 146, 36–45. [Google Scholar] [CrossRef]
- González, A.; Igarzabal, C.I.A. Soy protein–Poly (lactic acid) bilayer films as biodegradable material for active food packaging. Food Hydrocoll. 2013, 33, 289–296. [Google Scholar] [CrossRef]
- Mehraj, S.; Sistla, Y.S. Optimization of process conditions for the development of pectin and glycerol based edible films: Statistical design of experiments. Electron. J. Biotechnol. 2022, 55, 27–39. [Google Scholar] [CrossRef]
- Zhou, Z.; Ma, J.; Li, K.; Zhang, W.; Li, K.; Tu, X.; Liu, L.; Xu, J.; Zhang, H. A plant leaf-mimetic membrane with controllable gas permeation for efficient preservation of perishable products. ACS Nano 2021, 15, 8742–8752. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Misra, M.; Mohanty, A.K. Challenges and new opportunities on barrier performance of biodegradable polymers for sustainable packaging. Prog. Polym. Sci. 2021, 117, 101395. [Google Scholar] [CrossRef]
- Indumathi, M.; Sarojini, K.S.; Rajarajeswari, G. Antimicrobial and biodegradable chitosan/cellulose acetate phthalate/ZnO nano composite films with optimal oxygen permeability and hydrophobicity for extending the shelf life of black grape fruits. Int. J. Biol. Macromol. 2019, 132, 1112–1120. [Google Scholar] [CrossRef] [PubMed]
- Nikvarz, N.; Khayati, G.R.; Sharafi, S. Preparation of UV absorbent films using polylactic acid and grape syrup for food packaging application. Mater. Lett. 2020, 276, 128187. [Google Scholar] [CrossRef]
- De Paola, M.G.; Paletta, R.; Lopresto, C.G.; Lio, G.E.; De Luca, A.; Chakraborty, S.; Calabrò, V. Stability of film-forming dispersions: Affects the morphology and optical properties of polymeric films. Polymers 2021, 13, 1464. [Google Scholar] [CrossRef] [PubMed]
- Said, N.; Sarbon, N. Monitoring the freshness of fish fillets by colorimetric gelatin composite film incorporated with curcumin extract. Biocatal. Agric. Biotechnol. 2023, 50, 102722. [Google Scholar] [CrossRef]
- Zou, F.; Li, H.; Dong, Y.; Tewari, G.C.; Vapaavuori, J. Optically transparent pectin/poly (methyl methacrylate) composite with thermal insulation and UV blocking properties based on anisotropic pectin cryogel. Chem. Eng. J. 2022, 439, 135738. [Google Scholar] [CrossRef]
- Chakravartula, S.S.N.; Soccio, M.; Lotti, N.; Balestra, F.; Dalla Rosa, M.; Siracusa, V. Characterization of composite edible films based on pectin/alginate/whey protein concentrate. Materials 2019, 12, 2454. [Google Scholar] [CrossRef] [PubMed]
- Liu; Liu, C. -K.; Fishman, M.L.; Hicks, K.B. Composite films from pectin and fish skin gelatin or soybean flour protein. J. Agric. Food Chem. 2007, 55, 2349–2355. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, K.; Chen, M.; Zhao, P.; Wang, Y.; Wang, X.; Han, X.; Wang, J. Development and characterization of biodegradable bilayer packaging films based on corn starch-polylactic acid as raw material. J. Food Meas. Charact. 2023, 18, 625–639. [Google Scholar] [CrossRef]
