Residual Effect of Compost and Biochar Amendment on Soil Chemical, Biological, and Physical Properties and Durum Wheat Response
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Treatments
2.2. Soil Sampling and Analysis
2.2.1. Chemical and Biological Analyses
2.2.2. Soil Hydrological Analyses
2.3. Grain Yield and Quality
2.4. Data Analysis
Hierarchical Approach for Statistical-Based Assessment of the Relationship between Yield Response Parameters and Soil Indicators
3. Results
3.1. Chemical, Biological, and Physico-Hydrological Soil Properties
3.2. Grain Wheat Yield and Quality
3.3. Relationship between Treatments Investigated, Soil Properties, and Durum Wheat Response
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nattassha, R.; Handayati, Y.; Simatupang, T.M.; Siallagan, M. Understanding circular economy implementation in the agri-food supply chain: The case of an Indonesian organic fertiliser producer. Agric. Food Secur. 2020, 9, 10. [Google Scholar] [CrossRef]
- Velasco-Munoz, J.F.; Mendoza, J.M.F.; Aznar-Sanchez, J.A.; Gallego-Schmid, A. Circular economy implementation in the agricultural sector: Definition, strategies, and indicators. Resour. Conserv. Recycl. 2021, 170, 105618. [Google Scholar] [CrossRef]
- Cameron, K.C.; Di, H.J.; Moir, J.L. Nitrogen losses from the soil/plant system: A review. Ann. Appl. Biol. 2013, 162, 145–173. [Google Scholar] [CrossRef]
- Garcia, C.; Hernandez, T.; Coll, M.D.; Ondoño, S. Organic amendments for soil restoration in arid and semiarid areas: A review. AIMS Environ. Sci. 2017, 4, 640–676. [Google Scholar] [CrossRef]
- Schröder, P.; Beckers, B.; Daniels, S.; Gnädinger, F.; Maestri, E.; Marmiroli, N.; Mench, M.; Millan, R.; Obermeier, M.M.; Oustriere, N.; et al. Intensify production, transform biomass to energy and novel goods and protect soils in Europe—A vision how to mobilize marginal lands. Sci. Total Environ. 2018, 616, 1101–1123. [Google Scholar] [CrossRef] [PubMed]
- Altobelli, F.; Vargas, R.; Corti, G.; Dazzi, C.; Montanarella, L.; Monteleone, A.; Caon, L.; Piazza, M.G.; Calzolari, C.; Munafò, M.; et al. Improving soil and water conservation and ecosystem services by sustainable soil management practices: From a global to an Italian soil partnership. Ital. J. Agron. 2020, 15, 293–298. [Google Scholar] [CrossRef]
- Gross, A.; Glaser, B. Meta analysis on how manure application changes soil organic carbon storage. Sci. Rep. 2021, 11, 5516. [Google Scholar] [CrossRef] [PubMed]
- Gattullo, C.E.; Mininni, C.; Parente, A.; Montesano, F.F.; Allegretta, I.; Terzano, R. Effect of compost-based growing media on the yield and heavy metal content of four lettuce cultivars. Environ. Sci. Pol. Res. 2017, 24, 25406–25415. [Google Scholar] [CrossRef]
- Dhar, H.; Kumar, S.; Kumar, R. A review on organic waste to energy systems in India. Bioresour. Technol. 2017, 245, 1229–1237. [Google Scholar] [CrossRef]
- Yu, K.; Li, S.; Sun, X.; Cai, L.; Zhang, P.; Kang, Y.; Yu, Z.; Tong, J.; Wang, L. Application of seasonal freeze-thaw to pretreat raw material for accelerating green waste composting. J. Environ. Manag. 2019, 239, 96–102. [Google Scholar] [CrossRef]
- Yu, H.; Zou, W.; Chen, J.; Chen, H.; Yu, Z.; Huang, J.; Tang, H.; Xiangying Wei, X.; Gao, B. Biochar amendment improves crop production in problem soils: A review. J. Environ. Manag. 2019, 232, 8–21. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Monedero, M.A.; Cayuela, M.L.; Roig, A.; Jindo, K.; Mondini, C.; Bolan, N. Role of biochar as an additive in organic waste composting. Bioresour. Technol. 2018, 247, 1155–1164. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, J.; Gaunt, J.; Rondon, M. Bio-char sequestration in terrestrial ecosystems—A review. Mitig. Adapt. Strateg. Glob. Chang. 2006, 11, 395–419. [Google Scholar] [CrossRef]
