Non-Chemical Weed Control for Plant Health and Environment: Ecological Integrated Weed Management (EIWM)
Abstract
:1. Introduction
Contemporary Weed Management: Ecological Integrated Weed Management (EIWM)
2. Limiting Weed Seed Bank
3. Site-Specific Weed Management
4. Mechanical Weeding
4.1. Mulching
4.2. Flaming
4.3. Crop Competitiveness
4.4. Intercropping
4.5. Subsidiary/Cover Crops
4.6. Green Manure
4.7. Bioherbicides, as Part of the Biological Weed Control System
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Babalola, O.O.; Truter, J.C.; Van Wyk, J.H. Lethal and teratogenic impacts of imazapyr, diquat dibromide, and glufosinate ammonium herbicide formulations using frog embryo teratogenesis assay-xenopus (FETAX). Arch. Environ. Contam. Toxicol. 2021, 80, 708–716. [Google Scholar] [CrossRef] [PubMed]
- EU. Directive 2009/128/EC of the European Parliament and of the Council of 21 October 2009 Establishing a Framework for Community Action to Achieve the Sustainable Use of Pesticides (Text with EEA Relevance). 2009. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32009L0128 (accessed on 2 March 2022).
- Powles, S.B.; Shaner, D.L. Herbicide Resistance and World Grains, 1st ed.; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar] [CrossRef]
- Délye, C.; Gardin, J.A.C.; Boucansaud, K.; Chauvel, B.; Petit, C. Non-target-site-based resistance should be the centre of attention for herbicide resistance research: Alopecurus myosuroides as an illustration. Weed Res. 2011, 51, 433–437. [Google Scholar] [CrossRef]
- Gaines, T.A.; Duke, S.O.; Morran, S.; Rigon, C.A.G.; Tranel, P.J.; Küpper, A.; Dayan, F.E. Mechanisms of evolved herbicide resistance. J. Biol. Chem. 2020, 295, 10307–10330. [Google Scholar] [CrossRef] [PubMed]
- Heap, I. The International Herbicide-Resistant Weed Database. Available online: www.weedscience.org (accessed on 20 February 2022).
- Vitorino, H.D.S.; Da Silva, A.C.D., Jr.; Gonçalves, C.G.; Martins, D. Interference of a weed community in the soybean crop in functions of sowing spacing. Rev. Ciência Agronômica 2017, 48, 605–613. [Google Scholar] [CrossRef]
- Nedeljković, D.; Knežević, S.; Božić, D.; Vrbničanin, S. Critical Time for Weed Removal in corn as influenced by planting pattern and PRE herbicides. Agriculture 2021, 11, 587. [Google Scholar] [CrossRef]
- Elezovic, I.; Datta, A.; Vrbnicanin, S.; Glamoclija, Đ.; Simic, M.; Malidza, G.; Knezevic, S.Z. Yield and yield components of imidazolinone-resistant sunflower (Helianthus annuus L.) are influenced by pre-emergence herbicide and time of post-emergence weed removal. Field Crop Res. 2012, 128, 137–146. [Google Scholar] [CrossRef]
- Ghardea, Y.; Singha, P.K.; Dubeya, R.P.; Gupta, P.K. Assessment of yield and economic losses in agriculture due to weeds in India. Crop Prot. 2018, 107, 12–18. [Google Scholar] [CrossRef]
- Tursun, N.; Datta, A.; Budak, S.; Kantarci, Z.; Knezevic, S.Z. Row spacing impacts the critical period for weed control in cotton (Gossypium hirsutum). Phytoparasitica 2016, 44, 139–149. [Google Scholar] [CrossRef]
- Jabran, K.; Chauhan, S.B. Non-Chemical Weed Control; Academic Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Monteiro, A.; Santos, S. Sustainable Approach to Weed Management: The Role of Precision Weed Management. Agronomy 2022, 12, 118. [Google Scholar] [CrossRef]
- Merfield, N.C. Integrated Weed Management in Organic Farming; Chandran, S., Unni, M.R., Sabu, T., Eds.; Woodhead Publishing Series in Food Science, Technology and Nutrition, Organic Farming; Woodhead Publishing: Sawston, UK, 2019; pp. 117–180. [Google Scholar]
- Sullivan, P. Principles of Sustainable Weed Management for Croplands; National Sustainable Agriculture Information Service; #IP139; ATTRA Publication: Butte, MT, USA, 2003; Available online: http://www.attra.org/attra-pub/weed.html (accessed on 2 March 2022).
