From Embryo to Adult: Low Temperatures Affect Phase Transitions of Allium sativum L. from Germination to Flowering
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. Pre-Sowing Treatments and Germination Test
2.3. Growth and Development In Situ
2.4. Statistical Analysis
2.5. Histological Studies
2.6. Tissue Sampling for RNA/DNA Analyses and Extraction Procedures
2.7. Transcriptome Assembly
- (1)
- Trimming read-end nucleotides with quality scores <30 using fastq_quality_trimmer;
- (2)
- Read pairs were discarded if either one had less than 70% base pairs with quality score ≤ 30 as determined using fastq_quality_filter.
2.8. Abundance Estimation and Differential Expression Analysis
2.9. Functional Annotations
3. Results
3.1. Effect of Stratification on Seed Germination and Seedling Phenology
3.2. Global Transcriptome Analysis of Garlic Seeds
3.3. Differential Expression of the Genes Associated with Seed Germination
3.4. Differential Expression of Meristem Identity Genes in Germinating Seeds
4. Discussion
4.1. Seed Germination is Enhanced by Low Temperatures
4.2. Embryonic Meristem Stratification Affects Phase Transitions in Adult Plant
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Data Availability:
References
- Bouché, F.; Woods, D.P.; Amasino, R.M. Winter memory throughout the plant kingdom: Different paths to flowering. Plant Physiol. 2017, 173, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Trindade, I.; Schubert, D.; Gaudin, V. Epigenetic Regulation of Phase Transitions in Arabidopsis thaliana. In Plant Epigenetics; Rajewsky, N., Jurga, S., Barciszewski, J., Eds.; Springer: Cham, Germany, 2017; pp. 359–383. [Google Scholar]
- Huijser, P.; Schmid, M. The control of developmental phase transitions in plants. Development 2011, 138, 4117–4129. [Google Scholar] [CrossRef] [Green Version]
- Finch-Savage, W.E.; Leubner-Metzger, G. Seed dormancy and the control of germination. New Phytol. 2006, 171, 501–523. [Google Scholar] [CrossRef]
- Andrés, F.; Coupland, G. The genetic basis of flowering responses to seasonal cues. Nat. Rev. Genet. 2012, 13, 627–639. [Google Scholar] [CrossRef]
- Leida, C.; Conejero, A.; Arbona, V.; Gomez-Cadenas, A.; Llácer, G.; Badenes, M.L.; Ríos, G. Chilling-dependent release of seed and bud dormancy in peach associates to common changes in gene expression. PLoS ONE 2012, 7, e35777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vidigal, D.S.; Marques, A.C.; Willems, L.A.; Buijs, G.; Méndez-Vigo, B.; Hilhorst, H.W.; Bentsink, L.; Picó, F.X.; Alonso-Blanco, C. Altitudinal and climatic associations of seed dormancy and flowering traits evidence adaptation of annual life cycle timing in Arabidopsis thaliana. Plant Cell Environ. 2016, 39, 1737–1748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubin, M.J.; Friedman, J. The role of cold cues at different life stages on germination and flowering phenology. Am. J. Bot. 2018, 105, 749–759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khodorova, N.V.; Boitel-Conti, M. The role of temperature in the growth and flowering of geophytes. Plants 2013, 2, 699–711. [Google Scholar] [CrossRef] [Green Version]
- De Hertogh, A.; Le Nard, M. The Physiology of Flower Bulbs; Elsevier: Amsterdam, The Netherlands, 1993; p. 795. [Google Scholar]
- Duran-Nebreda, S.; Bassel, G.W. Plant behaviour in response to the environment: Information processing in the solid state. Philos. Tran. R. Soc. B. 2019, 374, 20180370. [Google Scholar] [CrossRef] [Green Version]
- Kamenetsky, R. Biodiversity of Geophytes: Phytogeography, Morphology, and Survival Strategies. In Ornamental Geophytes: From Basic Science to Sustainable Production; Kamenetsky, R., Okubo, O., Eds.; CRC Press: Boca Raton, FL, USA, 2012; pp. 57–75. [Google Scholar]
