Revitalization Potential of Marginal Areas for Sustainable Rural Development in the Puglia Region, Southern Italy: Part I: A Review
Abstract
:1. Introduction
2. Identification and Classification of Different Marginal Area Types in Puglia
2.1. Mountain Areas
- -
- The Daunia Mountains, also known as the Apennines Mountains, cover approximately 1884.8 km2 in the northwestern region of Puglia [27]. This area boasts elevations up to 1151 m above sea level with the highest peak being Monte Cornacchia [28]. The Daunia Mountains consist of four landscape units: Lower Fortore Valley, Mid Fortore Valley and Occhito Dam, Northern Daunia Mountains, and Southern Daunia Mountains [4]. Both the northern and southern parts of the mountains are covered with vegetation such as woodland, pasture, and uncultivated land (Figure 2), accounting for about 37,000 ha [29]. Agriculture and forestry are the main land uses [30], and farms make up 57.7% of the entire territory [28]. Agriculture land consists of forage and cereals cultivation (54%), olive orchards (4.3%), vegetables (2%), and other permanent crops (0.7%) [29]. However, rainfall-induced landslides in the area threatened agricultural activities [27,31,32], limiting the area’s development perspectives [31]. Despite the expansion process of inhabited areas and the realization of infrastructures during the last 50 years [31], the area has experienced a significant decrease in population [28,33] due to social and economic problems related to the landslide’s phenomena [34,35]. Therefore, the characteristics of the Apennines Mountain areas need to be thoroughly analysed to understand the local agricultural system in order to enhance multifunctional agriculture that would improve the socio-economic situation of the area [28] and overcome challenges related to the occurrence of mudslides as a result of working the soil by farmers for agricultural activities [31].
- -
- The Murgia area, also known as ‘le Murge’ in Italian, is situated in the centre of the Puglia region [25]. The rural area of Alta Murgia, which is the highest plateau in the Murgia area, contains Italy’s first National Rural Park (approximately 68 ha), created in 2004 [36], and boasts numerous significant historical, archaeological, and paleontological sites [4]. Agriculture in Murgia was limited to flat valleys and depression bottoms where fertile soil had accumulated. The barren karst areas outside of these agricultural zones were unsuitable for cultivation due to an abundance of rocks and were used for grazing instead. Traditional agricultural practices in Murgia involved slope terracing and building dry stone walls with an intangible heritage value to humanity (below Figure 3). However, the abandonment of these techniques has led to the deterioration of the rural landscape, and bulldozers and other machinery are now used to remove/grind rocks from fields. These rocks are often dumped into swallets and caves, further damaging the fragile equilibrium of the karst systems [37]. When discussing sustainability in the Murgia area, it is vital to consider not only the park itself but also the areas surrounding the park perimeter, which are essential for safeguarding specific natural environments and local wildlife species. This helps to maintain continuous ecological corridors for flora and fauna, as outlined in the Park Action Plan [38]. To revitalize the area, it is critical that local residents, associations, and political stakeholders collaborate to discuss their various socio-political visions for the area’s future. This must include preserving the natural, historical, and architectural heritage, regenerating and diversifying the local farming industry, establishing a new eco-touristic infrastructure that has a minimal environmental impact, and creating new opportunities in professional sectors related to the agricultural industry, including agronomic research and education, while taking into account sustainability measures.
- -
- The Gargano area is a small mountainous promontory protruding into the Southern Adriatic, ranging in height from 400 to 1000 m above sea level, crossed by some low ridges [39]. The maximum elevation is presented by the peaks of Monte Calvo (1055 m above sea level) and Monte Nero (1024 m above sea level). The Gargano landscapes cover an area of 196,000 ha, of which only 14% are urban areas and more than 50% still maintain a medium to high ecological value due to the preservation of seminatural/natural ecosystems (Figure 4) [29,40].
2.2. Internal/Inner Areas
2.3. Valleys
2.4. Saline Soil Zones
2.5. Brownfield
2.6. Marginal Arable Lands
2.7. Xylella-Infected Areas
3. Suitability of Different MA Types for Feed, Food, and Non-Food Production
3.1. Site-Specific Land Use Suitability
3.1.1. Climate Suitability
3.1.2. Land and Soil Suitability
3.1.3. Ecological Suitability
4. Revitalization of Agriculture in Marginal Areas through Innovation Initiatives
4.1. Wastewater Treatment and Reuse for Irrigation
4.2. Agrivoltaic Farming
4.3. Agroforestry
4.4. Plantation of Halophyte Plants
4.5. Community-Based Initiative (the Establishment of an Eco-District)
5. Future Perspectives and Recommendations
- ➢
- Politicians: Should work towards political reform of the regional policy to achieve sustainable development and food security in rural areas. This involves transitioning from political commitment to political action and establishing clear guidelines for farming in marginal areas. Good governance plays a key role in this process. Government policies should focus on revitalizing agriculture activities (both for food and non-food products) in marginal areas and prioritize the following actions:
- -
- Training to all stakeholders. It is important to provide comprehensive training to all stakeholders involved in the development of marginal areas for agricultural purposes. Farmers, researchers, politicians, administrators, producers, and consumers should all receive sufficient training to better comprehend the productive and protective role that marginal areas can play in agriculture.
- -
- Encourage public investments. Investments are necessary, especially in marginal areas, for food security and environmental reasons, promoting sustainable development.
- -
- Provide financial support for small/poor family farmers. It is important to provide subsidies for small and poor family farmers who engage in farming activities in marginal areas. These farmers make up a significant portion of regional populations; therefore, improving their productivity should be a top priority for sustainable development. Additionally, it is crucial to compensate these farmers for the environmental services they provide, such as protecting biodiversity, maintaining watershed stability, and sequestering carbon.
- -
- Establishment of guidelines for the promotion of sustainable practices/strategies to be implemented in farmers located in marginal areas. This is important to conserve local biodiversity and enhance the ecosystem functions in these areas.
- ➢
- Local communities:
- -
- Restoring and conserving natural resources that are essential for food security. The degradation of natural resources directly affects the income and food security of rural areas. To address this issue, both community- and national-level interventions are necessary. It is important to secure local ownership, access, and management rights for marginal area farmers.
- -
- Direct involvement of local residents in regional development processes (bottom-up approach). It is widely accepted that local residents are the best experts to drive the development of their own community. When it comes to revitalizing underdeveloped regions, involving the local community is crucial to maintaining a balanced landscape structure and improving connectivity. This bottom-up approach ensures that the local residents, along with the local players, can help define a development pathway that aligns with their needs, expectations, and plans. Working collectively with delegated decision-making empowers them to take charge of their region’s future.
- ➢
- Farmers: Efforts from farmers and food producers operating in marginal areas should include the following:
- -
- Willingness to adopt alternative cultivation methods/techniques to promote the use of ‘environmentally marginal land’. This includes utilizing treated wastewater, planting salt-resistant cultivars, growing locally adapted genetic varieties, incorporating nitrogen-fixing legumes, using microbial inoculants and mycorrhizas, and implementing strategies like greening and mulching, etc. Proper management of crop residues in marginal areas can also help to maintain land productivity while preventing and mitigating soil degradation, improving biodiversity, and protecting the environment.
- -
- Encourage the use of local plant resources. One great way to preserve the local ecosystem and support wildlife is to encourage the use of local plant resources. It is important to support nurseries that specialize in native species and promote the cultivation of plants that are native to the area, which can help preserve the biodiversity of the area.
- -
- Promote the use of multifunctional systems such as the integration of solar panels in crop cultivation. Solar panels can either increase the income of the farmers with the production of green energy or create a better microclimate for the crops.
- ➢
- Regional authorities: Regional authorities should take the initiative to facilitate land use planning for local communities for the sustainable development of the region. This can be achieved by defining what type of marginal lands are better suited for which purpose. This may include:
- -
- Valorization of the touristic aspects of marginal landscapes. When revitalizing marginal areas, it is important to take into account their tourist value. This value should not only be seen as a technical tool but also as an educational instrument for visitors.
- ➢
- Local authorities: Local authorities should work together in the frame of a participatory approach in order to help establish some initiatives for the development of their areas considering the local context. This might include:
- -
- Implement nature-based solutions (NBSs). The NBSs have great potential to address problems associated with environmental challenges, landscape degradation, socio-economic crisis of rural communities, marginal areas, and climate vulnerability.
- ➢
- Industry: The use of materials and raw materials from marginal areas should be properly managed as they are the basis of various products with different market orientations (e.g., cosmetics, food/food additives, drugs, bioproducts, bioenergy). This might include:
- -
- Eco-labelling of the final products. This can ensure its traceability from marginal areas which can add value to the products and encourage producers to maintain good quality products.