- Swanton, C.J.; Weise, S.F. Integrated Weed Management: The Rationale and Approach. Weed Technol. 1991, 5, 657–663. [Google Scholar] [CrossRef]
- Pardo, G.; Riravololonab, M.; Munier-Jolain, N.M. Using a farming system model to evaluate cropping system prototypes: Are labour constraints and economic performances hampering the adoption of Integrated Weed Management? Eur. J. Agron. 2010, 33, 24–32. [Google Scholar] [CrossRef]
- Hossain, M.; Begum, M. Soil weed seed bank: Importance and management for sustainable crop production—A Review. J. Bangladesh Agric. Univ. 2015, 13, 221–228. [Google Scholar] [CrossRef] [Green Version]
- Merfield, C.N. False and Stale Seedbeds: The Most Effective Non-Chemical Weed Management Tools for Cropping and Pasture Establishment; The BHU Future Farming Centre: Lincoln, New Zealand, 2013; p. 23. [Google Scholar]
- Walsh, M.; Ouzman, J.; Newman, P.; Powles, S.; Llewellyn, R. High Levels of Adoption Indicate That Harvest Weed Seed Control Is New an Established Weed Control Practice in Australian Cropping. Weed Technol. 2017, 31, 341–347. [Google Scholar] [CrossRef]
- Walsh, M.J.; Broster, J.C.; Powles, S.B. iHSD mill efficacy on the seeds of Australian cropping system weeds. Weed Technol. 2018, 32, 103–108. [Google Scholar] [CrossRef] [Green Version]
- Schwartz-Lazaro, L.M.; Norsworthy, J.K.; Walsh, M.J.; Bagavathinnan, M.V. Efficacy of the Integrated Harrington Seed Destructor on Weeds of Soybean and Rice Production Systems in the Southern United States. Crop Sci. 2017, 57, 2812–2818. [Google Scholar] [CrossRef] [Green Version]
- Christensen, S.; Søgaard, H.T.; Kudsk, P.; Nørremark, M.; Lund, I.; Nadimi, E.S.; Jørgensen, R. Site specific weed control technologies. Weed Res. 2009, 49, 233–241. [Google Scholar] [CrossRef]
- Berge, T.W.; Goldberg, S.; Kaspersen, K.; Netland, J. Towards machine vision based site-specific weed management in cereals. Comput. Electron. Agric. 2012, 81, 79–86. [Google Scholar] [CrossRef]
- Tillett, N.D.; Hague, T.; Miles, S.J. Inter-row vision guidance for mechanical weed control in sugar beet. Comput. Electron. Agric. 2002, 33, 163–177. [Google Scholar] [CrossRef]
- Champ, J.; Lorieul, T.; Bonnet, P.; Maghnaoui, N.; Sereno, C.; Dessup, T.; Boursiquot, J.-M.; Audeguin, L.; Lacombe, T.; Joly, A. Categorizing plant images at the variety level: Did you say fine-grained? Pattern Recognit. Lett. 2016, 81, 71–79. [Google Scholar]
- Dyrmann, M.; Karstoft, H.; Midtiby, H.S. Plant species classification using deep convolutional neural network. Biosyst. Eng. 2016, 151, 72–80. [Google Scholar] [CrossRef]
- Peteinatos, G.G.; Weis, M.; Andújar, D.; Rueda Ayala, V.; Gerhards, R. Potential use of ground-based sensor technologies for weed detection. Pest Manag. Sci. 2014, 70, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, A.; Santos, S.; Gonçalves, P. Precision Agriculture for Crop and Livestock Farming-Brief Review. Animals 2021, 11, 2345. [Google Scholar] [CrossRef] [PubMed]
- Slaughter, D.; Giles, D.K.; Downey, D. Autonomous robotic weed control systems: A review. Comput. Electron. Agric. 2008, 61, 63–78. [Google Scholar] [CrossRef]
- Williams, M. Mechanical Weed Control. The Vegetable Farmer; ACT Publishing: Maidstone, UK, 2003; pp. 26–27. [Google Scholar]
