Assessment and Application of EPIC in Simulating Upland Rice Productivity, Soil Water, and Nitrogen Dynamics under Different Nitrogen Applications and Planting Windows
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiments
2.2. Data Collection, Observations, and Computations
2.3. Soil Water Contents and Evapotranspiration
2.4. Model Description
2.5. Model Calibration and Validation
3. Results
3.1. Model Calibration
3.2. Upland Rice Productivity
3.3. Water Balance Components
3.3.1. Total Water Input and Evapotranspiration
3.3.2. Surface Runoff
3.3.3. Deep Percolation Losses
3.3.4. Soil Water Contents
3.4. Nitrogen Balance and Components
3.4.1. Nitrogen Uptake
3.4.2. Net N Mineralization
3.4.3. Nitrate Loss in Surface Runoff
3.4.4. Nitrate Leaching
3.4.5. Volatilization
3.4.6. Soil Profile Nitrate
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. FAOSTAT (Online). 2020. Available online: http://www.fao.org/faostat/en/#home (accessed on 18 August 2021).
- Hussain, T.; Anothai, J.; Nualsri, C.; Soonsuwon, W. Evaluating Performance of Sixteen Upland Rice Genotypes under Field Conditions for Further Breeding Process. J. Agric. Sci. 2018, 10, 10–5539. [Google Scholar] [CrossRef]
- Laosuwan, P. Intercropping of young rubber. Suranaree J. Sci. Technol. 1996, 3, 171–179. [Google Scholar] [CrossRef]
- Hussain, T.; Gollany, H.T.; Hussain, N.; Ahmed, M.; Tahir, M.; Duangpan, S. Synchronizing Nitrogen Fertilization and Planting Date to Improve Resource Use Efficiency, Productivity, and Profitability of Upland Rice. Front. Plant Sci. 2022, 13, 895811. [Google Scholar] [CrossRef] [PubMed]
- Santiago-Arenas, R.; Dhakal, S.; Ullah, H.; Agarwal, A.; Datta, A. Seeding, Nitrogen and Irrigation Management Optimize Rice Water and Nitrogen Use Efficiency. Nutr. Cycl. Agroecosyst. 2021, 120, 325–341. [Google Scholar] [CrossRef]
- DRRD. Soil and Fertilizer Management in Rice Fields, Fertilizer Recommendations for Southern Region. In Rice Knowledge Bank.; 2017. Available online: https://webold.ricethailand.go.th/rkb3/title-index.php-file=content.php&id=043.htm#p9 (accessed on 22 December 2021).
- Norsuwan, T.; Utasuk, K.; Panyasai, T.; Sangchyoswat, C. Optimization of Nitrogen Fertilizer Application in Lowland Rice Production System of Agricultural Resource System Research Station Using Tailored Farm-Plot Database. Chiang Mai Univ. J. Nat. Sci. 2020, 19, 333–349. [Google Scholar] [CrossRef]
- Hussain, T.; Anothai, J.; Nualsri, C.; Soonsuwon, W. Application of CSM-CERES-Rice in Scheduling Irrigation and Simulating Effect of Drought Stress on Upland Rice Yield. Indian J. Agric. Res. 2018, 52, 140–145. [Google Scholar] [CrossRef]
- Suwanasa, C.; Nualsri, C.; Junsawang, N.; Soonsuwon, W. Yield Trial of Upland Rice (Oryza sativa L.) in Songkhla Province, Thailand. Songklanakarin J. Plant Sci. 2018, 5, 1–6. [Google Scholar]
- Islam, S.; Anothai, J.; Nualsri, C.; Soonsuwon, W. Correlation and Path Analysis of Phenological Traits of Thai Upland Rice Genotypes. Songklanakarin J. Plant Sci. 2020, 7, 133–142. [Google Scholar]