- -
- Establish a direct contact with farmers. Industry should ensure direct contact with farmers located in marginal areas to ensure good economic return for farmers.
- ➢
- Landowners: Should be committed and help in the implementation of political development programmes; however, they need to have confidence that the implementation of government programmes and strategies in marginal areas will continue in the long-term and that the government is committed to supporting them. Government programmes should ensure the following aspects:
- -
- Increasing the income of farmers in marginal areas and ensuring fair prices for their products in the market. Properly functioning markets are crucial for farmers to earn a decent income, but they often fail to sell their products at fair prices. Therefore, government policies should aim to make markets work for farmers, especially those who come from marginal areas.
- -
- Support local farms. Purchasing food, feed, and non-food products directly from small local farmers in marginal areas can assist in their survival and maintain productivity during extreme weather events. Additionally, this practice keeps money within the local economy while supporting agricultural efforts to conserve biodiversity.
- ➢
- Research: Research is the basis for the sustainable development of any region, and can fill out the gap of information regarding the role of unused lands in the sustainable development of a region. Research and development in regions with high agricultural potential is of utmost importance as these areas play a crucial role in meeting the food demands of the ever-growing population and livestock. Neglecting these regions can result in an increase in food prices and lead to food scarcity, which can adversely affect the economy and public health. Hence, it is imperative to invest in the research and development of these areas to ensure sustainable agricultural practices and to meet the food requirements of the world’s population.
- -
- Investing in targeted research. Focusing on crops and traits that are important to the poor, and on the particular environmental limitations they face, can reduce poverty and marginality on a large scale.
- -
- Promote studies on land suitability and land use planning to define marginal areas according to their suitability for different production purposes. For example, recognizing lands for bioenergy production as an opportunity to foster local development. This brings environmental, social, and economic benefits, such as adding value to marginal land and creating new job and business opportunities.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Labianca, M. Proposal of a Method for Identifying Socio-Economic Spatial Concentrations for the Development of Rural Areas: An Application to the Apulia Region (Southern Italy). Sustainability 2023, 15, 3180. [Google Scholar] [CrossRef]
- EC (European Commission). Factsheet 2014–2020 National Rural Development Programme-Italy. 2023. Available online: https://agriculture.ec.europa.eu/common-agricultural-policy/rural-development/country/italy_en (accessed on 7 November 2023).
- Regione Apulia. Piano Paesaggistico Territoriale Regionale-Linee Guida per la Tutela, il Restauro e Gli Interventi Sulle Strutture in Pietra a Secco Della Apulia. 2015. Available online: http://pugliacon.regione.puglia.it/web/sit-puglia-paesaggio/elaborati-dello-scenario-strategico (accessed on 22 November 2023).
- Regione Apulia. Piano Paesaggistico Territoriale Regionale-Linee Guida per il Recupero, la Manutenzione e il Riuso Dell’edilizia e Dei Beni Rurali. 2015. Available online: http://pugliacon.regione.puglia.it/web/sit-puglia-paesaggio/elaborati-dello-scenario-strategico (accessed on 22 November 2023).
- Schiavone, F.; El Bilali, H.; Berjan, S.; Zheliaskov, A. Rural tourism in Apulia region, Italy: Results of 2007–2013 rural development programme and 2020 perspectives. AGROFOR Int. J. 2016, 1, 16–29. [Google Scholar] [CrossRef]
- Regione Apulia. Rural Development Programme 2014–2020. 2015. Available online: http://psr.regione.puglia.it/en/il-programma (accessed on 22 November 2023).
- EC (European Commission). Regulation No 1307/2013 of the European Parliament and of the Council of 17 December 2013 Establishing Rules for Direct Payments to Farmers under Support Schemes within the Framework of the Common Agricultural Policy and Repealing Council Regulation (EC) No 637/2008 and Council Regulation (EC) No 73/2009. 2013. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32013R1307 (accessed on 7 December 2023).
- Ivanina, V. What makes up marginal lands and how can it be defined and classified? In Proceedings of the 1st International Symposium Soils of Marginal Lands-Definition, Assessment and Land Use Option, EGU General Assembly, Vienna, Austria, 25 April 2017. [Google Scholar]
- Dauber, J.; Brown, C.; Fernando, A.L.; Finnan, J.; Krasuska, E.; Ponitka, J.; Styles, D.; Thrän, D.; Van Groenigen, K.J.; Weih, M.; et al. Bioenergy from “surplus” land: Environmental and socio-economic implications. BioRisk 2012, 7, 5–50. [Google Scholar] [CrossRef]
- Csikós, N.; Tóth, G. Concepts of agricultural marginal lands and their utilisation: A review. Agric. Syst. 2023, 204, 103560. [Google Scholar] [CrossRef]
- Kang, S.; Post, W.M.; Nichols, J.A.; Wang, D.; West, T.O.; Bandaru, V.; Izaurralde, R.C. Marginal lands: Concept, assessment and management. J. Agric. Sci. 2013, 5, 129. [Google Scholar] [CrossRef]
- Gerwin, W.; Repmann, F.; Galatsidas, S.; Vlachaki, D.; Gounaris, N.; Baumgarten, W.; Volkmann, C.; Keramitzis, D.; Kiourtsis, F.; Freese, D. Assessment and quantification of marginal lands for biomass production in Europe using soil-quality indicators. Soil 2018, 4, 267–290. [Google Scholar] [CrossRef]
- Dale, V.H.; Kline, K.L.; Wiens, J.; Fargione, J. Biofuels: Implications for Land Use and Biodiversity; Ecological Society of America: Washington, DC, USA, 2010; p. 13. Available online: https://www.esa.org/biofuelsreports (accessed on 7 December 2023).
- Godone, D.; Allasia, P.; Notti, D.; Baldo, M.; Poggi, F.; Faccini, F. Coexistence of a Marginal Mountain Community with Large-Scale and Low Kinematic Landslide: The Intensive Monitoring Approach. Remote Sens. 2023, 15, 3238. [Google Scholar] [CrossRef]
- Jepsen, M.R.; Kuemmerle, T.; Müller, D.; Erb, K.; Verburg, P.H.; Haberl, H.; Vesterager, J.P.; Andrič, M.; Antrop, M.; Austrheim, G.; et al. Transitions in European land-management regimes between 1800 and 2010. Land Use Policy 2015, 49, 53–64. [Google Scholar] [CrossRef]
- Garbarino, M.; Morresi, D.; Urbinati, C.; Malandra, F.; Motta, R.; Sibona, E.M.; Vitali, A.; Weisberg, P.J. Contrasting land use legacy effects on forest landscape dynamics in the Italian Alps and the Apennines. Landsc. Ecol. 2020, 35, 2679–2694. [Google Scholar] [CrossRef]
- Duglio, S.; Salotti, G.; Mascadri, G. Conditions for Operating in Marginal Mountain Areas: The Local Farmer’s Perspective. Societies 2023, 13, 107. [Google Scholar] [CrossRef]
- EUROMONTANA. Available online: www.euromontana.org (accessed on 18 December 2023).
- ITA (The International trade Administration). Country Commercial Guides, Italy–(Agricultural Sector). 2022. Available online: https://www.trade.gov/country-commercial-guides/italy-agricultural-sector (accessed on 13 November 2023).
- Zou, J.; Wu, Q. Spatial Analysis of Chinese Grain Production for Sustainable Land Management in Plain, Hill, and Mountain Counties. Sustainability 2017, 9, 348. [Google Scholar] [CrossRef]
- Bassi, I.; Carestiato, N. Common property organisations as actors in rural development: A case study of a mountain area in Italy. Int. J. Commons. 2016, 10, 363–386. [Google Scholar]
- Bassi, I.; Carzedda, M.; Iseppi, L. Innovative Local Development Initiatives in the Eastern Alps: Forest Therapy, Land Consolidation Associations and Mountaineering Villages. Land 2022, 11, 874. [Google Scholar] [CrossRef]
- Rey Benayas, J.M.; Martins, A.; Nicolau, J.M.; Schulz, J.J. Abandonment of agricultural land: An overview of drivers and consequences. CABI Rev. 2007, 14. [Google Scholar] [CrossRef]
- Romeo, R.; Russo, L.; Parisi, F.; Notarianni, M.; Manuelli, S.; Carvao, S. Mountain Tourism—Towards a More Sustainable Path. 2021. Available online: https://policycommons.net/artifacts/2144921/mountain-tourism/2900218/ (accessed on 22 November 2023).