- Schmidt, M.W.; Torn, M.S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.A.; Kleber, M.; Kogel-Knabner, I.; Lehmann, J.; Manning, D.A.C.; et al. Persistence of soil organic matter as an ecosystem property. Nature 2011, 478, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 2014, 99, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Ok, Y.S. Biochar soil amendment for sustainable agriculture with carbon and contaminant sequestration. Carbon Manag. 2014, 5, 255–257. [Google Scholar] [CrossRef]
- Woolf, D.; Amonette, J.E.; Street-Perrott, F.A.; Lehmann, J.; Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 2010, 1, 56. [Google Scholar] [CrossRef] [PubMed]
- Gurwick, N.P.; Moore, L.A.; Kelly, C.; Elias, P. A systematic review of biochar research, with a focus on its stability in situ and its promise as a climate mitigation strategy. PLoS ONE 2013, 8, e75932. [Google Scholar] [CrossRef] [PubMed]
- Jeffery, S.; Verheijen, F.G.A.; Van Der Velde, M.; Bastos, A.C. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Biederman, L.A.; Harpole, W.S. Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. Glob. Chang. Biol. Bioenergy 2013, 5, 202–214. [Google Scholar] [CrossRef]
- Wang, J.; Xiong, Z.; Kuzyakov, Y. Biochar stability in soil: Meta-analysis of decomposition and priming effects. Glob. Chang. Biol. Bioenergy 2016, 8, 512–523. [Google Scholar] [CrossRef]
- Hilscher, A.; Heister, K.; Siewert, C.; Knicker, H. Mineralisation and structural changes during the initial phase of microbial degradation of pyrogenic plant residues in soil. Org. Geochem. 2009, 40, 332–342. [Google Scholar] [CrossRef]
- Singh, B.P.; Cowie, A.L. Long-term influence of biochar on native organic carbon mineralisation in a low-carbon clayey soil. Sci. Rep. 2014, 4, 3687. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Abiven, S.; Torn, M.S.; Schmidt, M.W.I. Fire-derived organic carbon in soil turns over on a centennial scale. Biogeosciences 2012, 9, 2847–2857. [Google Scholar] [CrossRef]
- Crombie, K.; Masek, O.; Sohi, S.P.; Brownsort, P.; Cross, A. The effect of pyrolysis conditions on biochar stability as determined by three methods. Glob. Chang. Biol. Bioenergy 2013, 5, 122–131. [Google Scholar] [CrossRef]
- Tejada, M.; Gonzalez, J.L. Application of different organic wastes on soil properties and wheat yield. Agron. J. 2007, 99, 1597–1606. [Google Scholar] [CrossRef]
- Leogrande, R.; Vitti, C.; Stellacci, A.M.; Cocozza, C.; Ventrella, D. Response of wheat crop during transition to organic system under Mediterranean conditions. Int. J. Plant Prod. 2016, 10, 565–578. [Google Scholar]
- de Lima, W.B.; Cavalcante, A.R.; Bonifácio, B.F.; da Silva, A.A.R.; de Oliveira, L.D.; de Souza, R.F.A.; Chaves, L.H.G. Growth and development of bell peppers submitted to fertilization with biochar and nitrogen. Agric. Sci. 2019, 10, 753–762. [Google Scholar] [CrossRef]
- Gilbert, J.; Ricci-Jürgensen, M.; Ramola, A. Benefits of Compost and Anaerobic Digestate When Applied to Soil. Report ISWA. 2020. Available online: https://www.altereko.it/wp-content/uploads/2020/03/Report-2-Benefits-of-Compost-and-Anaerobic-Digestate.pdf (accessed on 1 September 2023).