- Hussain, T.; Hussain, N.; Ahmed, M.; Nualsri, C.; Duangpan, S. Impact of Nitrogen Application Rates on Upland Rice Performance, Planted under Varying Sowing Times. Sustainability 2022, 14, 1997. [Google Scholar] [CrossRef]
- Wang, J.; Wang, D.; Zhang, G.; Wang, Y.; Wang, C.; Teng, Y.; Christie, P. Nitrogen and Phosphorus Leaching Losses from Intensively Managed Paddy Fields with Straw Retention. Agric. Water Manag. 2014, 141, 66–73. [Google Scholar] [CrossRef]
- Choudhury, A.T.M.A.; Khanif, Y.M. Effects of Nitrogen and Copper Fertilization on Rice Yield and Fertilizer Nitrogen Efficiency: A 15N Tracer Study. Pak. J. Sci. Ind. Res. 2004, 47, 50–55. [Google Scholar]
- Ladha, J.K.; Pathak, H.; Krupnik, T.J.; Six, J.; van Kessel, C. Efficiency of Fertilizer Nitrogen in Cereal Production: Retrospects and Prospects. In Advances in Agronomy; Academic Press: Cambridge, MA, USA, 2005; Volume 87, pp. 85–156. ISBN 0065-2113. [Google Scholar]
- Candradijaya, A.; Kusmana, C.; Syaukat, Y.; Syaufina, L.; Faqih, A. Climate Change Impact on Rice Yield and Adaptation Response of Local Farmers in Sumedang District, West Java, Indonesia. Int. J. Ecosyst. 2014, 4, 212–223. [Google Scholar] [CrossRef]
- Reading, L.P.; Bajracharya, K.; Wang, J. Simulating Deep Drainage and Nitrate Leaching on a Regional Scale: Implications for Groundwater Management in an Intensively Irrigated Area. Irrig. Sci. 2019, 37, 561–581. [Google Scholar] [CrossRef]
- Amin, M.G.M.; Akter, A.; Jahangir, M.M.R.; Ahmed, T. Leaching and Runoff Potential of Nutrient and Water Losses in Rice Field as Affected by Alternate Wetting and Drying Irrigation. J. Environ. Manag. 2021, 297, 113402. [Google Scholar] [CrossRef]
- Akter, M.; Deroo, H.; Kamal, A.M.; Kader, M.A.; Verhoeven, E.; Decock, C.; Boeckx, P.; Sleutel, S. Impact of Irrigation Management on Paddy Soil N Supply and Depth Distribution of Abiotic Drivers. Agric. Ecosyst. Environ. 2018, 261, 12–24. [Google Scholar] [CrossRef]
- Fuhrmann, I.; He, Y.; Lehndorff, E.; Brüggemann, N.; Amelung, W.; Wassmann, R.; Siemens, J. Nitrogen Fertilizer Fate after Introducing Maize and Upland-Rice into Continuous Paddy Rice Cropping Systems. Agric. Ecosyst. Environ. 2018, 258, 162–171. [Google Scholar] [CrossRef]
- Mo’allim, A.A.; Kamal, M.R.; Muhammed, H.H.; Soom, M.A.M.; Zawawi, M.A.B.M.; Wayayok, A.; Man, H.B.C. Assessment of Nutrient Leaching in Flooded Paddy Rice Field Experiment Using Hydrus-1D. Water 2018, 10, 785. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, H.; Pan, J.; Luo, J.; Liu, J.; Gu, B.; Liu, S.; Zhai, L.; Lindsey, S.; Zhang, Y.; et al. Nitrogen Application Rates Need to Be Reduced for Half of the Rice Paddy Fields in China. Agric. Ecosyst. Environ. 2018, 265, 8–14. [Google Scholar] [CrossRef]