- Tropeano, M.; Caldara, M.A.; De Santis, V.; Festa, V.; Parise, M.; Sabato, L.; Spalluto, L.; Francescangeli, R.; Iurilli, V.; Mastronuzzi, G.A.; et al. Geological Uniqueness and Potential Geotouristic Appeal of Murge and Premurge, the First Territory in Apulia (Southern Italy) Aspiring to Become a UNESCO Global Geopark. Geosciences 2023, 13, 131. [Google Scholar] [CrossRef]
- Trček, U.; Koderman, M. The Role of Tourism in Sustainable Development of Mountainous Border Region—The Case of Bovec Municipality, Slovenia. In Nature, Tourism and Ethnicity as Drivers of (De)Marginalization; Insights to Marginality from Perspective of Sustainability and Development; Pelc, S., Koderman, M., Eds.; Springer: Cham, Switzerland, 2018; Volume 3, pp. 93–107. [Google Scholar]
- Wasowski, J.; Del Gaudio, V.; Pisano, L.; Fazio, N.L.; de Lucia, D.; Ugenti, A.; Zumpano, V.; Filice, F.; Casarano, D.; Santaloia, F.; et al. Unravelling the origin of large ancient landslides in low elevation Daunia Mountains, Italy. In Proceedings of the AGU Fall Meeting 2022 Abstracts, Chicago, IL, USA, 12–16 December 2022; Volume 2022, p. NH22A-07. [Google Scholar]
- Bozzi, A. Agriculture and rural life for the protection and the promotion of inland areas: The case of Subapennino Dauno (Apulia). AGEI-Geotema 2011, 52, 114–123. [Google Scholar]
- Conversa, G.; Lazzizera, C.; Bonasia, A.; Cifarelli, S.; Losavio, F.; Sonnante, G.; Elia, A. Exploring on-farm agro-biodiversity: A study case of vegetable landraces from Apulia region (Italy). Biodivers. Conserv. 2020, 29, 747–770. [Google Scholar] [CrossRef]
- BirdLife International. Important Bird Area Factsheet: Daunia Mountains. 2023. Available online: http://datazone.birdlife.org/site/factsheet/2884 (accessed on 28 June 2023).
- Spalluto, L.; Fiore, A.; Miccoli, M.N.; Parise, M. Activity maps of multi-source mudslides from the Daunia Apennines (Apulia, southern Italy). Nat. Hazards. 2021, 106, 277–301. [Google Scholar] [CrossRef]
- Ardizzone, F.; Bucci, F.; Cardinali, M.; Fiorucci, F.; Pisano, L.; Santangelo, M.; Zumpano, V. Geomorphological landslide inventory map of the Daunia Apennines, southern Italy. Earth Syst. Sci. Data. 2023, 15, 753–767. [Google Scholar] [CrossRef]
- Varraso, I. L’esile copertura antropica della “montagna” pugliese. In Scritti Geografici sul Subappennino Dauno; Mannella, S., Fiori, M., Carparelli, S., Mininno, A., Varraso, I., Eds.; Adriatica: Bari, Italy, 1990; pp. 103–126. [Google Scholar]
- Pisano, L.; Zumpano, V.; Malek, Ž.; Rosskopf, C.M.; Parise, M. Variations in the susceptibility to landslides, as a consequence of land cover changes: A look to the past, and another towards the future. Sci. Total Environ. 2017, 601, 1147–1159. [Google Scholar] [CrossRef]
- Zumpano, V.; Pisano, L.; Malek, Ž.; Micu, M.; Aucelli, P.P.; Rosskopf, C.M.; Balteanu, D.; Parise, M. Economic losses for rural land value due to landslides. Front. Earth Sci. 2018, 6, 97. [Google Scholar] [CrossRef]
- Perrotti, D. Il Parco Nazionale dell’Alta Murgia. Un Paesaggio [The Alta Murgia National Park. A Landscape Perspective]; Edizioni L’Orbicolare Publisher: Rome, Italy, 2011. [Google Scholar]
- Parise, M.; Pascali, V. Surface and subsurface environmental degradation in the karst of Apulia (southern Italy). Environ. Geol. 2003, 44, 247–256. [Google Scholar] [CrossRef]
- Perrotti, D. Of Other (Energy) Spaces. Protected Areas and Everyday Landscapes of Energy in the Southern Italian Region of Alta Murgia. In Renewable Energies and European Landsapes. Lessons from Southern European Cases; Frolova, M., Prados, M.-J., Nadai, A., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 193–215. [Google Scholar]
- Tinti, S.; Maramai, A.; Favali, P. The Gargano promontory: An important Italian seismogenic-tsunamigenic area. Mar. Geol. 1995, 122, 227–241. [Google Scholar] [CrossRef]
- Giordano, S. Agrarian landscapes: From marginal areas to cultural landscapes—Paths to sustainable tourism in small villages—The case of Vico Del Gargano in the club of the Borghi più belli d’Italia. Qual Quant. 2020, 54, 1725–1744. [Google Scholar] [CrossRef]
- De Felice, A.; Martucci, I. The SMEs Performance by the New Technologies Application: The Case of Olive-Oil in Apulia. Agric. Econ. Rev. 2009, 9, 70–80. [Google Scholar]
- Burri, E.; Castiglioni, B.; Sauro, U. Agriculture, landscape and human impact in some karst areas of Italy. Int. J. Speleol. 1999, 28, 3. [Google Scholar] [CrossRef]
- Bock, B.B. Rural marginalisation and the role of social innovation; a turn towards nexogenous development and rural reconnection. Sociologia Ruralis 2016, 56, 552–573. [Google Scholar] [CrossRef]
- Lucatelli, S.; Carlucci, C.; Guerrizio, A. A strategy for ‘inner areas’ in Italy. In Education, Local Economy and Job Opportunities in Rural Areas in the Context of Demographic Change: Proceedings of the 2nd EURUFU Scientific Conference, Asti, Italy, 8 October 2013; Institut Verkehr und Raum: Erfurt, Germany, 2013; pp. 69–79. [Google Scholar]
- National Partnership Agreement (NPA) on Inner Areas in Italy. Accordo di Partenariato 2014–2020. Strategia Nazionale per le Aree Interne: Definizione, Obiettivi, Strumenti e Governance. 2014. Available online: https://www.agenziacoesione.gov.it/lacoesione/accordo-di-partenariato-2014-2020/ (accessed on 22 November 2023).
- Vendemmia, B. The role of public services in the inner areas: From a problematic question to the definition of opportunities. In Le Aree Interne Italiane. Un Banco di Prova per Interpretare e Progettare i Territori Marginali [Inner Areas in Italy. A Testbed for Interpreting and Designing Marginal Territories]; Dezio, C., D’Armento, S., Kercuku, A., Moscarelli, R., Pessina, G., Silva, B., Vendemmia, B., Eds.; ListLab: Trento, Italy, 2021. [Google Scholar]
- Martins, J.R.; Davino, C. Local Migration Governance in European Shrinking Areas: A German and an Italian Case. J. Int. Migr. Integr. 2023, 1–26. [Google Scholar] [CrossRef]
- Lucatelli, S.; Tantillo, F. La Strategia nazionale per le aree interne. In Riabitare l’Italia. Le Aree Interne tra Abbandoni e Riconquiste; De Rossi, A., Ed.; Donzelli Editore: Roma, Italy, 2018; pp. 403–416. [Google Scholar]
- Territorial Cohesion Agency (TCA). Agenzia per la Coesione Territoriale-Strategia Nazionale Aree Interne (Regione Apulia). 2023. Available online: https://www.agenziacoesione.gov.it/strategia-nazionale-aree-interne/regione-puglia/ (accessed on 13 November 2023).
- National Strategy for Inner Areas. Strategia Nazionale Aree Interne (SNAI) “Agenzia per la Coesione Territoriale–SNAI”. 2021. Available online: https://www.agenziacoesione.gov.it/strategia-nazionale-aree-interne/ (accessed on 13 June 2023).
- De Vincenti, C. Relazione Annuale Sulla Strategia Nazionale per le Aree Interne. 2018. Available online: www.agenziacoesione.gov.it (accessed on 12 September 2023).