- Mohawesh, O.; Albalasmeh, A.; Gharaibeh, M.; Deb, S.; Simpson, C.; Singh, S.; Al Soub, B.; Hanandeh, A.E. Potential Use of Biochar as an Amendment to Improve Soil Fertility and Tomato and Bell Pepper Growth Performance under Arid Conditions. J. Soil Sci. Plant Nutr. 2021, 21, 2946–2956. [Google Scholar] [CrossRef]
- González-Pernas, F.M.; Grajera-Antolín, C.; García-Cámara, O.; González, M. Effects of Biochar on Biointensive Horticultural Crops and Its Economic Viability in the Mediterranean Climate. Energies 2022, 15, 3407. [Google Scholar] [CrossRef]
- Zeng, G.; Wu, H.; Liang, J.; Guo, S.; Huang, L.; Xu, P.; Liu, Y.; Yuan, Y.; He, X.; He, Y. Efficiency of biochar and compost (or composting) combined amendments for reducing Cd, Cu, Zn and Pb bioavailability, mobility and ecological risk in wetland soil. RSC Adv. 2015, 5, 34541. [Google Scholar] [CrossRef]
- van Kessel, J.S.; Reeves, J.B. Nitrogen mineralization potential of dairy manures and its relationship to composition. Biol. Fertil. Soils 2002, 36, 118–123. [Google Scholar] [CrossRef]
- Eghball, B.; Ginting, D.; Gilley, J.E. Residual Effects of Manure and Compost Applications on Corn Production and Soil Properties. Agron. J. 2004, 96, 442–447. [Google Scholar] [CrossRef]
- Ginting, D.; Kessavalou, A.; Eghball, B.; Doran, J.W. Greenhouse gas emissions and soil indicators four years after manure and compost applications. J. Environ. Qual. 2003, 32, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Reeve, J.R.; Endelman, J.B.; Miller, B.E.; Hole, D.J. Residual Effects of Compost on Soil Quality and Dryland Wheat Yield Sixteen Years after Compost Application. Soil Sci. Soc. Am. J. 2012, 76, 278–285. [Google Scholar] [CrossRef]
- Adekiya, A.O.; Agbede, T.M.; Aboyeji, C.M.; Dunsin, O.; Simeon, V.T. Biochar and poultry manure effects on soil properties and radish (Raphanus sativus L.) yield. Biol. Agric. Hortic. 2019, 35, 33–45. [Google Scholar] [CrossRef]
- Trupiano, D.; Cocozza, C.; Baronti, S.; Amendola, C.; Vaccari, F.P.; Lustrato, G.; Di Lonardo, S.; Fantasma, F.; Tognetti, R.; Scippa, G.S. The Effects of Biochar and Its Combination with Compost on Lettuce (Lactuca sativa L.) Growth, Soil Properties, and Soil Microbial Activity and Abundance. Int. J. Agron. 2017, 2017, 3158207. [Google Scholar] [CrossRef]
- Castellini, M.; Ventrella, D. Impact of conventional and minimum tillage on soil hydraulic conductivity in typical cropping system in Southern Italy. Soil Tillage Res. 2012, 124, 47–56. [Google Scholar] [CrossRef]
- Vitti, C.; Stellacci, A.M.; Leogrande, R.; Mastrangelo, M.; Cazzato, E.; Ventrella, D. Assessment of organic carbon in soils: A comparison between the Springer–Klee wet digestion and the dry combustion methods in Mediterranean soils (Southern Italy). Catena 2016, 137, 113–119. [Google Scholar] [CrossRef]
- Haynes, R.J. Labile organic matter as an indicator of organic matter quality in arable and pastoral soils in New Zealand. Soil Biol. Biochem. 2000, 32, 211–219. [Google Scholar] [CrossRef]
- Rees, R.M.; Parker, J.P. Filtration increases the correlation between water extractable organic carbon and soil microbial activity. Soil Biol. Biochem. 2005, 37, 2240–2248. [Google Scholar] [CrossRef]
- Ferrara, R.M.; Mazza, G.; Muschitiello, C.; Castellini, M.; Stellacci, A.M.; Navarro, A.; Lagomarsino, A.; Vitti, C.; Rossi, R.; Rana, G. Short-term effects of conversion to no-tillage on respiration and chemical-physical properties of the soil: A case study in a wheat cropping system in semi-dry environment. Ital. J. Agrometeorol. 2017, 1, 47–58. [Google Scholar]
- Anderson, J.P.E.; Page, A.L.; Miller, R.H.; Keeney, D.R. Soil Respiration. In Methods of Soil Analysis, Part 2, 2nd ed.; Page, A.L., Ed.; ASA: Madison, WI, USA; SSSA: Madison, WI, USA, 1982; pp. 831–871. [Google Scholar]
- Clark, G.J.; Dodgshun, N.; Sale, P.W.G.; Tang, C. Changes in chemical and biological properties of a sodic clay subsoil with addition of organic amendments. Soil Biol. Biochem. 2007, 39, 2806–2817. [Google Scholar] [CrossRef]
- Castellini, M.; Stellacci, A.M.; Barca, E.; Iovino, M. Application of multivariate analysis techniques for selecting soil physical quality indicators: A case study in long-term field experiments in Apulia (southern Italy). Soil Sci. Soc. Am. J. 2019, 83, 707–720. [Google Scholar] [CrossRef]
- Popolizio, S.; Barca, E.; Castellini, M.; Montesano, F.F.; Stellacci, A.M. Investigating the Spatial Structure of Soil Hydraulic Properties in a Long-Term Field Experiment Using the BEST Methodology. Agronomy 2022, 12, 2873. [Google Scholar] [CrossRef]
- SAS/STAT Software Release; Version 9.2; Statistical Analysis System (SAS) Institute Inc.: Cary, NC, USA, 2010.
