Distinguishing Abiotic from Biotic Stressors in Perennial Grain Crops: Nutrient Deficiency Symptoms in Silphium integrifolium and Thinopyrum intermedium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seed Starting, Nutrient Solution Development, and Treatments
2.2. Gas Exchange
2.3. Growth Responses and Resin Production
2.4. Statistical Analysis
3. Results
3.1. Intermediate Wheatgrass
3.1.1. Aboveground Intermediate Wheatgrass Nutrient Deficiency Descriptions
3.1.2. Belowground Intermediate Wheatgrass Nutrient Deficiency Descriptions
3.1.3. Intermediate Wheatgrass Growth Responses
3.2. Silflower
3.2.1. Aboveground Silflower Nutrient Deficiency Descriptions
3.2.2. Belowground Silflower Nutrient Deficiency Descriptions
3.2.3. Silflower Growth Responses, Physiology, and Resin Content
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crews, T.E.; Carton, W.; Olsson, L. Is the Future of Agriculture Perennial? Imperatives and Opportunities to Reinvent Agriculture by Shifting from Annual Monocultures to Perennial Polycultures. Glob. Sustain. 2018, 1, e11. [Google Scholar] [CrossRef]
- Glover, J.D.; Reganold, J.P.; Bell, L.W.; Borevitz, J.; Brummer, E.C.; Buckler, E.S.; Cox, C.M.; Cox, T.S.; Crews, T.E.; Culman, S.W.; et al. Increased Food and Ecosystem Security via Perennial Grains. Science 2010, 328, 1638–1639. [Google Scholar] [CrossRef]
- Soto-Gómez, D.; Pérez-Rodríguez, P. Sustainable Agriculture through Perennial Grains: Wheat, Rice, Maize, and Other Species. A Review. Agric. Ecosyst. Environ. 2022, 325, 107747. [Google Scholar] [CrossRef]
- Adotey, N.; McClure, A.; Raper, T.; Florence, R. Visual Symptoms: A Handy Tool in Identifying Nutrient Deficiency in Corn, Cotton and Soybean. 2021. Available online: https://utia.tennessee.edu/publications/wp-content/uploads/sites/269/2023/10/W976.pdf (accessed on 20 March 2024).
- Snowball, K.; Robson, A.D. Nutrient Deficiencies and Toxicities in Wheat: A Guide for Field Identification; International Maize and Wheat Improvement Center: México, México, 1991; ISBN 978-968-6127-48-5. [Google Scholar]
- Bagci, S.A.; Ekiz, H.; Yilmaz, A.; Cakmak, I. Effects of Zinc Deficiency and Drought on Grain Yield of Field-Grown Wheat Cultivars in Central Anatolia. J. Agron. Crop Sci. 2007, 193, 198–206. [Google Scholar] [CrossRef]
- Binder, D.L.; Sander, D.H.; Walters, D.T. Maize Response to Time of Nitrogen Application as Affected by Level of Nitrogen Deficiency. Agron. J. 2000, 92, 1228–1236. [Google Scholar] [CrossRef]
- Hermans, C.; Hammond, J.P.; White, P.J.; Verbruggen, N. How Do Plants Respond to Nutrient Shortage by Biomass Allocation? Trends Plant Sci. 2006, 11, 610–617. [Google Scholar] [CrossRef]
- Bhaduri, D.; Rakshit, R.; Chakraborty, K. Primary and Secondary Nutrients-a Boon to Defense System against Plant Diseases. Int. J. Bio-Resour. Stress Manag. 2014, 5, 461. [Google Scholar] [CrossRef]
- Dordas, C. Role of Nutrients in Controlling Plant Diseases in Sustainable Agriculture. A Review. Agron. Sustain. Dev. 2008, 28, 33–46. [Google Scholar] [CrossRef]
- Ravier, C.; Meynard, J.-M.; Cohan, J.-P.; Gate, P.; Jeuffroy, M.-H. Early Nitrogen Deficiencies Favor High Yield, Grain Protein Content and N Use Efficiency in Wheat. Eur. J. Agron. 2017, 89, 16–24. [Google Scholar] [CrossRef]