- Peruzzi, A.; Martelloni, L.; Frasconi, C.; Fontanelli, M.; Pirchio, M.; Raffaelli, M. Machines for non-chemical intra-row weed control: A review. J. Agric. Eng. 2017, 48, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Mia, M.J.; Massetani, F.; Murri, G.; Neri, D. Sustainable alternatives to chemicals for weed control in the orchard. A review. Hortic. Sci. 2020, 47, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Fennimore, S.; Slaughter, D.; Siemens, M.; Leon, R.; Saber, M. Technology for Automation of Weed Control in Specialty Crops. Weed Technol. 2016, 30, 823–837. [Google Scholar] [CrossRef]
- Gutjahr, C.; Sökefeld, M.; Gerhards, R. Evaluation of two patch spraying systems in winter wheat and maize. Weed Res. 2012, 52, 510–519. [Google Scholar] [CrossRef]
- Pérez-Ruíz, M.; Slaughter, D.C.; Fathallah, F.A.; Gliever, C.J.; Miller, B.J. Co-robotic intra-row weed control system. Biosyst. Eng. 2014, 126, 45–55. [Google Scholar] [CrossRef]
- Balafoutis, A.T.; Van Evert, F.K.; Fountas, S. Smart farming technology trends: Economic and environmental effects, labor impact, and adoption readiness. Agronomy 2020, 10, 743. [Google Scholar] [CrossRef]
- Andújar, D.; Ribeiro, A.; Fernández-Quintanilla, C.; Dorado, J. Herbicide savings and economic benefits of several strategies to control Sorghum halepense in maize crops. Crop Prot. 2013, 50, 17–23. [Google Scholar] [CrossRef]
- Bond, W.; Grundy, A.C. Non-chemical weed management in organic farming systems. Weed Res. 2001, 41, 383–405. [Google Scholar] [CrossRef]
- Rask, A.M.; Kristoffersen, P. A review of non-chemical weed control on hard surfaces. Weed Res. 2007, 47, 370–380. [Google Scholar] [CrossRef]
- Hein, R. The Use of Rotating Brushes for Non-Chemical Weed Control on Paved Surfaces and Tarmac (OT: Börstteknik för Ogräsbekämpning på Hårdgjorda Ytor); Report 141; Department of Agricultural Engineering, Swedish University of Agricultural Sciences: Alnarp, Sweden, 1990; (In Swedish with English Summary). [Google Scholar]
- Svensson, S.E.; Schroeder, H. Non-chemical weed control on hard surfaces—Development and results from research in Sweden. In International Conference on Agriculture Engineering; Sundell, B., Norén, O., Eds.; Swedish University of Agricultural Engineering: Uppsala, Sweden, 1992; pp. 540–541. [Google Scholar]
- Wei, D.; Liping, C.; Zhijun, M.; Guangwei, W.; Ruirui, Z. Review of non-chemical weed management for green agriculture. Int. J. Agric. Biol. Eng. 2010, 3, 52–60. [Google Scholar] [CrossRef]
- Turner, B. Weeds and the Organic Farmer; The Organic Way; HDRA: Coventry, UK, 2000; Volume 160, pp. 44–45. [Google Scholar]
- Hammermeister, A.M. Organic weed management in perennial fruits. Sci. Hortic. 2016, 208, 28–42. [Google Scholar] [CrossRef]
- Chatizwa, I. Mechanical Weed Control: The Case of Hand Weeders. In Brighton Crop Protection Conference—Weeds; British Crop Protection Council: Brighton, UK, 1997; pp. 203–208. [Google Scholar]
- Ferguson, J.; Rathinasabapathi, B.; Warren, C. Southern red cedar and southern magnolia wood chip mulches for weed suppression in containerized woody ornamentals. HortTechnology 2018, 18, 266–270. [Google Scholar] [CrossRef] [Green Version]
- Kader, M.A.; Senge, M.; Mojid, M.A.; Ito, K. Recent advances in mulching materials and methods for modifying soil environment. Soil Tillage Res. 2017, 168, 155–166. [Google Scholar] [CrossRef]
- Weber, C. Biodegradable mulch films for weed suppression in the establishment year of matted-row strawberries. HortTechnology 2003, 13, 665–668. [Google Scholar] [CrossRef] [Green Version]