- JMP® Pro; Version 15.0.0; Statistical Analysis System (SAS) Institute Inc.: Cary, NC, USA, 2019.
- Chan, K.Y.; Van Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S. Agronomic values of greenwaste biochar as a soil amendment. Aust. J. Soil Res. 2007, 45, 629–634. [Google Scholar] [CrossRef]
- Angelova, V.R.; Akova, V.I.; Artinova, N.S.; Ivanov, K.I. The Effect of Organic Amendments on Soil Chemical Characteristics. Bulg. J. Agric. Sci. 2013, 19, 958–971. [Google Scholar]
- Mekki, A.; Mdhaffar, M.; Sayadi, S. Advance in Mediterranean soil properties following compost amendment. Int. J. Agric. Policy Res. 2014, 2, 373–379. [Google Scholar]
- Ali Sial, T.; Lan, Z.; Wang, L.; Zhao, Y.; Zhang, J.; Kumbhar, F.; Memon, M.; Siddique Lashari, M.; Naqi Shah, A. Effects of Different Biochars on Wheat Growth Parameters, Yield and Soil Fertility Status in a Silty Clay Loam Soil. Molecules 2019, 24, 1798. [Google Scholar] [CrossRef]
- Leogrande, R.; Vitti, C.; Vonella, A.V.; Ventrella, D. Crop and Soil Response to Organic Management under Mediterranean Conditions. Int. J. Plant Prod. 2020, 14, 209–220. [Google Scholar] [CrossRef]
- Safferi, N.; Hajabbasi, M.A.; Shirani, H.; Mosaddeghi, M.R.; Mamedov, A.I. Biochar type and pyrolysis temperature effects on soil quality indicators and structural stability. J. Environ. Manag. 2020, 261, 110190. [Google Scholar] [CrossRef] [PubMed]
- Joseph, S.; Cowie, A.L.; Van Zwieten, L.; Bolan, N.; Budai, A.; Buss, W.; Luz Cayuela, M.; Graber, E.R.; Ippolito, J.A.; Kuzyakov, Y.; et al. How biochar works, and when it doesn’t: A review of mechanisms controlling soil and plant responses to biochar. Glob. Chang. Biol. Bioenergy 2021, 13, 1731–1764. [Google Scholar] [CrossRef]
- Singh, H.; Northup, B.K.; Rice, C.W.; Vara Prasad, P.V. Biochar applications influence soil physical and chemical properties, microbial diversity, and crop productivity: A meta-analysis. Biochar 2022, 4, 8. [Google Scholar] [CrossRef]
- Beesley, L.; Inneh, O.S.; Norton, G.J.; Moreno-Jimenez, E.; Pardo, T.; Clemente, R.; Dawson, J.J.C. Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil. Environ. Pollut. 2014, 186, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Mulvaney, R.L.; Khan, S.A.; Ellsworth, T.R. Synthetic nitrogen fertilizers deplete soil nitrogen: A global dilemma for sustainable cereal production. J. Environ. Qual. 2009, 38, 2295–2314. [Google Scholar] [CrossRef]
- Prost, K.; Borchard, N.; Siemens, J.; Kautz, T.; Séquaris, J.M.; Möller, A.; Amelung, W. Biochar affected by composting with farmyard manure. J. Environ. Qual. 2013, 42, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Petraityte, D.; Ceseviciene, J.; Arlauskiene, A.; Slepetiene, A.; Skersiene, A.; Gecaite, V. Variation of soil nitrogen, organic carbon, and waxy wheat yield using liquid organic and mineral fertilizers. Agriculture 2022, 12, 2016. [Google Scholar] [CrossRef]
- Singh, P.; Benbi, D.K. Nutrient management effects on organic carbon pools in a sandy loam soil under rice-wheat cropping. Arch. Agron. Soil Sci. 2018, 64, 1879–1891. [Google Scholar] [CrossRef]