- Schumm, S.A.; Ethridge, F.G. Origin, Evolution and Morphology of Fluvial Valleys; SEPM Special Publication No. 51; Society for Sedimentary Geology (SEPM): Tulsa, Oklahoma, 1994; ISBN 1-56576-015-8. [Google Scholar]
- McCallum, M.; Hyatt, A.; Small, A. A view of Vagnari from across the Basentello: Initial results from the BVARP survey. In Atti, Beyond Vagnari Conference; University of Edinburgh: Edinburgh, UK, 2012; pp. 169–180. [Google Scholar]
- Trentacoste, A.; MacKinnon, M.; Day, C.; Le Roux, P.; Buckley, M.; McCallum, M.; Carroll, M. Isotopic Insights into Livestock Production in Roman Italy: Diet, Seasonality, and Mobility on an Imperial Estate. Environ. Archaeol. 2023, 1–23. [Google Scholar] [CrossRef]
- McCallum, M.; vanderLeest, J. Research at San Felice: The villa on the imperial estate. In Atti, Beyond Vagnari Conference, University of Edinburgh, 26–28 October 2012; Small, A., Ed.; EdiApulia: Bari, Italy, 2014; pp. 123–134. [Google Scholar]
- Wigand, P.; McCallum, M. The varying impact of land use and climate in Holocene landscape dynamics in the Mezzogiorno. Athens J. Mediterr. Stud. 2017, 3, 121–150. [Google Scholar] [CrossRef]
- Mezzapesa, C. Valle d’Itria. Le stagioni del paesaggio. Un progetto di Marketing territoriale. Bollettino Ingegneri 2013, 60, 11–18. [Google Scholar]
- Ciola, G.; Tanzarella, F. The Environmental and Cultural System of the Valle d’Itria: A promising evolution. Econ. Della Cult. Soc. Ed. Il Mulino 2015, 467–486. [Google Scholar]
- Rhoades, J.D.; Loveday, J. Salinity in irrigated agriculture. Agronomy 1990, 30, 1089–1142. [Google Scholar]
- Al-Sadi, A.M.; Al-Masoudi, R.S.; Al-Habsi, N.; Al-Said, F.A.; Al-Rawahy, S.A.; Ahmed, M.; Deadman, M.L. Effect of salinity on pythium damping-off of cucumber and on the tolerance of Pythium aphanidermatum. Plant Pathol. 2010, 59, 112–120. [Google Scholar] [CrossRef]
- Mazhar, S.; Pellegrini, E.; Contin, M.; Bravo, C.; De Nobili, M. Impacts of salinization caused by sea level rise on the biological processes of coastal soils—A review. Front. Environ. Sci. 2022, 10, 909415. [Google Scholar] [CrossRef]
- Salvati, L.; Ferrara, C. The local-scale impact of soil salinization on the socioeconomic context: An exploratory analysis in Italy. Catena 2015, 127, 312–322. [Google Scholar] [CrossRef]
- Dazzi, C.; Lo Papa, G. Soil Threats. In The Soils of Italy; World Soils Book Series; Costantini, E., Dazzi, C., Eds.; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar]
- Canfora, L.; Salvati, L.; Benedetti, A.; Francaviglia, R. Is soil microbial diversity affected by soil and groundwater salinity? Evidences from a coastal system in central Italy. Environ. Monit. Assess. 2017, 189, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Shankar, V.; Evelin, H. Strategies for Reclamation of Saline Soils. In Microorganisms in Saline Environments: Strategies and Functions; Springer: Cham, Switzerland, 2019; pp. 439–449. [Google Scholar]
- Qadir, M.; Ghafoor, A.; Murtaza, G. Amelioration strategies for saline soils: A review. Land Degrad. Dev. 2000, 11, 501–521. [Google Scholar] [CrossRef]
- Hussain, M.I.; Lyra, D.A.; Farooq, M.; Nikoloudakis, N.; Khalid, N. Salt and drought stresses in safflower: A review. Agron. Sustain. Dev. 2016, 36, 1–31. [Google Scholar] [CrossRef]
- Russo, G.; Verdiani, G. The health risk of the agricultural production in potentially contaminated sites: An environmental-health risk analysis. J. Agric. Eng. 2012, 43, e15. [Google Scholar] [CrossRef]
- Tonin, S.; Bonifaci, P. Assessment of brownfield redevelopment opportunities using a multi-tiered approach: A case in Italy. Socio-Econ. Plan. Sci. 2020, 71, 100812. [Google Scholar] [CrossRef]
- Scordia, D.; Papazoglou, E.G.; Kotoula, D.; Sanz, M.; Ciria, C.S.; Pérez, J.; Maliarenko, O.; Prysiazhniuk, O.; von Cossel, M.; Greiner, B.E.; et al. Towards identifying industrial crop types and associated agronomies to improve biomass production from marginal lands in Europe. GCB Bioenergy 2022, 14, 710–734. [Google Scholar] [CrossRef]
- Tóth, G.; Hermann, T.; Da Silva, M.R.; Montanarella, L. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, B.; Costa, J.; Boléo, S.; Duarte, M.P.; Fernando, A.L. Phytoremediation of Inorganic Compounds. In Electrokinetics Across Disciplines and Continents—New Strategies for Sustainable Development; Ribeiro, A., Mateus, E., Couto, N., Eds.; Springer: Cham, Switzerland, 2016; pp. 373–400. [Google Scholar]
- Galić, M.; Perčin, A.; Zgorelec, Z.; Kisić, I. Evaluation of heavy metals accumulation potential of hemp (Cannabis sativa L.). J. Cent. Eur. Agric. 2019, 20, 700–711. [Google Scholar]
- Guo, Z.; Gao, Y.; Cao, X.; Jiang, W.; Liu, X.; Liu, Q.; Chen, Z.; Zhou, W.; Cui, J.; Wang, Q. Phytoremediation of Cd and Pb interactive polluted soils by switchgrass (Panicum virgatum L.). Int. J. Phytoremediation 2019, 21, 1486–1496. [Google Scholar] [CrossRef] [PubMed]
- Luyckx, A.; Beghin, C.; Quinet, M.; Achadé, B.; Prodjinoto, H.; Gandonou, C.B.; Lutts, S. Salinity differently affects antioxidant content and amino acid profile in two cultivars of Amaranthus cruentus differing in salinity tolerance. J. Sci. Food Agric. 2021, 101, 6211–6219. [Google Scholar] [CrossRef]
- Reinikainen, J.; Sorvari, J.; Tikkanen, S. Finnish policy approach and measures for the promotion of sustainability in contaminated land management. J. Environ. Manag. 2016, 184, 108–119. [Google Scholar] [CrossRef]
- Di Guardo, A.; Terzaghi, E.; Raspa, G.; Borin, S.; Mapelli, F.; Chouaia, B.; Zanardini, E.; Morosini, C.; Colombo, A.; Fattore, E.; et al. Differentiating current and past PCB and PCDD/F sources: The role of a large contaminated soil site in an industrialized city area. Environ. Pollut. 2017, 223, 367–375. [Google Scholar] [CrossRef]
- ItaliaDomani. The National Recovery and Resilience Plan (NRRP). Available online: https://www.italiadomani.gov.it (accessed on 8 January 2024).
- Scaffidi, F. Ecosystems of innovation: Socially-innovative practices in brownfields reactivation. In Social and Institutional Innovation in Self-Organising Cities; Perrone, C., Giallorenzo, F., Rossi, M., Eds.; Firenze University Press: Firenze, Italy, 2022. [Google Scholar]
- Scaffidi, F. Linee guida per l’elaborazione di un modello flessibile di ri-ciclo socialmente inclusivo di risorse locali in disuso. In Il Caso di Ex Fadda di San Vito dei Normanni, Paper Presented at the XX National Conference SIU, Urbanistica è Azione Pubblica, Roma, Italy, 12–14 June 2017; Planum Publisher: Roma-Milano, Italy, 2017; pp. 1251–1256. [Google Scholar]
- Pointereau, P.; Coulon, F.; Girard, P.; Lambotte, M.; Sanchez Ortega, V.; Del Rio, A. Analysis of Farmland Abandonment and the Extent and Location of Agricultural Areas That Are Actually Abandoned or Are in Risk to Be Abandoned; EUR-Scientific and Technical Research Reports; OPOCE: Lisbon, Portugal, 2008. [Google Scholar]
- Van Doorn, A.M.; Bakker, M.M. The destination of arable land in a marginal agricultural landscape in South Portugal: An exploration of land use change determinants. Landsc. Ecol. 2007, 22, 1073–1087. [Google Scholar] [CrossRef]
- Bürgi, M.; Hersperger, A.M.; Schneeberger, N. Driving forces of landscape change-Current and new directions. Landsc. Ecol. 2005, 19, 857–868. [Google Scholar] [CrossRef]
- Ciria, C.S.; Sanz, M.; Carrasco, J.; Ciria, P. Identification of arable marginal lands under rainfed conditions for bioenergy purposes in Spain. Sustainability 2019, 11, 1833. [Google Scholar] [CrossRef]
- Zavalloni, M.; D’Alberto, R.; Raggi, M.; Viaggi, D. Farmland abandonment, public goods and the CAP in a marginal area of Italy. Land Use Policy 2021, 107, 104365. [Google Scholar] [CrossRef]
- Canora, F.; D’Angella, A.; Aiello, A. Quantitative assessment of the sensitivity to desertification in the Bradano River basin (Basilicata, southern Italy). J. Maps 2015, 11, 745–759. [Google Scholar] [CrossRef]
- Ladisa, G.; Todorovic, M.; Liuzzi, G.T. Assessment of desertification in semi-arid Mediterranean environments: The case study of Apulia Region (Southern Italy). Land Degrad. Desertif. Assess. Mitig. Remediat. 2010, 2010, 493–516. [Google Scholar]
- Palli, J.; Baliva, M.; Biondi, F.; Calcagnile, L.; Cerbino, D.; D’Elia, M.; Muleo, R.; Schettino, A.; Quarta, G.; Sassone, N.; et al. The Longevity of Fruit Trees in Basilicata (Southern Italy): Implications for Agricultural Biodiversity Conservation. Land 2023, 12, 550. [Google Scholar] [CrossRef]
- Godini, A.; Contò, F. L’Olivicoltura marginale in Apulia. In Il Futuro dei Sistemi Olivicoli in Aree Marginali: Aspetti Socioeconomici, Conservazione delle Risorse Naturali e Produzioni di Qualità. Conference Proceedings, 12–13 October 2004, Matera, Italy; L’Aquilone: Liege, Belgium, 2004. [Google Scholar]
- Palese, A.M.; Pergola, M.; Favia, M.; Xiloyannis, C.; Celano, G. A sustainable model for the management of olive orchards located in semi-arid marginal areas: Some remarks and indications for policy makers. Environ. Sci. Policy 2013, 27, 81–90. [Google Scholar] [CrossRef]
- Severini, S. La Nuova OCM Olio D’oliva: Come Risponderanno Gli Olivicoltori? Agriregionieuropa 2006, n. 4. Available online: http://agriregionieuropa.univpm.it/dettart.php?id_articolo=90 (accessed on 3 August 2023).