- Kasirajan, S.; Ngouajio, M. Polyethylene and biodegradable mulches for agricultural applications: A review. Agron. Sustain. Dev. 2012, 32, 501–529. [Google Scholar] [CrossRef]
- Hartwig, N.; Ammon, H. Cover crop and living mulches. Weed Sci. 2002, 20, 688–699. [Google Scholar] [CrossRef]
- Joogh, S.; Tobeh, A.; Golipori, A.; Ochi, M. Management of cover crops of cold cereal, on total fresh weight, total dry weight weed, yield and yield components peppermint. UCT J. Res. Sci. Eng. Technol. 2016, 4, 31–36. [Google Scholar] [CrossRef]
- Kaspar, T.C.; Kladivko, E.J.; Singer, J.W.; Morse, S.; Mutch, D. Potential and Limitations of Cover Crops, Living Mulches and Perenials to Reduce Nutrient Losses to Water Sources from Agricultural Fields. 2015. Available online: https://www.epa.gov/sites/default/files/2015-07/documents/2006_8_25_msbasin_10covercrops.pdf (accessed on 4 March 2022).
- Chen, N.; Shuai, W.; Hao, X.; Zhang, H.; Zhou, D.; Gao, J. Contamination of phthalate esters in vegetable agriculture and human cumulative risk assessment. Pedosphere 2017, 27, 439–451. [Google Scholar] [CrossRef]
- Dragumilo, A. Weed Suppression by Organic and Synthetic Mulches in Cultivated Peppermint (Mentha piperita L.). Ph.D. Thesis, Faculty of Agriculture, University of Belgrade, Beograd, Serbia, 2021. (In Serbian). [Google Scholar]
- Daar, S. Update: Flame weeding on European farms. IPM Pract. 1987, IX, 1–4. [Google Scholar]
- Anonymous. The IFOAM Norms for Organic Production and Processing. 2005. Available online: https://ifoam.bio/sites/default/files/page/files/norms_eng_v420090113.pdf (accessed on 4 March 2022).
- Melander, B.; Rasmussen, I.A.; Bàrberi, P. Integrating physical and cultural methods of weed control-examples from European research. Weed Sci. 2005, 53, 369–381. [Google Scholar] [CrossRef]
- Heverton, T.Z.; Ulloa, S.; Datta, A.; Knezevic, S.Z. Corn (Zea mays) and Soybean (Glycine max) Tolerance to Broadcast Flaming. Rev. Undergrad. Res. Agric. Life Sci. 2008, 3, 1. [Google Scholar]
- Martelloni, L.; Frasconi, C.; Fontanelli, M.; Raffaelli, M.; Peruzzi, A. Mechanical weed control on small-size dry bean and its response to cross-flaming. Span. J. Agric. Res. 2016, 14, e0203. [Google Scholar] [CrossRef] [Green Version]
- Horesh, A.; Igbariya, K.; Peleg, Z.; Lati, R.N. LPG Flaming—A Safe Post-Emergence Weed Control Tool for Direct Seeded and Bulb Onion. Agronomy 2019, 9, 786. [Google Scholar] [CrossRef] [Green Version]
- Cisneros, J.; Zandstra, B. Flame weeding effects on several weed species. Weed Technol. 2008, 22, 290–295. [Google Scholar] [CrossRef]
- Rajković, M.; Malidža, G.; Gvozdenović, Đ.; Vasić, M.; Gvozdanović-Varga, J. Osetljivost pasulja i paprike na primenu plamena u suzbijanju korova. Acta Herbol. 2011, 19, 67–76. [Google Scholar]
- Knezevic, S.Z.; Stepanovic, S.; Datta, A. Growth Stage Affects Response of Selected Weed Species to Flaming. Weed Technol. 2014, 28, 233–242. [Google Scholar] [CrossRef] [Green Version]
- Ulloa, S.M.; Datta, A.; Bruening, C.; Neilson, B.; Miller, J.; Gogos, G.; Knezevic, S.Z. Maize response to broadcast flaming at different growth stages: Effects on growth, yield and yield components. Eur. J. Agron. 2011, 34, 10–19. [Google Scholar] [CrossRef]
- Chenade, L.A.; Fontanelli, M.; Martelloni, L.; Frasconi, C.; Raffaelli, M.; Peruzzi, A. Effects of Flame Weeding on Organic Garlic Production. HortTechnology 2018, 28, 4. [Google Scholar]