- Almohammed, F.; Koubaa, M.; Khelfa, A.; Nakaya, M.; Mhemdi, H.; Vorobiev, E. Pectin recovery from sugar beet pulp enhanced by high-voltage electrical discharges. Food Bioprod. Process. 2017, 103, 95–103. [Google Scholar] [CrossRef]
- Grassino, A.N.; Brnčić, M.; Vikić-Topić, D.; Roca, S.; Dent, M.; Brnčić, S.R. Ultrasound assisted extraction and characterization of pectin from tomato waste. Food Chem. 2016, 198, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, S.; Wang, S.; Zhou, J.; Liu, C.; Chen, C.; Xie, J. Development of controlled-release antioxidant poly (lactic acid) bilayer active film with different distributions of α-tocopherol and its application in corn oil preservation. Food Chem. 2024, 439, 138094. [Google Scholar] [CrossRef] [PubMed]
- Pirinc, F.T.; Dağdelen, A.F.; Saricaoğlu, F.T. Optical and mechanical properties of bi-layer biodegradable films from poly lactic acid and bovine gelatin. Eur. Food Sci. Eng. 2020, 1, 13–17. [Google Scholar]
- Diop, C.I.K.; Beltran, S.; Sanz, M.-T.; Garcia-Tojal, J.; Trigo-lopez, M. Designing bilayered composite films by direct agar/chitosan and citric acid-crosslinked PVA/agar layer-by-layer casting for packaging applications. Food Hydrocoll. 2023, 144, 108987. [Google Scholar] [CrossRef]
- Ren, W.; Qiang, T.; Chen, L. Recyclable and biodegradable pectin-based film with high mechanical strength. Food Hydrocoll. 2022, 129, 107643. [Google Scholar] [CrossRef]
- Jantrawut, P.; Chaiwarit, T.; Jantanasakulwong, K.; Brachais, C.H.; Chambin, O. Effect of plasticizer type on tensile property and in vitro indomethacin release of thin films based on low-methoxyl pectin. Polymers 2017, 9, 289. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Wang, S.; Lan, W.; Qin, W.; Liu, Y. Preparation and properties of polylactic acid-tea polyphenol-chitosan composite membranes. Int. J. Biol. Macromol. 2018, 117, 632–639. [Google Scholar] [CrossRef]
- Hernández-García, E.; Vargas, M.; Chiralt, A. Active starch-polyester bilayer films with surface-incorporated ferulic acid. Membranes 2022, 12, 976. [Google Scholar] [CrossRef]
- Kim, G.; Gavande, V.; Shaikh, V.; Lee, W.-K. Degradation Behavior of Poly (Lactide-Co-Glycolide) Monolayers Investigated by Langmuir Technique: Accelerating Effect. Molecules 2023, 28, 4810. [Google Scholar] [CrossRef]
Independent Variables | Unit | Symbol | Coded Variables Levels | |||
---|---|---|---|---|---|---|
Uncodified | Codified | −1 (α) | 0 | +1 (α) | ||
PLA | g (w/v) | X1 | x1 | 1.00 | 2.00 | 3.00 |
Pectin | g (w/v) | X2 | x2 | 1.00 | 2.00 | 3.00 |
Design Point | Independent Variables | Dependent Variables | |||||