- Saponari, M.; Giampetruzzi, A.; Loconsole, G.; Boscia, D.; Saldarelli, P. Xylella fastidiosa in olive in Apulia: Where we stand. Phytopathology 2019, 109, 175–186. [Google Scholar] [CrossRef]
- Eichhorn, M.P.; Paris, P.; Herzog, F.; Incoll, L.D.; Liagre, F.; Mantzanas, K.; Mayus, M.; Moreno, G.; Papanastasis, V.P.; Pilbeam, D.J.; et al. Silvoarable systems in Europe–past, present and future prospects. Agrofor. Syst. 2006, 67, 29–50. [Google Scholar] [CrossRef]
- Cervelli, E.; Scotto di Perta, E.; Pindozzi, S. Identification of marginal landscapes as support for sustainable development: GIS-based analysis and landscape metrics assessment in southern Italy areas. Sustainability 2020, 12, 5400. [Google Scholar] [CrossRef]
- Saponari, M.; Boscia, D.; Nigro, F.; Martelli, G.P. Identification of DNA sequences related to Xylella fastidiosa in oleander, almond and olive trees exhibiting leaf scorch symptoms in Apulia (Southern Italy). J. Plant Pathol. 2013, 95, 688. [Google Scholar]
- Bosso, L.; Di Febbraro, M.; Cristinzio, G.; Zoina, A.; Russo, D. Shedding light on the effects of climate change on the potential distribution of Xylella fastidiosa in the Mediterranean Basin. Biol. Invasions 2016, 18, 1759–1768. [Google Scholar] [CrossRef]
- Camposeo, S.; Stellacci, A.M.; Romero Trigueros, C.; Alhajj Ali, S.; Vivaldi, G.A. Different Suitability of Olive Cultivars Resistant to Xylella fastidiosa to the Super-Intensive Planting System. Agronomy 2022, 12, 3157. [Google Scholar] [CrossRef]
- Stokstad, E. Italy’s olives under siege: Blight alarms officials across Europe. Science 2015, 348, 620. [Google Scholar] [CrossRef]
- Almeida, R.P. Can Apulia’s olive trees be saved? Science 2016, 353, 346–348. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Camino, C.; Beck, P.S.A.; Calderon, R.; Hornero, A.; Hernández-Clemente, R.; Kattenborn, T.; Montes-Borrego, M.; Susca, L.; Morelli, M.; et al. Previsual symptoms of Xylella fastidiosa infection revealed in spectral plant-trait alterations. Nat. Plants 2018, 4, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Cardone, G.; Digiaro, M.; Djelouah, K.; El Bilali, H.; Michel, F.R.E.M.; Fucilli, V.; Ladisa, G.; Cosimo, R.O.T.A.; Yaseen, T. Potential socio-economic impact of Xylella fastidiosa in the Near East and North Africa (NENA): Risk of introduction and spread, risk perception and socio-economic effects. New Medit Mediterr. J. Econ. Agric. Environ. = Revue Méditerranéenne dʹEconomie Agriculture et Environment 2021, 20. [Google Scholar] [CrossRef]
- Ali, B.M.; van der Werf, W.; Lansink, A.O. Assessment of the environmental impacts of Xylella fastidiosa subsp. pauca in Apulia. Crop Prot. 2021, 142, 105519. [Google Scholar] [CrossRef]
- EU (European Union). Regulation (EU) 2016/2031 of the European Parliament of the Council of 26 October 2016 on protective measures against pests of plants, amending Regulations (EU) No 228/2013, (EU) No 652/2014 and (EU) No 1143/2014 of the European Parliament and of the Council and repealing Council Directives 69/464/EEC, 74/647/EEC, 93/85/EEC, 98/57/EC, 2000/29/EC, 2006/91/EC and 2007/33/EC. Off. J. 2016, 317, 4–104. [Google Scholar]
- Saponari, M.; Boscia, D. Recent advances on the control of Xylella fastidiosa and its vectors in olive groves: State of the art from the ongoing Europe’s Horizon 2020 Research Program. In Proceedings of the 4th International Symposium on Biological Control of Bacterial Plant Diseases, Viterbo, Italy, 9–11 July 2019; p. 51. [Google Scholar]
- Morelli, M.; García-Madero, J.M.; Jos, Á.; Saldarelli, P.; Dongiovanni, C.; Kovacova, M.; Saponari, M.; Baños Arjona, A.; Hackl, E.; Webb, S.; et al. Xylella fastidiosa in olive: A review of control attempts and current management. Microorganisms 2021, 9, 1771. [Google Scholar] [CrossRef]
- Coletta-Filho, H.; Pereira, E.O.; Souza, A.A.; Takita, M.A.; Cristofani-Yale, M.; Machado, M.A. Analysis of resistance to Xylella fastidiosa within a hybrid population of Pera sweet orange × Murcott tangor. Plant Pathol. 2007, 56, 661–668. [Google Scholar] [CrossRef]
- Alhajj Ali, S.; Vivaldi, G.A.; Garofalo, S.P.; Costanza, L.; Camposeo, S. Land Suitability Analysis of Six Fruit Tree Species Immune/Resistant to Xylella fastidiosa as Alternative Crops in Infected Olive-Growing Areas. Agronomy 2023, 13, 547. [Google Scholar] [CrossRef]
- Tofu, D.A.; Wolka, K. Climate change induced a progressive shift of livelihood from cereal towards Khat (Chata edulis) production in eastern Ethiopia. Heliyon 2023, 9. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, S.; von Cossel, M.; Xu, B.; Gao, H.; Jiang, R.; Faaij, A. Evaluating the suitability of marginal land for a perennial energy crop on the Loess Plateau of China. GCB Bioenergy 2021, 13, 1388–1406. [Google Scholar] [CrossRef]
- Nalepa, R.A.; Bauer, D.M. Marginal lands: The role of remote sensing in constructing landscapes for agrofuel development. J Peasant Stud. 2012, 39, 403–422. [Google Scholar] [CrossRef]
- Cai, X.; Zhang, X.; Wang, D. Land availability for biofuel production. Environ. Sci. Technol. 2011, 45, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.T.; McConkey, B.G.; Ma, Z.Y.; Liu, Z.G.; Li, X.; Cheng, L.L. Strengths, weaknessness, opportunities and threats analysis of bioenergy production on marginal land. Energy Procedia 2011, 5, 2378–2386. [Google Scholar] [CrossRef]
- Dhananjoy Mandal, D.M.; Ghosh, P.P.; Dasgupta, M.K. Appropriate precision agriculture with site-specific cropping system management for marginal and small farmers. CABI Rev. 2012, 2012, 1–16. [Google Scholar] [CrossRef]