- Bolat, A. Flaming and Burning as Thermal Weed Control Methods: A Review. Eurasian J. Agric. Res. 2017, 1, 66–77. [Google Scholar]
- Zimdahl, L.R. Fundamentala of Weed Science; Academic Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Lemerle, D.; Gill, G.S.; Murphy, C.E.; Walker, R.S.; Cousens, D.R.; Peltzer, S.; Coleman, R.K.; Luckett, D. Geneticimprovement and agronomy for enhanced wheatcompetitiveness with weeds. Aust. J. Agric. Res. 2001, 52, 527–548. [Google Scholar] [CrossRef]
- Muhammad, K.I.; Khanam, S.; Maniruzzaman, M.; Alam, I.; Huh, M.R. Effect of seed rate manual weeding infestation and subsequent crop performance of sesame (Sesamum indicum L.). Aust. J. Crop Sci. 2014, 8, 1065–1071. [Google Scholar]
- Vrbničanin, S.; Sarić, M.; Pavlović, D.; Božić, D. Effect of Nicosulfuron on Weedy Sunflower (Helianthus annuus L.); Abstract of Science 1st International Symposium of Iğdir; Iğdir University: Iğdir, Turkey, 2012; p. 22. [Google Scholar]
- Patterson, D.T. Suppression of purple nutsedge (Cyperus rotundus) with polyethylene film mulch. Weed Technol. 1998, 12, 275–280. [Google Scholar] [CrossRef]
- Knezevic, S.Z.; Stepanovic, S.; Datta, A.; Nedeljkovic, D.; Tursun, N. Soybean yield and yield components as influenced by the single and repeated flaming. Crop Prot. 2013, 50, 1–5. [Google Scholar] [CrossRef]
- Vandermeer, J. The Ecology of Intercropping; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar] [CrossRef]
- Jabran, K.; Mahajan, G.; Sardana, V.; Chauhan, B.S. Allelopathy for weed control in agricultural systems journal homepage. Crop Prot. 2015, 72, 57–65. [Google Scholar] [CrossRef]
- Mousavi, S.R.; Eskandari, H. A General Overview on Intercropping and Its Advantages in Sustainable Agriculture. J. Appl. Environ. Biol. Sci. 2011, 1, 482–486. [Google Scholar]
- Altieri, M.A.; Letourneau, D.K.; Davis, J.R. Developing sustainable agro-ecosystems. Bio-Science 1983, 33, 45–49. [Google Scholar]
- Eskandari, H.; Kazemi, K. Weed control in maize—cowpea intercropping system related to environmental resources consumption. Notuale Sci. Biol. 2011, 3, 57–60. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.; Bhullar, M.S.; Chauhan, B.S. Influence of tillage, cover cropping, and herbicides on weeds and productivity of dry direct-seeded rice. Soil Tillage Res. 2015, 147, 39–49. [Google Scholar] [CrossRef]
- Li, Y.; Allen, V.G.; Hou, F.; Chen, J.; Brown, P.C. Allelo-pathic influence of a wheat or rye cover crop on growth and yield of no-till cotton. Agron. J. 2013, 105, 1581–1587. [Google Scholar] [CrossRef]
- Li, X.-F.; Wang, Z.-G.; Bao, X.-G.; Sun, J.-H.; Yang, S.-C.; Wang, P.; Wang, C.-B.; Wu, J.-P.; Liu, X.-R.; Tian, X.-L.; et al. Long-term increased grain yield and soil fertility from intercropping. Nat. Sustain. 2021, 4, 943–950. [Google Scholar] [CrossRef]
- Shah, S.N.; Shroff, J.C.; Patel, R.H.; Usadadiya, V.P. Influence of intercropping and weed management practices on weed and yields of maize. Int. J. Sci. Nat. 2011, 2, 47–50. [Google Scholar]
- Zhang, Y.; Liu, J.; Zhang, J.; Liu, H.; Liu, S.; Zhai, L.; Wang, H.; Lei, Q.; Ren, T.; Yin, C. Row Ratios of Intercropping Maize and Soybean Can Affect Agronomic Efficiency of the System and Subsequent Wheat. PLoS ONE 2015, 10, e0129245. [Google Scholar] [CrossRef]