- Rabinowitch, H.D.; Kamenetsky Goldstein, R. Allium crops. In The Physiology of Vegetable Crops; Wien, C., Ed.; CABI: Wallingford, UK, 2020; pp. 581–619. [Google Scholar]
- Karjee, S.; Mahapatra, S. Physiological Studies of Ornamental Bulb Dormancy. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 2305–2314. [Google Scholar] [CrossRef]
- Lee, R.; Baldwin, S.; Kenel, F.; McCallum, J.; Macknight, R. FLOWERING LOCUS T genes control onion bulb formation and flowering. Nat. Commun. 2013, 4, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leeggangers, H.A.; Moreno-Pachon, N.; Gude, H.; Immink, R.G. Transfer of knowledge about flowering and vegetative propagation from model species to bulbous plants. Int. J. Dev. Biol. 2013, 57, 611–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leeggangers, H.A.; Rosilio-Brami, T.; Bigas-Nadal, J.; Rubin, N.; van Dijk, A.D.; Nunez de Caceres Gonzalez, F.F.; Saadon-Shitrit, S.; Nijveen, H.; Hilhorst, H.W.; Immink, R.G.; et al. Tulipa gesneriana and Lilium longiflorum PEBP genes and their putative roles in flowering time control. Plant Cell Physiol. 2018, 59, 90–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rees, A.R. Ornamental Bulbs, Corms and Tubers; CAB International: Wallingford, UK, 1992. [Google Scholar]
- Rouhi, H.R.; Shakarami, K.; Afshari, R. Seed treatments to overcome dormancy of waterlily tulip (Tulipa kaufmanniana Regel.). Aust. J. Crop Sci. 2010, 4, 718. [Google Scholar]
- Rozenblat, L. Seed Development and Germination Mechanisms in Allium Species. Master’s Thesis, The Hebrew University of Jerusalem, Jerusalem, Israel, 2017. [Google Scholar]
- Kirmizi, S.; Guleryuz, G.; Arslan, H. Effects of environmental and storage conditions on the germination of Allium species. Fresen. Environ. Bull. 2017, 26, 3470–3478. [Google Scholar]
- Bach, A.; Sochacki, D. Propagation of ornamental geophytes: Physiology and management systems. In Ornamental Geophytes: From Basic Science to Sustainable Production; Kamenetsky, R., Okubo, O., Eds.; CRC Press: Boca Raton, FL, USA, 2012; pp. 280–305. [Google Scholar]
- Ben Michael, T.; Shemesh-Mayer, E.; Kimhi, S.; Gershberg, C.; Forer, I.; de Ávila, V.T.; Rabinowitch, H.D.; Kamenetsky Goldstein, R. Temporal and spatial effect of low pre-planting temperatures on plant architecture and flowering in bolting garlic. Sci. Hortic. 2018, 242, 69–75. [Google Scholar] [CrossRef]
- Kamenetsky, R. Garlic: Botany and Horticulture. Hortic. Rev. 2007, 33, 123–172. [Google Scholar]
- Etoh, T.; Simon, P.W. Diversity, fertility and seed production of garlic. In Allium Crop Science—Recent Advances; Rabinowitch, H.D., Currah, L., Eds.; CABI Publishing: Wallingford, UK, 2002; pp. 101–117. [Google Scholar]
- Mann, L. Anatomy of the garlic bulb and factors affecting bulb development. Hilgardia 1952, 21, 195–251. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.; Puryear, J.; Cairney, J. A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Report 1993, 11, 113–116. [Google Scholar] [CrossRef]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef] [Green Version]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Langmead, B.; Trapnell, C.; Pop, M.; Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009, 10, R25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haas, B.J.; Papanicolaou, A.; Yassour, M.; Grabherr, M.; Blood, P.D.; Bowden, J.; Couger, M.B.; Eccles, D.; Li, B.; Lieber, M.; et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 2013, 8, 1494–1512. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 2015, 12, 59–60. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Conesa, A.; Götz, S.; García-Gómez, J.M.; Terol, J.; Talón, M.; Robles, M. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21, 3674–3676. [Google Scholar] [CrossRef] [Green Version]