- Mansour, E.; Desoky, E.S.M.; Ali, M.M.A.; Abdul-Hamid, M.I.; Ullah, H.; Attia, A.; Datta, A. Identifying Drought-Tolerant Genotypes of Faba Bean and Their Agro-Physiological Responses to Different Water Regimes in an Arid Mediterranean Environment. Agric. Water Manag. 2021, 247, 106754. [Google Scholar] [CrossRef]
- Boote, K.J.; Jones, J.W.; Hoogenboom, G.; White, J.W. The Role of Crop Systems Simulation in Agriculture and Environment. Int. J. Agric. Environ. Inf. Syst. 2010, 1, 41–54. [Google Scholar] [CrossRef]
- Osman, R.; Ata-ul-karim, S.T.; Naveed, M.; Ishaque, W. Multi-Model Ensembles for Assessing the Impact of Future Climate Change on Rainfed Wheat Productivity under Various Cultivars and Nitrogen Levels. Eur. J. Agron. 2022, 139, 126554. [Google Scholar] [CrossRef]
- Lu, X.; Wang, H.; Xiang, Y.; Wang, Q.; Su, T.; Gong, R.; Zhang, H.; Zhu, L.; Li, E.; Abdelghany, A.E. Determination of Nitrogen Application Ratio and Sowing Time for Improving the Future Yield of Double-Harvest Rice in Nanchang Based on the DSSAT-CERES-Rice Model. Agronomy 2022, 12, 3199. [Google Scholar] [CrossRef]
- Anothai, J.; Patanothai, A.; Pannangpetch, K.; Jogloy, S.; Boote, K.J.; Hoogenboom, G. Multi-Environment Evaluation of Peanut Lines by Model Simulation with the Cultivar Coefficients Derived from a Reduced Set of Observed Field Data. Field Crops Res. 2009, 110, 111–122. [Google Scholar] [CrossRef]
- Hussain, T.; Anothai, J.; Nualsri, C.; Ata-Ul-Karim, S.T.; Duangpan, S.; Hussain, N.; Ali, A. Assessment of CSM–CERES–Rice as a Decision Support Tool in the Identification of High-Yielding Drought-Tolerant Upland Rice Genotypes. Agronomy 2023, 13, 432. [Google Scholar] [CrossRef]
- Tan, X.; Shao, D.; Gu, W.; Liu, H. Field Analysis of Water and Nitrogen Fate in Lowland Paddy Fields under Different Water Managements Using HYDRUS-1D. Agric. Water Manag. 2015, 150, 67–80. [Google Scholar] [CrossRef]
- Liu, K.; Harrison, M.T.; Yan, H.; Liu, D.L.; Meinke, H.; Hoogenboom, G.; Wang, B.; Peng, B.; Guan, K.; Jaegermeyr, J.; et al. Silver Lining to a Climate Crisis in Multiple Prospects for Alleviating Crop Waterlogging under Future Climates. Nat. Commun. 2023, 14, 765. [Google Scholar] [CrossRef]
- Williams, J.R.; Arnold, J.G.; Kiniry, J.R.; Gassman, P.W. History of Model Development at Temple, Texas. Hydrol. Sci. J. 2008, 53, 948–960. [Google Scholar] [CrossRef]
- Le, K.N.; Jeong, J.; Reyes, M.R.; Jha, M.K.; Gassman, P.W.; Doro, L.; Hok, L.; Boulakia, S. Evaluation of the Performance of the EPIC Model for Yield and Biomass Simulation under Conservation Systems in Cambodia. Agric. Syst. 2018, 166, 90–100. [Google Scholar] [CrossRef]
- Choruma, D.J.; Balkovic, J.; Odume, O.N. Calibration and Validation of the EPIC Model for Maize Production in the Eastern Cape, South Africa. Agronomy 2019, 9, 494. [Google Scholar] [CrossRef]
- Folberth, C.; Yang, H.; Gaiser, T.; Abbaspour, K.C.; Schulin, R. Modeling Maize Yield Responses to Improvement in Nutrient, Water and Cultivar Inputs in Sub-Saharan Africa. Agric. Syst. 2013, 119, 22–34. [Google Scholar] [CrossRef]