---|---|---|---|---|---|---|---|
X1 | X2 | TS (MPa) | EAB (%) | WVP (g/msPa) | OP (g/ms) | Solubility (%) | |
1 | −1 | −1 | 5.00 | 126.20 | 1.18 × 10−10 | 6.30 × 10−8 | 32.48 |
2 | 0 | 0 | 6.29 | 468.25 | 1.29 × 10−10 | 9.54 × 10−8 | 23.76 |
3 | 0 | 0 | 6.56 | 437.03 | 1.75 × 10−10 | 5.17 × 10−8 | 29.16 |
4 | 0 | 0 | 6.54 | 417.60 | 1.45 × 10−10 | 1.07 × 10−7 | 28.15 |
5 | −1 | +1 | 6.08 | 73.55 | 5.40 × 10−10 | 3.20 × 10−7 | 30.56 |
6 | 0 | +1 | 4.83 | 382.75 | 2.88 × 10−10 | 1.17 × 10−7 | 42.81 |
7 | +1 | 0 | 7.89 | 579.25 | 2.17 × 10−10 | 1.55 × 10−7 | 16.46 |
8 | +1 | −1 | 2.85 | 242.58 | 1.53 × 10−10 | 1.37 × 10−7 | 14.74 |
9 | +1 | +1 | 4.78 | 257.28 | 1.85 × 10−10 | 8.89 × 10−8 | 58.99 |
10 | 0 | 0 | 7.39 | 435.25 | 1.31 × 10−10 | 1.32 × 10−7 | 24.84 |
11 | −1 | 0 | 7.00 | 80.15 | 1.54 × 10−10 | 9.38 × 10−8 | 36.72 |
12 | 0 | −1 | 2.83 | 117.68 | 1.44 × 10−10 | 9.25 × 10−8 | 28.53 |
13 | 0 | 0 | 7.20 | 402.48 | 1.94 × 10−10 | 1.10 × 10−7 | 27.19 |
Source | TS | EAB | WVP | OP | Solubility | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sum of Squares | DF | F Value | p Value | Sum of Squares | DF | F Value | p Value | Sum of Squares | DF | F Value | p Value | Sum of Squares | DF | F Value | p Value | Sum of Squares | DF | F Value | p Value | |
Model | 30.93 | 7 | 23.92 | 0.0015 | 338,677 | 7 | 82.40 | <0.0001 | 1.479 × 10−19 | 7 | 321.6 | 0.0007 | 4.882 × 10−14 | 7 | 9.01 | 0.0139 | 1528.70 | 7 | 49.76 | 0.0003 |
Linear | ||||||||||||||||||||
A | 0.39 | 1 | 2.14 | 0.2036 | 124,550 | 1 | 212.13 | <0.0001 | 1.970 × 10−21 | 1 | 3.00 | 0.1439 | 1.867 × 10−15 | 1 | 2.41 | 0.1811 | 205.21 | 1 | 46.76 | 0.0010 |
B | 2.00 | 1 | 10.38 | 0.0217 | 35,132.38 | 1 | 59.84 | 0.0006 | 1.038 × 10−20 | 1 | 15.79 | 0.0106 | 3.110 × 10−16 | 1 | 0.40 | 0.5540 | 101.93 | 1 | 23.23 | 0.0048 |
Quadratic | ||||||||||||||||||||
A2 | 1.54 | 1 | 8.35 | 0.0342 | 22,041.37 | 1 | 37.54 | 0.0017 | 2.742 × 10−21 | 1 | 4.17 | 0.0965 | 3.536 × 10−15 | 1 | 4.57 | 0.0856 | 1.46 | 1 | 0.33 | 0.5887 |
B2 | 22.72 | 1 | 123.03 | 0.0001 | 78,715.86 | 1 | 134.07 | <0.0001 | 1.071 × 10−20 | 1 | 16.30 | 0.0099 | 7.428 × 10−16 | 1 | 0.96 | 0.3723 | 192.56 | 1 | 43.88 | 0.0012 |
Interaction | ||||||||||||||||||||
AB | 0.18 | 1 | 0.98 | 0.3679 | 1134.01 | 1 | 1.93 | 0.2233 | 3.805 × 10−20 | 1 | 57.91 | 0.0006 | 2.326 × 10−14 | 1 | 30.05 | 0.0028 | 532.90 | 1 | 121.43 | 0.0001 |
Quadratic interaction | ||||||||||||||||||||
A2B | 0.082 | 1 | 0.45 | 0.3679 | 26,894.80 | 1 | 1.93 | 0.0011 | 2.298 × 10−21 | 1 | 3.50 | 0.1204 | 2.085 × 10−15 | 1 | 2.69 | 0.1616 | 15.83 | 1 | 3.61 | 0.1160 |
AB2 | 2.28 | 1 | 12.34 | 0.0170 | 40,611.97 | 1 | 69.17 | 0.0004 | 1.643 × 10−20 | 1 | 25.01 | 0.0041 | 6.463 × 10−15 | 1 | 8.35 | 0.0342 | 218.46 | 1 | 49.78 | 0.0009 |