- Florio, A.; Felici, B.; Migliore, M.; Dell’Abate, M.T.; Benedetti, A. Nitrogen losses, uptake and abundance of ammonia oxidizers in soil under mineral and organo-mineral fertilization regimes. J. Sci. Food Agric. 2016, 96, 2440–2450. [Google Scholar] [CrossRef]
- Gunapala, N.; Scow, K.M. Dynamics of soil microbial biomass and activity in conventional and organic farming systems. Soil Biol. Biochem. 1998, 30, 805–816. [Google Scholar] [CrossRef]
- Kramer, A.W.; Doane, T.A.; Horwath, W.R.; van Kessel, C. Combining fertilizer and organic inputs to synchronize N supply in alternative cropping systems in California. Agric. Ecosyst. Environ. 2002, 34, 43–50. [Google Scholar] [CrossRef]
- Recous, S.; Mary, B.; Faurie, G. Microbial immobilization of ammonium and nitrate in cultivated soils. Soil Biol. Biochem. 1990, 22, 913–922. [Google Scholar] [CrossRef]
- Cucci, G.; Lacolla, G.; Caranfa, G. Use of composted olive waste as soil conditioner and its effects on the soil. Int. J. Agric. Res. 2013, 8, 149–157. [Google Scholar] [CrossRef]
- Liu, X.; Zheng, J.; Zhang, D.; Cheng, K.; Zhou, H.; Zhang, A.; Li, L.; Joseph, S.; Smith, P.; Crowley, D.; et al. Biochar has no effect on soil respiration across Chinese agricultural soils. Sci. Total Environ. 2016, 14, 554–555. [Google Scholar] [CrossRef]
- Han, Z.; Xu, P.; Li, Z.; Guo, S.; Li, S.; Liu, S.; Wu, S.; Wang, J.; Zou, J. Divergent effects of biochar amendment and replacing mineral fertilizer with manure on soil respiration in a subtropical tea plantation. Biochar 2023, 5, 73. [Google Scholar] [CrossRef]
- Ameloot, N.; Graber, E.R.; Verheijen, F.G.A.; De Neve, S. Interactions between biochar stability and soil organisms: Review and research needs. Eur. J. Soil Biol. 2013, 64, 379–390. [Google Scholar] [CrossRef]
- Usman, A.R.A.; Almaroai, Y.A.; Ahmad, M.; Vithanage, M.; Ok, Y.S. Toxicity of synthetic chelators and metal availability in poultry manure amended Cd, Pb and as contaminated agricultural soil. J. Hazard. Mater. 2013, 262, 1022–1030. [Google Scholar] [CrossRef] [PubMed]
- Doran, J.W.; Parkin, T.B. Quantitative indicators of soil quality: A minimum data set. In Methods for Assessing Soil Quality; Doran, J.W., Jones, A.J., Eds.; Soil Science Society of America, Inc.: Madison, WI, USA, 1996; Volume 49, pp. 25–37. [Google Scholar]
- Rivier, P.A.; Jamniczky, D.; Nemes, A.; Makó, A.; Barna, G.; Uzinger, N.; Rékási, M.; Farkas, C. Short-term effects of compost amendments to soil on soil structure, hydraulic properties, and water regime. J. Hydrol. Hydromech. 2022, 70, 74–88. [Google Scholar] [CrossRef]
- Castellini, M.; Giglio, L.; Niedda, M.; Palumbo, A.D.; Ventrella, D. Impact of biochar addition on the physical and hydraulic properties of a clay soil. Soil Tillage Res. 2015, 154, 1–13. [Google Scholar] [CrossRef]
- Hua, K.; Wang, D.; Guo, X.; Guo, Z. Carbon sequestration efficiency of organic amendments in a long-term experiment on a vertisol in Huang-Huai-Hai Plain, China. PLoS ONE 2014, 9, e108594. [Google Scholar] [CrossRef]