- Gastal, F.; Lemaire, G.; Durand, J.-L.; Louarn, G. Quantifying Crop Responses to Nitrogen and Avenues to Improve Nitrogen-Use Efficiency. In Crop Physiology; Elsevier: Amsterdam, The Netherlands, 2015; pp. 161–206. ISBN 978-0-12-417104-6. [Google Scholar]
- Huber, D.; Römheld, V.; Weinmann, M. Relationship between Nutrition, Plant Diseases and Pests. In Marschner’s Mineral Nutrition of Higher Plants; Elsevier: Amsterdam, The Netherlands, 2012; pp. 283–298. ISBN 978-0-12-384905-2. [Google Scholar]
- Park, J.W.; Melgar, J.C.; Kunta, M. Plant Nutritional Deficiency and Its Impact on Crop Production. In Bioactive Molecules in Plant Defense: Signaling in Growth and Stress; Jogaiah, S., Abdelrahman, M., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 231–258. ISBN 978-3-030-27165-7. [Google Scholar]
- Turner, M.; Ravetta, D.; Van Tassel, D. Effect of Puccinia Silphii on Yield Components and Leaf Physiology in Silphium Integrifolium: Lessons for the Domestication of a Perennial Oilseed Crop. Sustainability 2018, 10, 696. [Google Scholar] [CrossRef]
- Vilela, A.; González-Paleo, L.; Turner, K.; Peterson, K.; Ravetta, D.; Crews, T.; Van Tassel, D. Progress and Bottlenecks in the Early Domestication of the Perennial Oilseed Silphium Integrifolium, a Sunflower Substitute. Sustainability 2018, 10, 638. [Google Scholar] [CrossRef]
- Toffolatti, S.L.; Maddalena, G.; Passera, A.; Casati, P.; Bianco, P.A.; Quaglino, F. 16-Role of Terpenes in Plant Defense to Biotic Stress. In Biocontrol Agents and Secondary Metabolites; Jogaiah, S., Ed.; Woodhead Publishing: Delhi, India, 2021; pp. 401–417. ISBN 978-0-12-822919-4. [Google Scholar]
- Bryant, J.P.; Chapin, F.S.; Klein, D.R. Carbon/Nutrient Balance of Boreal Plants in Relation to Vertebrate Herbivory. Oikos 1983, 40, 357–368. [Google Scholar] [CrossRef]
- Cassetta, E.; Peterson, K.; Bever, J.D.; Brandvain, Y.; VanTassel, D.; Lubin, T.K.; Alexander, H.M.; Byers, D.L.; Schiffner, S.; Turner, K. Adaptation of Pathogens to Their Local Plant Host, Silphium Integrifolium, along a Precipitation Gradient. Ecosphere 2023, 14, e4565. [Google Scholar] [CrossRef]
- Kauffman, P.B.; Labavitch, J.; Anderson-Prouty, A.; Ghosheh, N.S. Laboratory Experiments in Plant Physiology; Macmillan Publishers: New York, NY, USA, 1975. [Google Scholar]
- Ravetta, D.A.; Vilela, A.E.; Gonzalez-Paleo, L.; Van Tassel, D.L. Unpredicted, Rapid and Unintended Structural and Functional Changes Occurred during Early Domestication of Silphium Integrifolium, a Perennial Oilseed. Planta 2023, 258, 18. [Google Scholar] [CrossRef]
- Ravetta, D.A.; Anouti, A.; McLaughlin, S.P. Resin Production of Grindelia Accessions under Cultivation. Ind. Crops Prod. 1996, 5, 197–201. [Google Scholar] [CrossRef]
- Quacchia, A.; Ferracini, C.; Bonelli, S.; Balletto, E.; Alma, A. Can the Geranium Bronze, Cacyreus marshalli, become a threat for European biodiversity? Biodivers. Conserv. 2008, 17, 1429–1437. [Google Scholar] [CrossRef]
- Fonseca, R.B.; Branco, C.A.; Soares, P.V.; Correr-Sobrinho, L.; Haiter-Neto, F.; Fernandes-Neto, A.J.; Soares, C.J. Radiodensity of base, liner and luting dental materials. Clin. Oral Investig. 2006, 10, 114–118. [Google Scholar] [CrossRef] [PubMed]