- Upton, G.J. Fisher’s exact test. J. R. Stat. Soc. Ser. A 1992, 155, 395–402. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Supek, F.; Bošnjak, M.; Škunca, N.; Šmuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE 2011, 6, e21800. [Google Scholar] [CrossRef] [Green Version]
- Kamenetsky, R.; Faigenboim, A.; Shemesh-Mayer, E.; Ben-Michael, T.; Gershberg, C.; Kimhi, S.; Esquira, I.; Rohkin Shalom, S.; Eshel, D.; Rabinowitch, H.D.; et al. Integrated transcriptome catalogue and organ-specific profiling of gene expression in fertile garlic (Allium sativum L.). BMC Genomics 2015, 16, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baskin, C.C.; Baskin, J.M. Seeds: Ecology, Biogeography and Evolution of Dormancy and Germination, 2nd ed.; Academic Press: San Diego, CA, USA, 2014. [Google Scholar]
- Cao, D.; Hussain, A.; Cheng, H.; Peng, J. Loss of function of four DELLA genes leads to light-and gibberellin-independent seed germination in Arabidopsis. Planta 2005, 223, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Kermode, A.R. Regulatory Mechanisms in the Transition from Seed Development to Germination: Interactions between the Embryo and the. Seed Dev. Germination 1995, 41, 273. [Google Scholar]
- Brewster, J.L. Onions and Other Vegetable Alliums; CABI: Wallingford, UK, 2008; Volume 15. [Google Scholar]
- Baskin, J.M.; Baskin, C.C. A classification system for seed dormancy. Seed Sci. Res. 2004, 14, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Tuan, P.A.; Sun, M.; Nguyen, T.N.; Park, S.; Ayele, B.T. Molecular mechanisms of seed germination. In Sprouted Grains; Feng, H., Nemzer, B., DeVries, J.W., Eds.; AACC International Press: Washington, DC, USA, 2019; pp. 1–24. [Google Scholar]
- Vázquez-Ramos, J.M.; de la Paz Sánchez, M. The cell cycle and seed germination. Seed Sci. Res. 2003, 13, 113. [Google Scholar] [CrossRef]
- Nonogaki, H. Seed biology updates-highlights and new discoveries in seed dormancy and germination research. Front Plant Sci. 2017, 8, 524. [Google Scholar] [CrossRef] [Green Version]
- Graeber, K.; Linkies, A.; Steinbrecher, T.; Mummenhoff, K.; Tarkowská, D.; Turečková, V.; Ignatz, M.; Sperber, K.; Voegele, A.; De Jong, H.; et al. DELAY OF GERMINATION 1 mediates a conserved coat-dormancy mechanism for the temperature-and gibberellin-dependent control of seed germination. Proc. Natl. Acad. Sci. USA 2014, 111, E3571–E3580. [Google Scholar] [CrossRef] [Green Version]
- Huo, H.; Wei, S.; Bradford, K.J. DELAY OF GERMINATION1 (DOG1) regulates both seed dormancy and flowering time through microRNA pathways. Proc. Natl. Acad. Sci. USA 2016, 113, E2199–E2206. [Google Scholar] [CrossRef] [Green Version]
- Chen, N.; Wang, H.; Abdelmageed, H.; Veerappan, V.; Tadege, M.; Allen, R.D. HSI2/VAL1 and HSL1/VAL2 function redundantly to repress DOG1 expression in Arabidopsis seeds and seedlings. New Phytol. 2020, 227, 840–856. [Google Scholar] [CrossRef]
- Ali, A.S.; Elozeiri, A.A. Metabolic processes during seed germination. Adv. Seed Biol. 2017, 141–166. [Google Scholar]
- Li, F.H.; Yu, P.; Song, C.H.; Wu, J.J.; Tian, Y.; Wu, X.F.; Zhang, X.W.; Liu, Y.M. Differential protein analysis of Heracleum moellendorffii Hance seeds during stratification. Plant Physiol. Biochem. 2019, 145, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Hyun, Y.; Richter, R.; Coupland, G. Competence to flower: Age-controlled sensitivity to environmental cues. Plant Physiol. 2017, 173, 36–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albani, M.C.; Coupland, G. Comparative Analysis of Flowering in Annual and Perennial Plants. In Current Topics in Developmental Biology; Timmermans, M.C.P., Ed.; Academic Press: Cold Spring Harbor, NY, USA, 2010; Volume 91, pp. 323–348. [Google Scholar]