- Guo, M.; He, Z.; Uchimiya, S.M. Agricultural and Environmental Applications of Biochar; Advances and Barriers, SSSA Special Publication; Soil Science Society of America, Inc.: Madison, WI, USA, 2016; pp. 175–198. [Google Scholar]
- Cercioglu, M. The Role of Organic Soil Amendments on Soil Physical Properties and Yield of Maize (Zea mays L.). Commun. Soil Sci. Plant Anal. 2017, 48, 683–691. [Google Scholar] [CrossRef]
- Chang, Y.; Rossi, L.; Zotarelli, L.; Gao, B.; Adnan Shahid, M.; Sarkhosh, A. Biochar improves soil physical characteristics and strengthens root architecture in Muscadine grape (Vitis rotundifolia L.). Chem. Biol. Technol. Agric. 2021, 8, 7. [Google Scholar] [CrossRef]
- Egri, D.; Pârvulescu, O.C.; Ion, V.A.; Raducanu, C.E.; Calcan, S.I.; Badulescu, L.; Madjar, R.; Orbeci, C.; Dobre, T.; Mot, A.; et al. Vine Pruning-Derived Biochar for Agronomic Benefits. Agronomy 2022, 12, 2730. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, K.; Sun, C.; Yang, K.; Zheng, J. Differences in soil physical properties caused by applying three organic amendments to loamy clay soil under field conditions. J. Soils Sediments 2022, 22, 43–55. [Google Scholar] [CrossRef]
- Kranz, C.N.; McLaughlin, R.A.; Johnson, A.; Miller, G.; Heitman, J.L. The effects of compost incorporation on soil physical properties in urban soils—A concise review. J. Environ. Manag. 2020, 261, 110209. [Google Scholar] [CrossRef] [PubMed]
- Amoakwah, E.; Frimpong, K.A.; Okae-Anti, D.; Arthur, E. Soil water retention, air fow and pore structure characteristics after corn cob biochar application to a tropical sandy loam. Geoderma 2017, 307, 189–197. [Google Scholar] [CrossRef]
- Alghamdi, A.G. Biochar as a potential soil additive for improving soil physical properties—A review. Arab. J. Geosci. 2018, 11, 766. [Google Scholar] [CrossRef]
- Bauer, A.; Black, A.L. Organic Carbon Effects on Available Water Capacity of Three Soil Textural Groups. Soil Sci. Soc. Am. J. 1992, 56, 248–254. [Google Scholar] [CrossRef]
- Zhou, H.; Chen, C.; Wang, D.Z.; Arthur, E.; Zhang, Z.B.; Guo, Z.C.; Peng, X.H.; Mooney, S.J. Effect of long-term organicamendments on the full-range soil water retention characteristics of a Vertisol. Soil Tillage Res. 2020, 202, 104663. [Google Scholar] [CrossRef]
- Ibrahim, M.; Anwar-Ul-Hassan; Iqbal, M.; Valeem, E.E. Response of wheat growth and yield to various levels of compost and organic manure. Pak. J. Bot. 2008, 40, 2135–2141. [Google Scholar]
- Mohamed, M.F.; Thalooth, A.T.; Elewa, T.A.; Ahmed, A.G. Yield and nutrient status of wheat plants (Triticum aestivum) as affected by sludge, compost, and biofertilizers under newly reclaimed soil. Bull. Natl. Res. Cent. 2019, 43, 3. [Google Scholar] [CrossRef]
- Alburquerque, J.A.; Salazar, P.; Barrón, V.; Torrent, J.; del Campillo, M.C.; Gallardo, A.; Villar, R. Enhanced wheat yield by biochar addition under different mineral fertilization levels. Agron. Sustain. Dev. 2013, 33, 475–484. [Google Scholar] [CrossRef]