- Zhang, J.; Balkovič, J.; Azevedo, L.B.; Skalský, R.; Bouwman, A.F.; Xu, G.; Wang, J.; Xu, M.; Yu, C. Analyzing and Modelling the Effect of Long-Term Fertilizer Management on Crop Yield and Soil Organic Carbon in China. Sci. Total Environ. 2018, 627, 361–372. [Google Scholar] [CrossRef] [PubMed]
- Ko, J.; Piccinni, G.; Steglich, E. Using EPIC Model to Manage Irrigated Cotton and Maize. Agric. Water Manag. 2009, 96, 1323–1331. [Google Scholar] [CrossRef]
- Rinaldi, M. Application of EPIC Model for Irrigation Scheduling of Sunflower in Southern Italy. Agric. Water Manag. 2001, 49, 185–196. [Google Scholar] [CrossRef]
- Lychuk, T.E.; Hill, R.L.; Izaurralde, R.C.; Momen, B.; Thomson, A.M. Evaluation of Climate Change Impacts and Effectiveness of Adaptation Options on Crop Yield in the Southeastern United States. Field Crops Res. 2017, 214, 228–238. [Google Scholar] [CrossRef]
- Xiong, W.; Skalsky, R.; Porter, C.H.; Balkovic, J.; Jones, J.W.; Yang, D. Calibration-Induced Uncertainty of the EPIC Model to Estimate Climate Change Impact on Global Maize Yield. J. Adv. Model. Earth Syst. 2016, 8, 1358–1375. [Google Scholar] [CrossRef]
- van Zelm, R.; van der Velde, M.; Balkovic, J.; Čengić, M.; Elshout, P.M.F.; Koellner, T.; Núñez, M.; Obersteiner, M.; Schmid, E.; Huijbregts, M.A.J. Spatially Explicit Life Cycle Impact Assessment for Soil Erosion from Global Crop Production. Ecosyst. Serv. 2018, 30, 220–227. [Google Scholar] [CrossRef]
- Hussain, T.; Hussain, N.; Ahmed, M.; Nualsri, C.; Duangpan, S. Responses of Lowland Rice Genotypes under Terminal Water Stress and Identification of Drought Tolerance to Stabilize Rice Productivity in Southern Thailand. Plants 2021, 10, 2565. [Google Scholar] [CrossRef]
- Hussain, N.; Ahmed, M.; Duangpan, S.; Hussain, T.; Taweekun, J. Potential Impacts of Water Stress on Rice Biomass Composition and Feedstock Availability for Bioenergy Production. Sustainability 2021, 13, 10449. [Google Scholar] [CrossRef]
- Kjeldahl, J.G.C. Neue Methode Zur Bestimmung Des Stickstoffs in Organischen Körpern. Fresenius J. Anal. Chem. 1883, 22, 366–382. [Google Scholar] [CrossRef]
- Hammad, H.M.; Farhad, W.; Abbas, F.; Fahad, S.; Saeed, S.; Nasim, W.; Bakhat, H.F. Maize Plant Nitrogen Uptake Dynamics at Limited Irrigation Water and Nitrogen. Environ. Sci. Pollut. Res. 2017, 24, 2549–2557. [Google Scholar] [CrossRef]
- Delta-T Devices Ltd. User Manual for the Profile Probe Type PR2-UM-5.0; Delta-T Devices Ltd.: Cambridge, UK, 2016; pp. 1–48. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109. [Google Scholar]
- Gerik, T.J.; Harman, W.L.; Williams, J.R.; Francis, L.; Greiner, J.; Magre, M.; Meinardus, A.; Steglich, E. User’s Guide: CroPMan (Crop Production and Management) Model, Version 3.2; Blackland Research and Extension Center: Temple, TX, USA, 2003. [Google Scholar]
- Williams, J.R. The EPIC Model. In Computer Models of Watershed Hydrology; Singh, V.P., Ed.; Water Resources Publications: Highlands Ranch, CO, USA, 1995; pp. 909–1000. [Google Scholar]