- Mandal, V.P.; Rehman, S.; Ahmed, R.; Masroor, M.D.; Kumar, P.; Sajjad, H. Land suitability assessment for optimal cropping sequences in Katihar district of Bihar, India using GIS and AHP. Spat. Inf. Res. 2020, 28, 589–599. [Google Scholar] [CrossRef]
- Blasi, C.; Biondi, E.; Izco, J. 100 years of plant sociology: A celebration. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2011, 145 (Suppl. S1), 1–3. [Google Scholar] [CrossRef]
- Martínez, S.R.; Arregui, J.J.L. Bioclimatology of the Iberian peninsula. Itinera Geobotanica 1999, 13, 41–47. [Google Scholar]
- Pesaresi, S.; Biondi, E.; Casavecchia, S. Bioclimates of Italy. J. Maps 2017, 13, 955–960. [Google Scholar] [CrossRef]
- Cano-Ortiz, A.; Fuentes, J.C.P.; Gea, F.L.; Ighbareyeh, J.M.H.; Quinto Canas, R.J.; Meireles, C.I.R.; Raposo, M.; Gomes, C.J.P.; Spampinato, G.; del Río González, S.; et al. Climatology, bioclimatology and vegetation cover: Tools to mitigate climate change in olive groves. Agronomy 2022, 12, 2707. [Google Scholar] [CrossRef]
- Noce, S.; Caporaso, L.; Santini, M. A new global dataset of bioclimatic indicators. Sci Data 2020, 7, 398. [Google Scholar] [CrossRef]
- Gratsea, M.; Varotsos, K.V.; López-Nevado, J.; López-Feria, S.; Giannakopoulos, C. Assessing the long-term impact of climate change on olive crops and olive fly in Andalusia, Spain, through climate indices and return period analysis. Clim. Serv. 2022, 28, 100325. [Google Scholar] [CrossRef]
- Ramirez-Cabral, N.Y.; Kumar, L.; Shabani, F. Global alterations in areas of suitability for maize production from climate change and using a mechanistic species distribution model (CLIMEX). Sci. Rep. 2017, 7, 5910. [Google Scholar] [CrossRef]
- Läderach, P.; Martinez-Valle, A.; Schroth, G.; Castro, N. Predicting the future climatic suitability for cocoa farming of the world’s leading producer countries, Ghana and Côte d’Ivoire. Clim. Change 2013, 119, 841–854. [Google Scholar] [CrossRef]
- Kenny, G.J.; Harrison, P.A. The effects of climate variability and change on grape suitability in Europe. J. Wine Res. 1992, 3, 163–183. [Google Scholar] [CrossRef]
- Odeh, I.O.; Tan, D.K.; Ancev, T. Potential suitability and viability of selected biodiesel crops in Australian marginal agricultural lands under current and future climates. Bioenergy Res. 2011, 4, 165–179. [Google Scholar] [CrossRef]
- Shepherd, T.G. Visual Soil Assessment: Volume 1: Field Guide for Cropping and Pastoral Grazing on Flat to Rolling Country; Landcare Research: Lincoln, New Zealand, 2000. [Google Scholar]
- Mueller, L.; Schindler, U.; Behrendt, A.; Eulenstein, F.; Dannowski, R.; Schlindwein, S.L.; Shepherd, T.G.; Smolentseva, E.; Rogasik, J. The Muencheberg Soil Quality Rating (SQR): Field Manual for Detecting and Assessing Properties and Limitations of Soils for Cropping and Grazing; Report; Leibniz-Centre for Agricultural Landscape Research (ZALF) e. V.: Muencheberg, Germany, 2007. [Google Scholar]
- van Orshoven, J.; Terres, J.; Tóth, T.; Jones, R.; Le-Bas, C.; Nachtergaele, F.; Rossiter, D.; Van, J.; Orshoven, R.S.; Van Velthuizen, H. Updated Common Biophysical Criteria to Define Natural Constraints for Agriculture in Europe. Definition and Scientific Justification for the Common Biophysical Criteria: Technical Factsheets; European Commission, Joint Research Centre, Institute for Environment and Sustainability: Ispra, Italy, 2012. [Google Scholar]
- EC (European Commission). Regulation No 1305/2013 of the European Parliament and of the Council of 17 December 2013 on Support for Rural Development by the European Agricultural Fund for Rural Development (EAFRD); European Commission: Brussels, Belgium, 2013.
- Li, G.; Messina, J.P.; Peter, B.G.; Snapp, S.S. Mapping land suitability for agriculture in Malawi. Land Degrad. Dev. 2017, 28, 2001–2016. [Google Scholar] [CrossRef]
- Snapp, S.S.; Silim, S.N. Farmer preferences and legume intensification for low nutrient environments. Plant Soil 2002, 245, 181–192. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization). A Framework for Land Evaluation. Soil Bulletin 32. Soil Resources Development and Conservation Service Land and Water Development Division; FAO: Rome, Italy, 1976. [Google Scholar]
- Collins, M.G.; Steiner, F.R.; Rushman, M.J. Land-use suitability analysis in the United States: Historical development and promising technological achievements. Environ. Manag. 2001, 28, 611–621. [Google Scholar] [CrossRef]
- Franco, L.; Magalhães, M.R. Assessing the ecological suitability of land-use change. Lessons learned from a rural marginal area in southeast Portugal. Land Use Policy 2022, 122, 106381. [Google Scholar] [CrossRef]
- Haughton, A.J.; Bond, A.J.; Lovett, A.A.; Dockerty, T.; Sünnenberg, G.; Clark, S.J.; Bohan, D.A.; Sage, R.B.; Mallott, M.D.; Mallott, V.E.; et al. A novel, integrated approach to assessing social, economic and environmental implications of changing rural land-use: A case study of perennial biomass crops. J. Appl. Ecol. 2009, 46, 315–322. [Google Scholar] [CrossRef]
- Lovett, A.A.; Sünnenberg, G.M.; Richter, G.M.; Dailey, A.G.; Riche, A.B.; Karp, A. Land use implications of increased biomass production identified by GIS-based suitability and yield mapping for Miscanthus in England. Bioenergy Res. 2009, 2, 17–28. [Google Scholar] [CrossRef]
- Turley, D.; Taylor, M.; Laybourn, R.; Hughes, J.; Kilpatrick, J.; Procter, C.; Wilson, L.; Edgington, P. Assessment of the Availability of ‘Marginal’ and ‘idle’land for Bioenergy Crop Production in England and Wales; DEFRA: London, UK, 2010. [Google Scholar]
- EIT. Innovation Communities. In Climate Action: Low Carbon Technologies; EU Commission: Brussels, Belgium, 2014. [Google Scholar]
- EC (European Commission). Climate Action: What Is the EU Doing? Climate Action; European Commission: Brussels, Belgium, 2014.