- Van Zwieten, L.; Kimber, S.; Morris, S.; Chan, K.Y.; Downie, A.; Rust, J.; Joseph, S.; Cowie, A. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 2010, 327, 235–246. [Google Scholar] [CrossRef]
- Lehmann, J.; da Silva, J.P.; Steiner, C.; Nehls, T.; Zech, W.; Glaser, B. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: Fertilizer, manure and charcoal amendments. Plant Soil 2003, 249, 343–357. [Google Scholar] [CrossRef]
- Asai, H.; Samson, B.K.; Stephan, H.M.; Songyikhangsuthor, K.; Homma, K.; Kiyono, Y.; Inoue, Y.; Shiraiwa, T.; Horie, T. Biochar amendment techniques for upland rice production in Northern Laos: 1. Soil physical properties, leaf SPAD and grain yield. Field Crops Res. 2009, 111, 81–84. [Google Scholar] [CrossRef]
- Schulz, H.; Glaser, B. Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment. J. Plant Nutr. Soil Sci. 2012, 175, 410–422. [Google Scholar] [CrossRef]
Soil (t0) | Compost | Biochar | |
---|---|---|---|
Moisture (g 100 g−1) | - | 50 | 77 |
pH | 7.61 | 8.00 | 9.60 |
EC (dS m−1) | 0.35 | 2.20 | 0.46 |
TOC (g kg−1 d.m.) | 16.69 | 200 | 882 |
Nitrogen (g kg−1 d.m.) | 1.50 | 8.00 | 3.00 |
Treatments | pH | EC (dS m−1) | TOC (g kg−1) | Total N (g kg−1) | WEOC (mg kg−1) | Bulk Density (g cm−3) |
---|---|---|---|---|---|---|
COMP | 7.54 ± 0.04 † | 0.37 ± 0.01 | 18.69 ± 0.83 a | 1.66 ± 0.12 | 76.93 ± 16.25 a | 1.04 ± 0.02 |
CHAR10 | 7.52 ± 0.02 | 0.34 ± 0.02 | 18.67 ± 0.24 a | 1.52 ± 0.09 | 69.95 ± 21.05 ab | 1.08 ± 0.02 |
CHAR30 | 7.53 ± 0.02 | 0.31 ± 0.01 | 19.07 ± 0.26 a | 1.55 ± 0.14 | 49.98 ± 10.07 b | 1.05 ± 0.01 |
MIN | 7.50 ± 0.01 | 0.32 ± 0.03 | 16.53 ± 1.02 b | 1.46 ± 0.13 | 61.10 ± 10.15 ab | 1.07 ± 0.02 |
TEST | 7.50 ± 0.02 | 0.33 ± 0.04 | 17.26 ± 0.55 b | 1.54 ± 0.05 | 61.44 ± 12.20 ab | 1.08 ± 0.02 |
p value | 0.2329 ns | 0.1258 ns | 0.0004 *** | 0.0660 ns | 0.0287 * | 0.5558 ns |
Source | DF | Sum of Square | Mean Square | F Ratio | p-Value |
---|---|---|---|---|---|
Block (B) | 2 | 44.8 | 22.40 | 21.16 | <0.001 |
Treatment (Tr) | 4 | 3.36 | 0.84 | 2.67 | 0.082 |
Error I (B × Tr) | 8 | 8.47 | 1.06 | 0.91 | 0.52 |
Time (Ti) | 6 | 231.99 | 38.66 | 33.33 | <0.001 |
Tr × Ti | 24 | 7.92 | 0.33 | 0.28 | 0.99 |
Model | 44 | 296.65 | 6.74 | 5.79 | |
Error II | 60 | 69.86 | 1.16 | ||
Total | 104 | 366.51 |
Soil Pressure Head Values, h (cm) | |||||||
---|---|---|---|---|---|---|---|
−2.5 | −5 | −10 | −20 | −40 | −70 | −100 | |
Bulk density † | −0.2541 | −0.2402 | −0.1355 | 0.4004 | 0.5654 | 0.5667 | 0.5813 |
p value | 0.1754 | 0.2011 | 0.4752 | 0.0284 | 0.0011 | 0.0011 | 0.0008 |
Treatments | Protein Content (g 100 g−1) | Gluten Content (g 100 g−1) | Yellow Index | Test Weight (kg hL−1) | Grain Yield (Mg ha−1) |
---|---|---|---|---|---|
COMP | 11.22 ± 0.20 † | 6.93 ± 0.10 | 12.77 ± 0.30 | 81.76 ± 0.55 | 3.36 ± 0.78 a |
CHAR10 | 10.92 ± 0.38 | 6.49 ± 0.37 | 13.08 ± 0.12 | 81.93 ± 0.62 | 2.52 ± 0.58 ab |