- Hirschi, K.D. The Calcium Conundrum. Both Versatile Nutrient and Specific Signal. Plant Physiol. 2004, 136, 2438–2442. [Google Scholar] [CrossRef]
- Adcock, K.G.; Gartrell, J.W.; Brennan, R.F. CALCIUM DEFICIENCY OF WHEAT GROWN IN ACIDIC SANDY SOIL FROM SOUTHWESTERN AUSTRALIA. J. Plant Nutr. 2001, 24, 1217–1227. [Google Scholar] [CrossRef]
- Chrominski, A.; Abia, J.A.; Smith, B.N. Calcium Deficiency and Gibberellic Acid Enhance Susceptibility of Pumpkin and Sunflower Seedlings to Sclerotinia Sclerotiorum Infection. J. Plant Nutr. 1987, 10, 2181–2193. [Google Scholar] [CrossRef]
- Jungers, J.M.; DeHaan, L.R.; Betts, K.J.; Sheaffer, C.C.; Wyse, D.L. Intermediate Wheatgrass Grain and Forage Yield Responses to Nitrogen Fertilization. Agron. J. 2017, 109, 462–472. [Google Scholar] [CrossRef]
- Sainju, U.M.; Allen, B.L.; Lenssen, A.W.; Ghimire, R.P. Root Biomass, Root/Shoot Ratio, and Soil Water Content under Perennial Grasses with Different Nitrogen Rates. Field Crops Res. 2017, 210, 183–191. [Google Scholar] [CrossRef]
- Li, S.; Jensen, E.S.; Liu, N.; Zhang, Y.; Dimitrova Mårtensson, L.-M. Species Interactions and Nitrogen Use during Early Intercropping of Intermediate Wheatgrass with a White Clover Service Crop. Agronomy 2021, 11, 388. [Google Scholar] [CrossRef]
- Peni, D.; Stolarski, M.J.; Bordiean, A.; Krzyżaniak, M.; Dębowski, M. Silphium Perfoliatum—A Herbaceous Crop with Increased Interest in Recent Years for Multi-Purpose Use. Agriculture 2020, 10, 640. [Google Scholar] [CrossRef]
- Schiffner, S.; Jungers, J.M.; Hulke, B.S.; Van Tassel, D.L.; Smith, K.P.; Sheaffer, C.C. Silflower Seed and Biomass Responses to Plant Density and Nitrogen Fertilization. Agrosyst. Geosci. Environ. 2020, 3, e20118. [Google Scholar] [CrossRef]
- Kroh, G.E.; Pilon, M. Regulation of Iron Homeostasis and Use in Chloroplasts. Int. J. Mol. Sci. 2020, 21, 3395. [Google Scholar] [CrossRef] [PubMed]
- Plaxton, W.C.; Carswell, M.C. Metabolic Aspects of the Phosphate Starvation Response in Plants. In Plant Responses to Environmental Stresses: From Phytohormones to Genome Reorganization: From Phytohormones to Genome Reorganization; Lerner, H.R., Ed.; Taylor & Francis Group: Boca Raton, FL, USA, 1999; pp. 349–372. ISBN 978-1-351-42410-3. [Google Scholar]
- Loomis, W. Growth-Differentiation Balance vs. Carbohydrate-Nitrogen Ratio. Proc. Am. Soc. Hortic. Sci. 1932, 29, 240–245. [Google Scholar]
- Lorio, P.L. Growth-Differentiation Balance: A Basis for Understanding Southern Pine Beetle-Tree Interactions. For. Ecol. Manag. 1986, 14, 259–273. [Google Scholar] [CrossRef]
- Muzika, R.M.; Pregitzer, K.S.; Hanover, J.W. Changes in Terpene Production Following Nitrogen Fertilization of Grand Fir (Abies Grandis (Dougl.) Lindl.) Seedlings. Oecologia 1989, 80, 485–489. [Google Scholar] [CrossRef]
- Björkman, C.; Larsson, S.; Gref, R. Effects of Nitrogen Fertilization on Pine Needle Chemistry and Sawfly Performance. Oecologia 1991, 86, 202–209. [Google Scholar] [CrossRef]
- Kainulainen, P.; Holopainen, J.; Palomäki, V.; Holopainen, T. Effects of Nitrogen Fertilization on Secondary Chemistry and Ectomycorrhizal State of Scots Pine Seedlings and on Growth of Grey Pine Aphid. J. Chem. Ecol. 1996, 22, 617–636. [Google Scholar] [CrossRef] [PubMed]