- Torbert, H.A.; Gerik, T.J.; Harman, W.L.; Williams, J.R.; Magre, M. EPIC Evaluation of the Impact of Poultry Litter Application Timing on Nutrient Losses. Commun. Soil Sci. Plant Anal. 2008, 39, 3002–3031. [Google Scholar] [CrossRef]
- Lar, N.M.; Arunrat, N.; Tint, S.; Pumijumnong, N. Assessment of the Potential Climate Change on Rice Yield in Lower Ayeyarwady Delta of Myanmar Using EPIC Model. Environ. Nat. Resour. J. 2018, 16, 45–57. [Google Scholar] [CrossRef]
- Xiong, W.; Balkovič, J.; Van Der Velde, M.; Zhang, X.; Lin, E.; Mueller, N.; Izaurralde, R.C.; Skalsk, R.; Obersteiner, M. A Calibration Procedure to Improve Global Rice Yield Simulations with EPIC. Ecol. Model. 2014, 273, 128–139. [Google Scholar] [CrossRef]
- Worou, N.O.; Gaiser, T.; Oikeh, S. Sensitive Parameters for EPIC Model Evaluation and Validity under Soil Water and Nutrients Limited Conditions with NERICA Cropping in West Africa. Afr. J. Agric. Res. 2015, 10, 2286–2299. [Google Scholar] [CrossRef]
- Worou, O.N.; Gaiser, T.; Saito, K.; Goldbach, H.; Ewert, F. Simulation of Soil Water Dynamics and Rice Crop Growth as Affected by Bunding and Fertilizer Application in Inland Valley Systems of West Africa. Agric. Ecosyst. Environ. 2012, 162, 24–35. [Google Scholar] [CrossRef]
- Wang, X.; Wang, S.; Chen, J.; Cui, H.; Wu, Y.; Ravindranath, N.H.; Rahman, A. Simulating Potential Yields of Chinese Super Hybrid Rice in Bangladesh, India and Myanmar with EPIC Model. J. Geogr. Sci. 2018, 28, 1020–1036. [Google Scholar] [CrossRef]
- Priestley, C.H.B.; Taylor, R.J. On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters. Mon. Weather Rev. 1972, 100, 81–92. [Google Scholar] [CrossRef]
- Loague, K.; Green, R.E. Statistical and Graphical Methods for Evaluating Solute Transport Models: Overview and Application. J. Contam. Hydrol. 1991, 7, 51–73. [Google Scholar] [CrossRef]
- Willmott, C.J.; Ackleson, S.G.; Davis, R.E.; Feddema, J.J.; Klink, K.M.; Legates, D.R.; O’donnell, J.; Rowe, C.M. Statistics for the Evaluation and Comparison of Models. J. Geophys. Res. Ocean. 1985, 90, 8995–9005. [Google Scholar] [CrossRef]
- Worou, O.N. Experimental Analysis and Modelling of the Rainfed Rice Cropping Systems in West Africa Experimental Analysis and Modelling of the Rainfed Rice Cropping Systems in West Africa. Ph.D. Thesis, University of Bonn, Bonn, Germany, 2012. [Google Scholar]
- Chen, Z.; Wang, Q.; Ma, J.; Zou, P.; Jiang, L. Impact of Controlled-Release Urea on Rice Yield, Nitrogen Use Efficiency and Soil Fertility in a Single Rice Cropping System. Sci. Rep. 2020, 10, 10432. [Google Scholar] [CrossRef] [PubMed]
- Jahan, A.; Islam, A.; Sarkar, M.I.U.; Iqbal, M.; Ahmed, M.N.; Islam, M.R. Nitrogen Response of Two High Yielding Rice Varieties as Influenced by Nitrogen Levels and Growing Seasons. Geol. Ecol. Landsc. 2022, 6, 24–31. [Google Scholar] [CrossRef]