- Long, T.B.; Blok, V.; Coninx, I. Barriers to the adoption and diffusion of technological innovations for climate-smart agriculture in Europe: Evidence from the Netherlands, France, Switzerland and Italy. J. Clean. Prod. 2016, 112, 9–21. [Google Scholar] [CrossRef]
- Horbach, J.; Rammer, C.; Rennings, K. Determinants of eco-innovations by type of environmental impact—The role of regulatory push/pull, technology push and market pull. Ecol. Econ. 2012, 78, 112–122. [Google Scholar] [CrossRef]
- Ronco, P.; Zennaro, F.; Torresan, S.; Critto, A.; Santini, M.; Trabucco, A.; Zollo, A.L.; Galluccio, G.; Marcomini, A. A risk assessment framework for irrigated agriculture under climate change. Adv. Water Resour. 2017, 110, 562–578. [Google Scholar] [CrossRef]
- Iannarelli, M.A. The water resources protection plan of regione Apulia. In Planning and Sustainable Management of Coastal Zones and High Environmental Value Areas. Final Networks’ Meeting & Seminar Proceedings, Bari, Italy, 17–18 December 2007; Pace, F., Di Terlizzi, B., Eds.; IAM: Bari, Italy, 2008; pp. 249–255. [Google Scholar]
- Ma, X.; Quist-Jensen, C.A.; Ali, A.; Boffa, V. Desalination of groundwater from a well in Apulia region (Italy) by Al2O3-doped silica and polymeric nanofiltration membranes. Nanomaterials 2020, 10, 1738. [Google Scholar] [CrossRef]
- Ofori, S.; Puškáčová, A.; Růžičková, I.; Wanner, J. Treated wastewater reuse for irrigation: Pros and cons. Sci. Total Environ. 2021, 760, 144026. [Google Scholar] [CrossRef] [PubMed]
- Elgallal, M.; Fletcher, L.; Evans, B. Assessment of potential risks associated with chemicals in wastewater used for irrigation in arid and semiarid zones: A review. Agric. Water Manag. 2016, 177, 419–431. [Google Scholar] [CrossRef]
- Pedrero, F.; Grattan, S.R.; Ben-Gal, A.; Vivaldi, G.A. Opportunities for expanding the use of wastewaters for irrigation of olives. Agric. Water Manag. 2020, 241, 106333. [Google Scholar] [CrossRef]
- Durham, B.; Angelakis, A.N.; Wintgens, T.; Thoeye, C.; Sala, L. Water recycling and reuse. En eureau* countries. Trends And challenges. In Technical Workshop: The Integration of Reclaimed Water in Water Resource Management; Lloret de Mar: Girona, España, 2005. [Google Scholar]
- Arena, C.; Genco, M.; Mazzola, M.R. Environmental benefits and economical sustainability of urban wastewater reuse for irrigation—A cost-benefit analysis of an existing reuse project in Apulia, Italy. Water 2020, 12, 2926. [Google Scholar] [CrossRef]
- Pedrero, F.; Camposeo, S.; Pace, B.; Cefola, M.; Vivaldi, G.A. Use of reclaimed wastewater on fruit quality of nectarine in Southern Italy. Agric. Water Manag. 2018, 203, 186–192. [Google Scholar] [CrossRef]
- Vivaldi, G.A.; Camposeo, S.; Lopriore, G.; Romero-Trigueros, C.; Salcedo, F.P. Using saline reclaimed water on almond grown in Mediterranean conditions: Deficit irrigation strategies and salinity effects. Water Supply 2019, 19, 1413–1421. [Google Scholar] [CrossRef]
- Angilè, F.; Vivaldi, G.A.; Girelli, C.R.; Del Coco, L.; Caponio, G.; Lopriore, G.; Fanizzi, F.P.; Camposeo, S. Treated Unconventional Waters Combined with Different Irrigation Strategies Affect 1H NMR Metabolic Profile of a Monovarietal Extra Virgin Olive Oil. Sustainability 2022, 14, 1592. [Google Scholar] [CrossRef]
- Dupraz, C.; Marrou, H.; Talbot, G.; Dufour, L.; Nogier, A.; Ferard, Y. Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes. Renew. Energ. 2011, 36, 2725–2732. [Google Scholar] [CrossRef]
- Weselek, A.; Ehmann, A.; Zikeli, S.; Lewandowski, I.; Schindele, S.; Högy, P. Agrophotovoltaic systems: Applications, challenges, and opportunities. A review. Agron. Sustain. Dev. 2019, 39, 1–20. [Google Scholar] [CrossRef]
- Weselek, A.; Bauerle, A.; Hartung, J.; Zikeli, S.; Lewandowski, I.; Högy, P. Agrivoltaic system impacts on microclimate and yield of different crops within an organic crop rotation in a temperate climate. Agron. Sustain. Dev. 2021, 41, 59. [Google Scholar] [CrossRef]
- Dupraz, C. Assessment of the ground coverage ratio of agrivoltaic systems as a proxy for potential crop productivity. Agroforest Syst. 2023, 1–18. [Google Scholar] [CrossRef]
- Trommsdorff, M.; Kang, J.; Reise, C.; Schindele, S.; Bopp, G.; Ehmann, A.; Weselek, A.; Högy, P.; Obergfell, T. Combining food and energy production: Design of an agrivoltaic system applied in arable and vegetable farming in Germany. Renew. Sustain. Energy Rev. 2021, 140, 110694. [Google Scholar] [CrossRef]
- Weselek, A.; Bauerle, A.; Zikeli, S.; Lewandowski, I.; Högy, P. Effects on crop development, yields and chemical composition of celeriac (Apium graveolens L. var. rapaceum) cultivated underneath an agrivoltaic system. Agronomy 2021, 11, 733. [Google Scholar] [CrossRef]
- Marrou, H.; Wery, J.; Dufour, L.; Dupraz, C. Productivity and radiation use efficiency of lettuces grown in the partial shade of photovoltaic panels. Eur. J. Agron. 2013, 44, 54–66. [Google Scholar] [CrossRef]
- Edouard, S.; Combes, D.; Van Iseghem, M.; Tin, M.N.W.; Escobar-Gutiérrez, A.J. Increasing land productivity with agriphotovoltaics: Application to an alfalfa field. Appl. Energy 2023, 329, 120207. [Google Scholar] [CrossRef]
- PV Magazine. Agrivoltaic for Pear Orchards. 2020. Available online: https://www.pv-magazine.com/2020/10/02/agrivoltaics-for-pear-orchards/ (accessed on 3 October 2023).
- Juillion, P.; Lopez, G.; Fumey, D.; Lesniak, V.; Génard, M.; Vercambre, G. Shading apple trees with an agrivoltaic system: Impact on water relations, leaf morphophysiological characteristics and yield determinants. Sci. Hortic. 2022, 306, 111434. [Google Scholar] [CrossRef]
- Sun’Agri. Viticulture: Piolenc. 2021. Available online: https://sunagri.fr/en/project/piolencs-experimental-plot/ (accessed on 3 October 2023).
- Ferrara, G.; Boselli, M.; Palasciano, M.; Mazzeo, A. Effect of shading determined by photovoltaic panels installed above the vines on the performance of cv. corvina (Vitis vinifera l.). Sci. Hortic. 2023, 308, 111595. [Google Scholar] [CrossRef]
- Jiang, S.; Tang, D.; Zhao, L.; Liang, C.; Cui, N.; Gong, D.; Wang, Y.; Feng, Y.; Hu, X.; Peng, Y. Effects of different photovoltaic shading levels on kiwifruit growth, yield and water productivity under “agrivoltaic” system in Southwest China. Agric. Water Manag. 2022, 269, 107675. [Google Scholar] [CrossRef]
- Duchemin, M.; Nardin, G.; Ackermann, M.; Petri, D.; Levrat, J.; Chudy, D.; Despeisse, M.; Ballif, C.; Baumann, M.; Christ, B.; et al. Dynamic Agrivoltaics with Raspberry Crops: Field Trial Results; Agrivoltaics: Daegu, Republic of Korea, 2023. [Google Scholar]
- Ferrara, G.; Magarelli, A.; Palasciano, M.; Coletta, A.; Crupi, P.; Tarantino, A.; Mazzeo, A. Effects of different winter pruning times on table grape vines performance and starch reserves to face climate changes. Sci. Hortic. 2022, 305, 111385. [Google Scholar] [CrossRef]
- Ferrara, G.; Magarelli, A.; Mazzeo, A.; Coletta, A.; Crupi, P.; Loperfido, F.; Maggi, G.; Venerito, P. Underutilized Fig (Ficus carica L.) Cultivars from Apulia Region, Southeastern Italy, for an Innovative Product: Dried Fig Disks. Processes 2023, 11, 1485. [Google Scholar] [CrossRef]
- Patra, A.K. Agroforestry: Principle and Practices; New India Publishing Agency: New Delhi, India, 2013. [Google Scholar]
- Blanco-Canqui, H.; Lal, R. Agroforestry. In Principles of Soil Conservation and Management; Springer: Dordrecht, The Netherlands; Heidelberg, Germany; London, UK; New York, NY, USA, 2008; pp. 259–283, 617. [Google Scholar] [CrossRef]
- Nair, P.K.R. Agroforestry: Practices and systems. In Encyclopedia of Agriculture and Food Systems; Van Alfen, N.K., Ed.; Elsevier: San Diego, CA, USA, 2014; pp. 270–282. [Google Scholar]
- Bishaw, B.; Soolanayakanahally, R.; Karki, U.; Hagan, E. Agroforestry for sustainable production and resilient landscapes. Agrofor. Syst. 2022, 96, 447–451. [Google Scholar] [CrossRef]