- Wassner, D.; Ravetta, D. Nitrogen Availability, Growth, Carbon Partition and Resin Content in Grindelia Chiloensis. Ind. Crops Prod. 2007, 25, 218–230. [Google Scholar] [CrossRef]
- Marichali, A.; Dallali, S.; Ouerghemmi, S.; Sebei, H.; Casabianca, H.; Hosni, K. Responses of Nigella Sativa L. to Zinc Excess: Focus on Germination, Growth, Yield and Yield Components, Lipid and Terpene Metabolism, and Total Phenolics and Antioxidant Activities. J. Agric. Food Chem. 2016, 64, 1664–1675. [Google Scholar] [CrossRef]
- Misra, A.; Srivastava, A.; Srivastava, N.; Khan, A. Zn-Acquisition and Its Role in Growth, Photosynthesis, Photosynthetic Pigments, and Biochemical Changes in Essential Monoterpene Oil (s) of Pelargonium Graveolens. Photosynthetica 2005, 43, 153–155. [Google Scholar] [CrossRef]
- Christin, H.; Petty, P.; Ouertani, K.; Burgado, S.; Lawrence, C.; Kassem, M.A. Influence of Iron, Potassium, Magnesium, and Nitrogen Deficiencies on the Growth and Development of Sorghum (Sorghum Bicolor L.) and Sunflower (Helianthus Annuus L.) Seedlings. J. Biotech. Res 2009, 1, 64–71. [Google Scholar]
- Vilela, A.; Museo Egidio Feruglio, Consejo Nacional de Investigaciones Científicas y Técnicas, Fontana 140, Trelew 9100, Chubut, Argentina. Personal Communication, 2023.
- Brekalo, A. Nutrient Deficiency in Intermediate Wheatgrass; Zenodo: 2022. Available online: https://zenodo.org/records/5914997 (accessed on 22 March 2024).
- Brekalo, A. Nutrient Deficiency in Silphium Integrifolium; Zenodo: 2022. Available online: https://zenodo.org/records/5915000 (accessed on 22 March 2024).
- Gonzalez-Paleo, L.; Ravetta, D.A.; Vilela, A.E.; Van Tassel, D. Domestication effects on nitrogen allocation, internal recycling and nitrogen use efficiency in the perennial new crop Silphium integrifolium (Asteraceae). Ann. Appl. Biol. 2023, 182, 397–411. [Google Scholar] [CrossRef]
Nutrient | Concentration (mM) in Full Solution |
---|---|
N | 18.50000 |
P | 1.00000 |
K | 5.98000 |
Ca | 7.07000 |
Mg | 2.01000 |
S | 2.01000 |
Fe | 0.00712 |
B | 0.02330 |
Cu | 0.00030 |
Mn | 0.00460 |
Zn | 0.00088 |
Mo | 0.00011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brekalo, A.; Ravetta, D.; Thompson, Y.; Turner, M.K. Distinguishing Abiotic from Biotic Stressors in Perennial Grain Crops: Nutrient Deficiency Symptoms in Silphium integrifolium and Thinopyrum intermedium. Agronomy 2024, 14, 647. https://doi.org/10.3390/agronomy14040647
Brekalo A, Ravetta D, Thompson Y, Turner MK. Distinguishing Abiotic from Biotic Stressors in Perennial Grain Crops: Nutrient Deficiency Symptoms in Silphium integrifolium and Thinopyrum intermedium. Agronomy. 2024; 14(4):647. https://doi.org/10.3390/agronomy14040647
Chicago/Turabian StyleBrekalo, Angela, Damian Ravetta, Yvonne Thompson, and M. Kathryn Turner. 2024. "Distinguishing Abiotic from Biotic Stressors in Perennial Grain Crops: Nutrient Deficiency Symptoms in Silphium integrifolium and Thinopyrum intermedium" Agronomy 14, no. 4: 647. https://doi.org/10.3390/agronomy14040647
APA StyleBrekalo, A., Ravetta, D., Thompson, Y., & Turner, M. K. (2024). Distinguishing Abiotic from Biotic Stressors in Perennial Grain Crops: Nutrient Deficiency Symptoms in Silphium integrifolium and Thinopyrum intermedium. Agronomy, 14(4), 647. https://doi.org/10.3390/agronomy14040647