- Chang, X.; Yan, L.; Naeem, M.; Khaskheli, M.I.; Zhang, H.; Gong, G.; Zhang, M.; Song, C.; Yang, W.; Liu, T.; et al. Maize/Soybean Relay Strip Intercropping Reduces the Occurrence of Fusarium Root Rot and Changes the Diversity of the Pathogenic Fusarium Species. Pathogens 2020, 9, 211. [Google Scholar] [CrossRef] [Green Version]
- Berdjour, A.; Dugje, Y.I.; Dzomeku, I.K.; Rahman, N.A. Maize–soybean intercropping effect on yield productivity, weed control and diversity in northern Ghana. Weed Biol. Manag. 2020, 20, 69–81. [Google Scholar] [CrossRef]
- Mays, D. Cover Cropping in No-Till Systems. 2022. Available online: https://www.growingformarket.com/articles/cover-cropping-notill-systems (accessed on 2 March 2022).
- Wicks, N. Cover Crops as Cash Crops: Farmers Angle to Profit off the Practice. 2021. Available online: https://www.agri-pulse.com/articles/16942-cover-crops-as-cash-crops-farmers-angle-to-profit-off-the-practice (accessed on 25 February 2022).
- Akbari, P.; Herbert, S.J.; Hashemi, M.; Barker, V.A.; Zandvakili, R.O. Role of Cover Crops and Planting Dates for Improved Weed Suppression and Nitrogen Recovery in No till Systems. Commun. Soil Sci. Plant Anal. 2019, 50, 1722–1731. [Google Scholar]
- Döring, T.; Baddeley, J.; Brown, R.; Collins, R.; Crowley, O.; Cuttle, S.; Howlett, S.; Jones, H.; McCalman, H.; Measures, M.; et al. Using Legume-Based Mixtures to Enhance the Nitrogen Use Efficiency and Economic Viability of Cropping Systems; Final Report (LK09106/HGCA3447); HGCA: Kenilworth, UK, 2013. [Google Scholar]
- Cherr, C.M.; Scholberg, J.M.S.; McSorley, R. Green manure approaches to crop production: A synthesis. Agron. J. 2006, 98, 302–319. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.Q.; Wang, J.H.; Zhang, X. A review on the research of decomposition and nutrients release of green manure. Soil Fertil. Sci. China 2017, 240, 331–342. (In Chinese) [Google Scholar]
- Saikia, R.; Sharma, S.; Thind, H.S.; Sidhu, H.S.; Yadvinder, S. Temporal changes in biochemical indicators of soil quality in response to tillage, crop residue and green manure management in a rice-wheat system. Ecol. Indic. 2019, 103, 383–394. [Google Scholar] [CrossRef]
- Johnson, A.W.; Burton, G.W.; Sumner, D.R.; Handoo, Z. Coastal bermudagrass rotation and fallow for management of nematodes and soilborne fungi on vegetable crops. J. Nematol. 1997, 29, 710–716. [Google Scholar] [PubMed]
- Puig, C.; Alvarez-Iglesias, L.; Reigosa, M.; Pedrol, N. Eucalyptus globulus leaves incorporated as green manure for weed control in maize. Weed Sci. 2013, 61, 154–161. [Google Scholar] [CrossRef]
- Mohler, C.L.; Ellen, S.J. The mixed rotation of crops and green manure can control root-knot nematodes and soil-borne fungi on vegetable crops Crop Rotation on Organic Farms. A Planning Manual. In Sustainable Agriculture Research and Education; NRAES-177.165; Plant and Life Sciences Publishing: Ithaca, NY, USA, 2009. [Google Scholar]
- Karyoti, A.; Giannoulis, K.D.; Bartzialis, D.; Hatzigiannakis, E.; Skoufogianni, E.; Danalatos, G.N. Green Manuring for Low-input Irrigated Maize Cultivation as an Energy Crop in Mediterranean Climates. Int. J. Plant Prod. 2021, 15, 563–575. [Google Scholar] [CrossRef]
- Soomoro, A. Green manure, Inportance, Pros and Cons. 2020. Available online: https://www.environmentbuddy.com/farming/green-manure-importance-pros-and-cons/ (accessed on 15 February 2022).