- Singh, B.; Reddy, K.R.; Redoña, E.D.; Walker, T. Screening of Rice Cultivars for Morpho-Physiological Responses to Early-Season Soil Moisture Stress. Rice Sci. 2017, 24, 322–335. [Google Scholar] [CrossRef]
- Saikumar, S.; Varma, C.M.K.; Saiharini, A.; Kalmeshwer, G.P.; Nagendra, K.; Lavanya, K.; Ayyappa, D. Grain Yield Responses to Varied Level of Moisture Stress at Reproductive Stage in an Interspecific Population Derived from Swarna/O. Glaberrima Introgression Line. NJAS Wagening. J. Life Sci. 2016, 78, 111–122. [Google Scholar] [CrossRef]
- Kassie, B.T.; Asseng, S.; Rotter, R.P.; Hengsdijk, H.; Ruane, A.C.; Van Ittersum, M.K. Exploring Climate Change Impacts and Adaptation Options for Maize Production in the Central Rift Valley of Ethiopia Using Different Climate Change Scenarios and Crop Models. Clim. Change 2015, 129, 145–158. [Google Scholar] [CrossRef]
- Luo, W.; Chen, M.; Kang, Y.; Li, W.; Li, D.; Cui, Y.; Khan, S.; Luo, Y. Analysis of Crop Water Requirements and Irrigation Demands for Rice: Implications for Increasing Effective Rainfall. Agric. Water Manag. 2022, 260, 107285. [Google Scholar] [CrossRef]
- Babel, M.; Agarwal, A.; Swain, D.; Herath, S. Evaluation of Climate Change Impacts and Adaptation Measures for Rice Cultivation in Northeast Thailand. Clim. Res. 2011, 46, 137–146. [Google Scholar] [CrossRef]
- Gavrilescu, M. Water, Soil, and Plants Interactions in a Threatened Environment. Water 2021, 13, 2746. [Google Scholar] [CrossRef]
- Chen, K.; Yu, S.; Ma, T.; Ding, J.; He, P.; Dai, Y.; Zeng, G. Effects of Water and Nitrogen Management on Water Productivity, Nitrogen Use Efficiency and Leaching Loss in Rice Paddies. Water 2022, 14, 1596. [Google Scholar] [CrossRef]
- Peng, S.-Z.; Yang, S.-H.; Xu, J.-Z.; Luo, Y.-F.; Hou, H.-J. Nitrogen and Phosphorus Leaching Losses from Paddy Fields with Different Water and Nitrogen Managements. Paddy Water Environ. 2011, 9, 333–342. [Google Scholar] [CrossRef]
Nitrogen Application Rates | Planting Windows | First Season | Second Season | |
---|---|---|---|---|
N0 | Control—No N applied | Early | 30 August | 1 September |
N30 | 30 kg N ha−1 | Moderately delayed | 26 September | 6 October |
N60 | 60 kg N ha−1 | Delayed | 31 October | 3 November |
N90 | 90 kg N ha−1 |
Parameter | Description | Value |
---|---|---|
WA | Biomass energy ratio | 25 (25) |
HI | Crop-specific potential harvest index defined as proportion of rice grain in the aboveground biomass under optimal conditions | 0.46 (0.5) |
DMLA | Maximum potential leaf area index | 5.40 (6.0) |
RLAD | LAI decline factor | 0.80 (0.5) |
RBMD | Biomass/energy decline rate | 1.50 (0.5) |
HMX | Maximum crop height (m) | 1.44 (0.8) |
RDMX | Maximum root depth (m) | 1.20 (0.9) |
CNY | Fraction of nitrogen in yield (kgs·kg−1) | 0.0103 (0.0136) |
PPLP1L | Plant population at first point (plants m–2) | 105 (125) |
PPLP2L | Plant population at second point (plants m–2) | 313 (250) |
RFN0 | Average concentration of nitrogen in rainfall (ppm) | 1.50 (0.8: 0.5–1.5) |
CNO30 | Concentration of NO3–N in irrigation water (ppm) | 2.50 (0–1000) |