Residual | 0.92 | 5 | 6101.63 | 5 | 3.285 × 10−21 | 5 | 3.870 × 10−15 | 5 | 21.94 | 5 | ||||||||||
Lack of fit | 0.028 | 1 | 0.12 | 0.7431 | 506.77 | 1 | 0.83 | 0.4126 | 1.840 × 10−24 | 1 | 2.242 × 10−3 | 0.9645 | 3.367 × 10−16 | 1 | 0.38 | 0.5704 | 1.44 | 1 | 0.28 | 0.6243 |
Pure error | 0.90 | 4 | 2428.89 | 4 | 3.283 × 10−21 | 4 | 3.533 × 10−15 | 4 | 20.50 | 4 | ||||||||||
Cor total | 31.85 | 12 | 341,612 | 12 | 1.512 × 10−19 | 12 | 5.269 × 10−14 | 12 | 1550.64 | 12 | ||||||||||
R2 | 0.9710 | 0.9914 | 0.9783 | 0.9265 | 0.9858 | |||||||||||||||
Adj-R2 | 0.9304 | 0.9794 | 0.9478 | 0.8237 | 0.9660 | |||||||||||||||
CV(%) | 7.43 | 7.84 | 12.94 | 23.13 | 6.91 | |||||||||||||||
AP | 15.246 | 27.342 | 20.995 | 11.755 | 26.928 |
Test | Optimized Bilayer Pectin/PLA Film | Pectin Film | PLA Film |
---|---|---|---|
Thickness (mm) | 0.229 ± 0.01 a | 0.058 ± 0.00 b | 0.069 ± 0.00 b |
L* | 94.47 ± 0.53 a | 88.20 ± 0.05 c | 92.11 ± 0.69 b |
a* | 1.09 ± 0.04 a | −6.01 ± 0.02 c | 0.23 ± 0.02 b |
b* | −2.92 ± 0.39 c | 29.42 ± 0.05 a | −0.09 ± 0.02 b |
Solubility (%) | 20.53 ± 0.22 b | 64.77 ± 2.50 a | 2.22 ± 0.03 c |
Moisture content (%) | 16.86 ± 0.43 a | 13.50 ± 1.35 b | 7.00 ± 0.31 c |
WVP × 10−7 (g/msPa) | 0.002 ± 0.00 b | 7.612 ± 1.03 a | 0.825 ± 0.03 b |
OP × 10−5 (g/ms) | 0.022 ± 0.00 b | 0.081 ± 0.00 b | 18.107 ± 1.31 a |
Visual Observation | Optimized Bilayer Pectin/PLA Film | Pectin Film | PLA Film |
---|---|---|---|
Original state | |||
After treatment, the state of the water bath (90 °C for 2 h) and 90% ethanol solution (2 h) | No leakage or penetration of an external solution into the pouch was observed, and the film structure remained intact and rigid. | A significant leakage spot was observed, and the film structure was destroyed, losing its rigidity. | A small puncture hole indicating leakage was detected, and both water and ethanol solutions were able to penetrate inside the pouch during the treatment, but the film structure remained rigid. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Said, N.S.; Olawuyi, I.F.; Lee, W.Y. Tailoring Pectin-PLA Bilayer Film for Optimal Properties as a Food Pouch Material. Polymers 2024, 16, 712. https://doi.org/10.3390/polym16050712
Said NS, Olawuyi IF, Lee WY. Tailoring Pectin-PLA Bilayer Film for Optimal Properties as a Food Pouch Material. Polymers. 2024; 16(5):712. https://doi.org/10.3390/polym16050712
Chicago/Turabian StyleSaid, Nurul Saadah, Ibukunoluwa Fola Olawuyi, and Won Young Lee. 2024. "Tailoring Pectin-PLA Bilayer Film for Optimal Properties as a Food Pouch Material" Polymers 16, no. 5: 712. https://doi.org/10.3390/polym16050712
APA StyleSaid, N. S., Olawuyi, I. F., & Lee, W. Y. (2024). Tailoring Pectin-PLA Bilayer Film for Optimal Properties as a Food Pouch Material. Polymers, 16(5), 712. https://doi.org/10.3390/polym16050712