- Auld, B.A.; Hetherington, S.D.; Smith, H.E. Advances in bioherbicide formulation. Weed Biol. Manag. 2003, 3, 61–67. [Google Scholar] [CrossRef]
- Boyetchko, S.M. Innovative Applications of Microbial Agents for Biological Weed Control. In Biotechnological Approaches in Biocontrol of Plant Pathogens; Mukerji, K.G., Chamola, B.P., Upadhyay, R.K., Eds.; Springer Science & Business Media: Berlin, Germany, 1999. [Google Scholar] [CrossRef]
- Curran, W.; Ward, M.; Ryan, M. Biological Weed Control. In A Practical Guide for Integrated Weed Management in Mid-Atlantic Grain Crops; Van Gessel, M., Ed.; Northeastern IPM Center: Ithaca, NY, USA, 2019; Available online: https://growiwm.org/wp-content/uploads/2019/11/IWMguide.pdf?x75253 (accessed on 2 February 2022).
- Hoagland, R.E.; Boyette, C.D.; Weaver, M.A.; Abbas, H.K. Bioherbicides: Research and risks. Toxin Rev. 2007, 26, 313–342. [Google Scholar] [CrossRef]
- Bailey, K.L. The Bioherbicide Approach to Weed Control Using Plant Pathogens. In Integrated Pest Management; Academic Press: Cambridge, MA, USA, 2014; pp. 245–266. [Google Scholar]
- Zeng, P. Bio-Herbicides: Global Development Status and Product Inventory. 2020. Available online: http://news.agropages.com/News/NewsDetail---34164.htm (accessed on 18 April 2022).
- Hasan, M.; Hamdani, M.S.A.; Rosli, A.M.; Hamdan, H. Bioherbicides: An Eco-Friendly Tool for Sustainable Weed Management. Plants 2021, 10, 1212. [Google Scholar] [CrossRef]
- Soltys, D.; Krasuska, U.; Bogatek, R.; Gniazdow, A. Allelochemicals as bio-herbicides -present and perspectives. In Herbicides-Current Research and Case Studies in Use; Price, A.J., Kelton, J.A., Eds.; InTech: Rijeka, Croatia, 2013; pp. 517–542. [Google Scholar]
- Melander, B.; Lattanzi, B.; Pannacci, E. Intelligent versus non-intelligent mechanical intra-row weed control in transplanted onion and cabbage. Crop Prot. 2015, 72, 1–8. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavlović, D.; Vrbničanin, S.; Anđelković, A.; Božić, D.; Rajković, M.; Malidža, G. Non-Chemical Weed Control for Plant Health and Environment: Ecological Integrated Weed Management (EIWM). Agronomy 2022, 12, 1091. https://doi.org/10.3390/agronomy12051091
Pavlović D, Vrbničanin S, Anđelković A, Božić D, Rajković M, Malidža G. Non-Chemical Weed Control for Plant Health and Environment: Ecological Integrated Weed Management (EIWM). Agronomy. 2022; 12(5):1091. https://doi.org/10.3390/agronomy12051091
Chicago/Turabian StylePavlović, Danijela, Sava Vrbničanin, Ana Anđelković, Dragana Božić, Miloš Rajković, and Goran Malidža. 2022. "Non-Chemical Weed Control for Plant Health and Environment: Ecological Integrated Weed Management (EIWM)" Agronomy 12, no. 5: 1091. https://doi.org/10.3390/agronomy12051091
APA StylePavlović, D., Vrbničanin, S., Anđelković, A., Božić, D., Rajković, M., & Malidža, G. (2022). Non-Chemical Weed Control for Plant Health and Environment: Ecological Integrated Weed Management (EIWM). Agronomy, 12(5), 1091. https://doi.org/10.3390/agronomy12051091