- RECOFTC; ICRAF; AWG-SF. Agroforestry for Climate-Resilient Landscapes; RECOFTC: Bangkok, Thailand, 2020. [Google Scholar]
- Gelfand, I.; Sahajpal, R.; Zhang, X.; Izaurralde, R.C.; Gross, K.L.; Robertson, G.P. Sustainable bioenergy production from marginal lands in the US Midwest. Nature 2013, 493, 514–517. [Google Scholar] [CrossRef]
- Verdade, L.M.; Pina, C.I.; Rosalino, L.M. Biofuels and biodiversity: Challenges and opportunities. Environ. Dev. 2015, 15, 64–78. [Google Scholar] [CrossRef]
- Werling, B.P.; Dickson, T.L.; Isaacs, R.; Gaines, H.; Gratton, C.; Gross, K.L.; Liere, H.; Malmstrom, C.M.; Meehan, T.D.; Ruan, L.; et al. Perennial grasslands enhance biodiversity and multiple ecosystem services in bioenergy landscapes. Proc. Natl. Acad. Sci. USA 2014, 111, 1652–1657. [Google Scholar] [CrossRef] [PubMed]
- Stanek, E.C.; Lovell, S.T.; Reisner, A. Designing multifunctional woody polycultures according to landowner preferences in Central Illinois. Agrofor. Syst. 2019, 93, 2293–2311. [Google Scholar] [CrossRef]
- Trozzo, K.E.; Munsell, J.F.; Chamberlain, J.L. Landowner interest in multifunctional agroforestry Riparian buffers. Agrofor. Syst. 2014, 88, 619–629. [Google Scholar] [CrossRef]
- Wolz, K.J.; Lovell, S.T.; Branham, B.E.; Eddy, W.C.; Keeley, K.; Revord, R.S.; Wander, M.M.; Yang, W.H.; DeLucia, E.H. Frontiers in alley cropping: Transformative solutions for temperate agriculture. Glob. Chang. Biol. 2018, 24, 883–894. [Google Scholar] [CrossRef] [PubMed]
- Mattia, C.M.; Lovell, S.T.; Davis, A. Identifying barriers and motivators for adoption of multifunctional perennial cropping systems by landowners in the Upper Sangamon River Watershed, Illinois. Agrofor. Syst. 2018, 92, 1155–1169. [Google Scholar] [CrossRef]
- Lovell, S.T.; Dupraz, C.; Gold, M.; Jose, S.; Revord, R.; Stanek, E.; Wolz, K.J. Temperate agroforestry research: Considering multifunctional woody polycultures and the design of long-term field trials. Agrofor. Syst. 2018, 92, 1397–1415. [Google Scholar] [CrossRef]
- Metzger, M.J.; Bunce, R.G.H.; Jongman, R.H.; Mücher, C.A.; Watkins, J.W. A climatic stratification of the environment of Europe. Glob. Ecol. Biogeogr. 2005, 14, 549–563. [Google Scholar] [CrossRef]
- Paris, P.; Camilli, F.; Rosati, A.; Mantino, A.; Mezzalira, G.; Dalla Valle, C.; Franca, A.; Seddaiu, G.; Pisanelli, A.; Lauteri, M.; et al. What is the future for agroforestry in Italy? Agrofor. Syst. 2019, 93, 2243–2256. [Google Scholar] [CrossRef]
- Mosquera-Losada, M.R.; Rodríguez-Rigueiro, F.J.; Santiago-Freijanes, J.J.; Rigueiro-Rodríguez, A.; Silva-Losada, P.; Pantera, A.; Fernández-Lorenzo, J.L.; González-Hernández, M.P.; Romero-Franco, R.; Aldrey-Vázquez, J.A.; et al. European agroforestry policy promotion in arable Mediterranean areas. Land Use Policy 2022, 120, 106274. [Google Scholar] [CrossRef]
- Santiago-Freijanes, J.J.; Rigueiro-Rodríguez, A.; Aldrey, J.A.; Moreno, G.; den Herder, M.; Burgess, P.; Mosquera-Losada, M.R. Understanding agroforestry practices in Europe through landscape features policy promotion. Agrofor. Syst. 2018, 92, 1105–1115. [Google Scholar] [CrossRef]
- Caballero, R.; Fernandez-Gonzalez, F.; Badia, R.P.; Molle, G.; Roggero, P.P.; Bagella, S.; Papanastasis, V.P.; Fotiadis, G.; Sidiropoulou, A.; Ispikoudis, I. Grazing systems and biodiversity in Mediterranean areas: Spain, Italy and Greece. Pastos 2009, 39, 9–154. [Google Scholar]
- Palombo, C. The Influence of Land-Use and Climatic Changes on Mountain Pine (Pinus mugo Turra spp. mugo) Ecotone Dynamics at Its Southern Range Margin on the Majella Massif, Central Apennines. Ph.D. Dissertation, University of Molise, Campobasso, Italy, 2013. [Google Scholar]
- Ferrara, G.; Lombardini, L.; Mazzeo, A.; Bruno, G.L. Evaluation of pecan [Carya illinoinensis (Wangenh.) K. Koch] cultivars for a possible cultivation for both fruit and truffle production in the Puglia Region, Southeastern Italy. Horticulturae 2023, 9, 261. [Google Scholar] [CrossRef]
- Jose, S.; Gillespie, A.R.; Pallardy, S.G. Interspecific interactions in temperate agroforestry. Agrofor. Syst. 2004, 61, 237–255. [Google Scholar]
- Abbas, F.; Hammad, H.M.; Fahad, S.; Cerdà, A.; Rizwan, M.; Farhad, W.; Ehsan, S.; Bakhat, H.F. Agroforestry: A sustainable environmental practice for carbon sequestration under the climate change scenarios—A review. Environ. Sci. Pollut. Res. 2017, 24, 11177–11191. [Google Scholar] [CrossRef] [PubMed]
- Manousaki, E.; Kalogerakis, N. Halophytes Present New Opportunities in Phytoremediation of PTEs and Saline Soils. Ind. Eng. Chem. Res. 2011, 50, 656–660. [Google Scholar] [CrossRef]
- Ferreira, M.J.; Pinto, D.C.; Cunha, Â.; Silva, H. Halophytes as medicinal plants against human infectious diseases. Appl. Sci. 2022, 12, 7493. [Google Scholar] [CrossRef]
- Panta, S.; Flowers, T.; Lane, P.; Doyle, R.; Haros, G.; Shabala, S. Halophyte agriculture: Success stories. Environ. Exp. Bot. 2014, 107, 71–83. [Google Scholar] [CrossRef]
- Christofilopoulos, S.; Syranidou, E.; Gkavrou, G.; Manousaki, E.; Kalogerakis, N. The role of halophyte Juncus acutus L. in the remediation of mixed contamination in a hydroponic greenhouse experiment: Remediation of mixed contamination by J. acutus L. J. Chem. Technol. Biotechnol. 2016, 91, 1665–1674. [Google Scholar] [CrossRef]
- Hasnain, M.; Abideen, Z.; Ali, F.; Hasanuzzaman, M.; El-Keblawy, A. Potential of Halophytes as Sustainable Fodder Production by Using Saline Resources: A Review of Current Knowledge and Future Directions. Plants 2023, 12, 2150. [Google Scholar] [CrossRef]
- Chen, Y.S.; Wang, P.; Wang, K.X.; Chen, N.; Zhao, L. The strategic choice of sea rice industry development in China. J. Ocean Univ. China (Soc. Sci.) 2018, 30, 50–54, (In Chinese with English abstract). [Google Scholar]
- Grigore, M.N.; Toma, C. Morphological and Anatomical Adaptations of Halophytes: A Review. In Handbook of Halophytes; Grigore, M.N., Ed.; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Altieri, M.A. Agroecology: The science of natural resource management for poor farmers in marginal environments. Agric. Ecosyst. Environ. 2002, 93, 1–24. [Google Scholar] [CrossRef]
- Triantafyllidis, A. . Local Governance through Organic Farming. The bio-district of the Vara Valley, a private/public partnership to assure vitality to a rural area. In Proceedings of the Practitioners’ Track, IFOAM Organic World Congress 2014, ‘Building Organic Bridges’, Istanbul, Turkey, 13–15 October 2014. [Google Scholar]
- Massarutto, A. Agriculture, Water Resources and Water Policies in Italy. Water Resources and Water Policies in Italy. 2000. Available online: https://ssrn.com/abstract=200151 (accessed on 16 October 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhajj Ali, S.; Tallou, A.; Vivaldi, G.A.; Camposeo, S.; Ferrara, G.; Sanesi, G. Revitalization Potential of Marginal Areas for Sustainable Rural Development in the Puglia Region, Southern Italy: Part I: A Review. Agronomy 2024, 14, 431. https://doi.org/10.3390/agronomy14030431
Alhajj Ali S, Tallou A, Vivaldi GA, Camposeo S, Ferrara G, Sanesi G. Revitalization Potential of Marginal Areas for Sustainable Rural Development in the Puglia Region, Southern Italy: Part I: A Review. Agronomy. 2024; 14(3):431. https://doi.org/10.3390/agronomy14030431
Chicago/Turabian StyleAlhajj Ali, Salem, Anas Tallou, Gaetano Alessandro Vivaldi, Salvatore Camposeo, Giuseppe Ferrara, and Giovanni Sanesi. 2024. "Revitalization Potential of Marginal Areas for Sustainable Rural Development in the Puglia Region, Southern Italy: Part I: A Review" Agronomy 14, no. 3: 431. https://doi.org/10.3390/agronomy14030431
APA StyleAlhajj Ali, S., Tallou, A., Vivaldi, G. A., Camposeo, S., Ferrara, G., & Sanesi, G. (2024). Revitalization Potential of Marginal Areas for Sustainable Rural Development in the Puglia Region, Southern Italy: Part I: A Review. Agronomy, 14(3), 431. https://doi.org/10.3390/agronomy14030431