Parm (20) | Microbial decay rate, adjusted soil water–temperature–oxygen equation | 0.50 (0.5–1.5) |
Parm (27) | Lower limit nitrate concentration, maintained soil nitrate concentration | 0.50 (0–10) |
Parm (63) | Upper limit of N concentration in percolating water (ppm) | 100 (100–10,000) |
Parameters | First Season (2018–2019) | Second Season (2019–2020) | RMSEn | ||||
---|---|---|---|---|---|---|---|
Simulated | Observed | Difference % | Simulated | Observed | Difference % | ||
Grain yield (kg ha−1) | 5351.00 | 5271.84 ± 46.50 | 1.49 | 3813.00 | 3764.11 ± 106.00 | 1.29 | 1.0 |
Aboveground biomass (kg ha−1) | 10,490.00 | 11,484.71 ± 80.40 | −9.05 | 9156.00 | 8314.93 ± 234.20 | 9.63 | 9.3 |
Harvest index (-) | 0.42 | 0.46 ± 0.01 | −8.88 | 0.40 | 0.45 ± 0.00 | −11.76 | 9.9 |
Grain N uptake (kg ha−1) | 58.00 | 62.00 ± 0.50 | −6.66 | 40.20 | 40.28 ± 1.10 | −0.19 | 5.5 |
Total N uptake (kg ha−1) | 104.90 | 113.87 ± 0.60 | −8.20 | 82.40 | 73.04 ± 2.10 | 12.05 | 9.8 |
Evapotranspiration (mm) | 675.98 | 682.40 ± 7.90 | −0.95 | 644.90 | 661.60 ± 11.50 | 2.60 | 1.9 |
Soil profile nitrate (kg ha−1) | 48.50 | 46.56 ± 0.90 | 4.08 | 51.30 | 48.39 ± 1.10 | 5.84 | 5.2 |
Growing Season | Planting Window | Nitrogen Application Rate | Total Water Input | Actual Evapotranspiration | Surface Runoff | Deep Percolation Losses |
---|---|---|---|---|---|---|
kg ha−1 | <mm> | |||||
2018–2019 | PW1 | 0 | 1257 | 627.3 (+3) | 331.2 (+40) | 255.4 (+13) |
30 | 1257 | 638.6 (0) | 329.3 (+41) | 247.1 (+22) | ||
60 | 1257 | 648.6 (−2) | 327.6 (+40) | 239.8 (+23) | ||
90 | 1257 | 657.5 (−3) | 327.3 (+40) | 228.4 (+21) | ||
PW2 | 0 | 1092 | 607.3 | 236.3 | 225.6 | |
30 | 1092 | 638.6 | 233.8 | 201.9 | ||
60 | 1092 | 661.6 | 233.8 | 195.2 | ||
90 | 1092 | 676.0 | 233.0 | 188.6 | ||
PW3 | 0 | 857 | 551.4 (−9) | 139.5 (−41) | 157.2 (−30) | |
30 | 857 | 568.0 (−11) | 134.5 (−42) | 155.3 (−23) | ||
60 | 857 | 579.6 (−12) | 133.5 (−43) | 154.5 (−21) | ||
90 | 857 | 599.3 (−11) | 131.6 (−44) | 150.8 (−20) | ||
2019–2020 | PW1 | 0 | 1156 | 611.7 (+2) | 305.6 (+51) | 226.4 (+21) |
30 | 1156 | 620.8 (−1) | 304.1 (+54) | 216.1 (+17) | ||
60 | 1156 | 625.8 (−1) | 302.3 (+55) | 208.3 (+13) | ||
90 | 1156 | 631.8 (−2) | 300.0 (+53) | 202.3 (+17) | ||
PW2 | 0 | 978 | 601.8 | 202.4 | 186.9 | |
30 | 978 | 624.4 | 197.4 | 185.4 | ||
60 | 978 | 634.5 | 194.4 | 183.6 | ||
90 | 978 | 644.6 | 196.0 | 172.6 | ||
PW3 | 0 | 749 | 556.9 (−7) | 91.7 (−55) | 139.1 (−26) | |
30 | 749 | 565.5 (−7) | 87.2 (−56) | 137.1 (−26) | ||
60 | 749 | 569.1 (−10) | 85.4 (−56) | 136.0 (−26) | ||
90 | 749 | 572.8 (−11) | 81.6 (−58) | 136.0 (−21) |
Growing Season | Planting Window | Nitrogen Application Rate | Net N Mineralization | Nitrate Loss in Surface Runoff | Nitrate Leaching | N Volatilization | Soil Profile Nitrate |
---|---|---|---|---|---|---|---|
kg ha−1 | |||||||
2018–2019 | PW1 | 0 | 57.7 (−13) | 13.4 (+38) | 53.6 (+5) | 9.9 (−6) | 29.6 (+7) |