- Fornara, F.; de Montaigu, A.; Coupland, G. SnapShot: Control of flowering in Arabidopsis. Cell 2010, 141, 550. [Google Scholar] [CrossRef] [Green Version]
- Song, J.; Irwin, J.; Dean, C. Remembering the prolonged cold of winter. Curr. Biol. 2013, 23, R807–R811. [Google Scholar] [CrossRef] [Green Version]
- Mateos, J.L.; Tilmes, V.; Madrigal, P.; Severing, E.; Richter, R.; Rijkenberg, C.W.; Krajewski, P.; Coupland, G. Divergence of regulatory networks governed by the orthologous transcription factors FLC and PEP1 in Brassicaceae species. Proc. Natl. Acad. Sci. USA 2017, 114, E11037–E11046. [Google Scholar] [CrossRef] [Green Version]
- Sharma, N.; Ruelens, P.; D’hauw, M.; Maggen, T.; Dochy, N.; Torfs, S.; Kaufmann, K.; Rohde, A.; Geuten, K. A flowering locus C homolog is a vernalization-regulated repressor in Brachypodium and is cold regulated in wheat. Plant Physiol. 2017, 173, 1301–1315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogt, S.H.; Weyens, G.; Lefèbvre, M.; Bork, B.; Schechert, A.; Müller, A.E. The FLC-like gene BvFL1 is not a major regulator of vernalization response in biennial beets. Front Plant Sci. 2014, 5, 146. [Google Scholar] [CrossRef] [Green Version]
- Aljaser, J. Gladiolus Breeding for Rapid Generation Cycling for Potted Plant Production and the Discovery of Gladiolus Genes, UFC and FLX; University of Minnesota: Saint Paul, MN, USA, 2020. [Google Scholar]
- Cheng, X.F.; Wang, Z.Y. Overexpression of COL9, a CONSTANS-LIKE gene, delays flowering by reducing expression of CO and FT in Arabidopsis thaliana. Plant J. 2005, 43, 758–768. [Google Scholar] [CrossRef]
- Yang, W.; Jiang, D.; Jiang, J.; He, Y. A plant-specific histone H3 lysine 4 demethylase represses the floral transition in Arabidopsis. Plant J. 2010, 62, 663–673. [Google Scholar] [CrossRef]
- Michael, T.E.B.; Faigenboim, A.; Shemesh-Mayer, E.; Forer, I.; Gershberg, C.; Shafran, H.; Rabinowitch, H.D.; Kamenetsky-Goldstein, R. Crosstalk in the darkness: Bulb vernalization activates meristem transition via circadian rhythm and photoperiodic pathway. BMC Plant Biol. 2020, 20, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Villacorta-Martin, C.; de Cáceres González, F.F.N.; de Haan, J.; Huijben, K.; Passarinho, P.; Hamo, M.L.B.; Zaccai, M. Whole transcriptome profiling of the vernalization process in Lilium longiflorum (cultivar White Heaven) bulbs. BMC Genomics 2015, 16, 550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leeggangers, H.A.; Nijveen, H.; Bigas, J.N.; Hilhorst, H.W.; Immink, R.G. Molecular regulation of temperature-dependent floral induction in Tulipa gesneriana. Plant Physiol. 2017, 173, 1904–1919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kester, D.E.; Raddi, P.; Asay, R. Correlations of chilling requirements for germination, blooming and leafing within and among seedling populations of almond. J. Am. Soc. Hortic. Sci. 1977, 102, 145–148. [Google Scholar]
- Aslamarz, A.A.; Vahdati, K.; Rahemi, M.; Hassani, D. Relationship between Seed and Bud Chilling Requirement of Persian Walnut. Acta Hortic. 2010, 861, 279–282. [Google Scholar] [CrossRef]
- Bentsink, L.; Jowett, J.; Hanhart, C.J.; Koornneef, M. Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis. Proc. Natl. Acad. Sci. USA 2006, 103, 17042–17047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, D.; Xu, Y.; Hu, H. The changes of seed structure in Osmanthus americanus seed during cold stratification. J. Cent. South Univ. Technol. 2010, 4. Available online: https://en.cnki.com.cn/Article_en/CJFDTOTAL-ZNLB201004022.htm (accessed on 22 October 2020). (In Chinese).