CHAR30 | 11.16 ± 0.26 | 6.83 ± 0.26 | 12.95 ± 0.26 | 82.29 ± 0.42 | 2.18 ± 0.24 b |
MIN | 10.85 ± 0.22 | 6.40 ± 0.34 | 13.03 ± 0.27 | 81.99 ± 0.48 | 2.66 ± 0.69 ab |
TEST | 11.01 ± 0.47 | 6.55 ± 0.58 | 13.18 ± 0.14 | 82.37 ± 1.02 | 2.62 ± 0.36 ab |
p value | 0.5975 ns | 0.4168 ns | 0.0859 ns | 0.8187 ns | 0.0286 * |
Variable | Unit | Parameter | |||
---|---|---|---|---|---|
n | R2 | p | R2_adj | ||
Protein content | g 100 g−1 | 15 | 0.22 | 0.75 | −0.35 |
Gluten content | g 100 g−1 | 15 | 0.21 | 0.79 | −0.38 |
Yellow index | 15 | 0.45 | 0.29 | 0.04 | |
Test weight | kg hL−1 | 15 | 0.37 | 0.43 | −0.10 |
Grain Yield | Mg ha−1 | 15 | 0.88 | <0.001 | 0.78 |
Protein yield § | kg ha−1 | 15 | 0.86 | <0.001 | 0.77 |
Cluster | Pressure | Treatment | ||||
---|---|---|---|---|---|---|
h | CHAR10 | CHAR30 | COMP | MIN | TEST | |
0 | 2.5 | 0.61 | 0.60 | 0.61 | 0.61 | 0.60 |
0 | 5 | 0.60 | 0.58 | 0.60 | 0.60 | 0.59 |
0 | 10 | 0.59 | 0.58 | 0.59 | 0.59 | 0.58 |
0 | 20 | 0.56 | 0.55 | 0.54 | 0.56 | 0.54 |
1 | 40 | 0.43 | 0.45 | 0.41 | 0.45 | 0.42 |
1 | 70 | 0.37 | 0.38 | 0.35 | 0.36 | 0.36 |
1 | 100 | 0.34 | 0.35 | 0.33 | 0.34 | 0.33 |
k centers | 0 | 0.59 | 0.58 | 0.58 | 0.59 | 0.58 |
1 | 0.38 | 0.39 | 0.36 | 0.38 | 0.30 |
Source | DF | Sum of Square | Mean Square | F Crit | p-Value |
---|---|---|---|---|---|
Treatment (Tr) | 4 | 0.000966 | 0.000242 | 2.87 | 0.31 |
Pressure head (h) | 1 | 0.317771 | 0.317771 | 4.35 | <0.001 |
Tr × h | 4 | 0.000995 | 0.000249 | 2.87 | 0.30 |
Error | 20 | 0.003804 | 0.00019 | ||
Total | 29 | 0.323535 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leogrande, R.; Vitti, C.; Castellini, M.; Garofalo, P.; Samarelli, I.; Lacolla, G.; Montesano, F.F.; Spagnuolo, M.; Mastrangelo, M.; Stellacci, A.M. Residual Effect of Compost and Biochar Amendment on Soil Chemical, Biological, and Physical Properties and Durum Wheat Response. Agronomy 2024, 14, 749. https://doi.org/10.3390/agronomy14040749
Leogrande R, Vitti C, Castellini M, Garofalo P, Samarelli I, Lacolla G, Montesano FF, Spagnuolo M, Mastrangelo M, Stellacci AM. Residual Effect of Compost and Biochar Amendment on Soil Chemical, Biological, and Physical Properties and Durum Wheat Response. Agronomy. 2024; 14(4):749. https://doi.org/10.3390/agronomy14040749
Chicago/Turabian StyleLeogrande, Rita, Carolina Vitti, Mirko Castellini, Pasquale Garofalo, Ignazio Samarelli, Giovanni Lacolla, Francesco Fabiano Montesano, Matteo Spagnuolo, Marcello Mastrangelo, and Anna Maria Stellacci. 2024. "Residual Effect of Compost and Biochar Amendment on Soil Chemical, Biological, and Physical Properties and Durum Wheat Response" Agronomy 14, no. 4: 749. https://doi.org/10.3390/agronomy14040749
APA StyleLeogrande, R., Vitti, C., Castellini, M., Garofalo, P., Samarelli, I., Lacolla, G., Montesano, F. F., Spagnuolo, M., Mastrangelo, M., & Stellacci, A. M. (2024). Residual Effect of Compost and Biochar Amendment on Soil Chemical, Biological, and Physical Properties and Durum Wheat Response. Agronomy, 14(4), 749. https://doi.org/10.3390/agronomy14040749