30 | 61.5 (−12) | 15.5 (+48) | 54.9 (+3) | 10.5 (−15) | 42.9 (+5) | ||
60 | 65.8 (−11) | 19.4 (+63) | 58.5 (+7) | 11.2 (−15) | 47.7 (+5) | ||
90 | 76.2 (−11) | 22.0 (+42) | 61.1 (+9) | 12.3 (−9) | 48.6 (+4) | ||
PW2 | 0 | 66.5 | 9.7 | 50.8 | 10.6 | 27.6 | |
30 | 69.5 | 10.4 | 53.5 | 12.3 | 40.7 | ||
60 | 73.6 | 11.9 | 54.6 | 13.2 | 45.3 | ||
90 | 85.9 | 15.5 | 56.0 | 13.6 | 46.6 | ||
PW3 | 0 | 48.5 (−27) | 8.4 (−13) | 33.3 (−34) | 7.5 (−30) | 28.5 (+3) | |
30 | 53.3 (−23) | 9.1 (−13) | 36.7 (−31) | 8.5 (−31) | 40.4 (−1) | ||
60 | 66.2 (−10) | 10.7 (−10) | 38.2 (−30) | 9.2 (−30) | 42.8 (−5) | ||
90 | 70.5 (−18) | 13.0 (−16) | 43.0 (−23) | 10.2 (−25) | 45.8 (−2) | ||
2019–2020 | PW1 | 0 | 57.1 (−9) | 6.6 (+2) | 63.8 (+27) | 8.3 (+1) | 24.8 (−3) |
30 | 59.6 (−12) | 11.1 (+20) | 65.6 (+28) | 9.8 (0) | 41.9 (+1) | ||
60 | 66.5 (−12) | 14.5 (+40) | 66.7 (+27) | 10.6 (−39) | 46.7 (+2) | ||
90 | 75.9 (−7) | 16.2 (+41) | 67.3 (+27) | 11.3 (−39) | 49.6 (+2) | ||
PW2 | 0 | 62.9 | 6.5 | 50.3 | 8.2 | 25.5 | |
30 | 67.4 | 9.3 | 51.2 | 9.8 | 41.6 | ||
60 | 75.6 | 10.3 | 52.7 | 11.7 | 45.6 | ||
90 | 81.9 | 11.5 | 53.1 | 12.3 | 48.4 | ||
PW3 | 0 | 47.8 (−24) | 4.5 (−13) | 30.6 (−39) | 7.0 (−15) | 37.0 (+45) | |
30 | 48.8 (−28) | 9.9 (+7) | 31.9 (−38) | 8.6 (−13) | 44.9 (+8) | ||
60 | 61.2 (−19) | 10.8 (+4) | 32.6 (−38) | 9.4 (−19) | 46.6 (+2) | ||
90 | 66.2 (−19) | 13.8 (+20) | 34.7 (−35) | 10.4 (−16) | 48.6 (0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, T.; Gollany, H.T.; Mulla, D.J.; Ben, Z.; Tahir, M.; Ata-Ul-Karim, S.T.; Liu, K.; Maqbool, S.; Hussain, N.; Duangpan, S. Assessment and Application of EPIC in Simulating Upland Rice Productivity, Soil Water, and Nitrogen Dynamics under Different Nitrogen Applications and Planting Windows. Agronomy 2023, 13, 2379. https://doi.org/10.3390/agronomy13092379
Hussain T, Gollany HT, Mulla DJ, Ben Z, Tahir M, Ata-Ul-Karim ST, Liu K, Maqbool S, Hussain N, Duangpan S. Assessment and Application of EPIC in Simulating Upland Rice Productivity, Soil Water, and Nitrogen Dynamics under Different Nitrogen Applications and Planting Windows. Agronomy. 2023; 13(9):2379. https://doi.org/10.3390/agronomy13092379
Chicago/Turabian StyleHussain, Tajamul, Hero T. Gollany, David J. Mulla, Zhao Ben, Muhammad Tahir, Syed Tahir Ata-Ul-Karim, Ke Liu, Saliha Maqbool, Nurda Hussain, and Saowapa Duangpan. 2023. "Assessment and Application of EPIC in Simulating Upland Rice Productivity, Soil Water, and Nitrogen Dynamics under Different Nitrogen Applications and Planting Windows" Agronomy 13, no. 9: 2379. https://doi.org/10.3390/agronomy13092379
APA StyleHussain, T., Gollany, H. T., Mulla, D. J., Ben, Z., Tahir, M., Ata-Ul-Karim, S. T., Liu, K., Maqbool, S., Hussain, N., & Duangpan, S. (2023). Assessment and Application of EPIC in Simulating Upland Rice Productivity, Soil Water, and Nitrogen Dynamics under Different Nitrogen Applications and Planting Windows. Agronomy, 13(9), 2379. https://doi.org/10.3390/agronomy13092379