- Simpson, G.G.; Dean, C. Arabidopsis, the Rosetta stone of flowering time? Science 2002, 296, 285–289. [Google Scholar] [CrossRef] [Green Version]
- Caicedo, A.L.; Stinchcombe, J.R.; Olsen, K.M.; Schmitt, J.; Purugganan, M.D. Epistatic interaction between Arabidopsis FRI and FLC flowering time genes generates a latitudinal cline in a life history trait. Proc. Natl. Acad. Sci. USA 2004, 101, 15670–15675. [Google Scholar] [CrossRef] [Green Version]
- Chiang, G.C.K.; Barua, D.; Kramer, E.M.; Amasino, R.M.; Donohue, K. Major flowering time gene, FLOWERING LOCUS C, regulates seed germination in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 2009, 106, 11661–11666. [Google Scholar] [CrossRef] [Green Version]
- Auge, G.A.; Blair, L.K.; Neville, H.; Donohue, K. Maternal vernalization and vernalization-pathway genes influence progeny seed germination. New Phytol. 2017, 216, 388–400. [Google Scholar] [CrossRef] [Green Version]
- Blair, L.; Auge, G.; Donohue, K. Effect of FLOWERING LOCUS C on seed germination depends on dormancy. Funct. Plant Biol. 2017, 44, 493–506. [Google Scholar] [CrossRef] [PubMed]
- Shemesh-Mayer, E.; Winiarczyk, K.; Błaszczyk, L.; Kosmala, A.; Rabinowitch, H.D.; Kamenetsky, R. Male gametogenesis and sterility in garlic (Allium sativum L.): Barriers on the way to fertilization and seed production. Planta 2013, 237, 103–120. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben Michael, T.E.; Rozenblat, L.; Faigenboim, A.; Shemesh-Mayer, E.; Forer, I.; Peters, R.; Klein, J.D.; Rabinowitch, H.D.; Kamenetsky Goldstein, R. From Embryo to Adult: Low Temperatures Affect Phase Transitions of Allium sativum L. from Germination to Flowering. Agronomy 2020, 10, 1651. https://doi.org/10.3390/agronomy10111651
Ben Michael TE, Rozenblat L, Faigenboim A, Shemesh-Mayer E, Forer I, Peters R, Klein JD, Rabinowitch HD, Kamenetsky Goldstein R. From Embryo to Adult: Low Temperatures Affect Phase Transitions of Allium sativum L. from Germination to Flowering. Agronomy. 2020; 10(11):1651. https://doi.org/10.3390/agronomy10111651
Chicago/Turabian StyleBen Michael, Tomer E., Liraz Rozenblat, Adi Faigenboim, Einat Shemesh-Mayer, Itzhak Forer, Ross Peters, Joshua D. Klein, Haim D. Rabinowitch, and Rina Kamenetsky Goldstein. 2020. "From Embryo to Adult: Low Temperatures Affect Phase Transitions of Allium sativum L. from Germination to Flowering" Agronomy 10, no. 11: 1651. https://doi.org/10.3390/agronomy10111651