17 pages, 4884 KiB  
Article
A Comparative Transcriptomic with UPLC-Q-Exactive MS Reveals Differences in Gene Expression and Components of Iridoid Biosynthesis in Various Parts of Gentiana macrophylla
by Yuhang Kou, Xiaoying Yi, Zhuo Li, Yun Ai, Siting Ma and Qianliang Chen
Genes 2022, 13(12), 2372; https://doi.org/10.3390/genes13122372 - 15 Dec 2022
Cited by 5 | Viewed by 1447
Abstract
Gentiana macrophylla Pall. (G. macrophylla)—a member of the family Gentianaceae—is a well-known traditional Chinese medical herb. Iridoids are the main active components of G. macrophylla, which has a wide range of pharmacological activities such as dispelling wind, eliminating dampness, clearing [...] Read more.
Gentiana macrophylla Pall. (G. macrophylla)—a member of the family Gentianaceae—is a well-known traditional Chinese medical herb. Iridoids are the main active components of G. macrophylla, which has a wide range of pharmacological activities such as dispelling wind, eliminating dampness, clearing heat and asthenic fever, hepatoprotective and choleretic actions, and other medicinal effects. In this study, a total of 67,048 unigenes were obtained by transcriptomic sequencing analysis of G. macrophylla. A BLAST analysis showed that 48.21%, 33.66%, 46.32%, and 32.62% of unigenes were identified in the NR, Swiss-Prot, eggNOG, and KEGG databases, respectively. Twenty-five key enzymes were identified in the iridoid biosynthesis pathway. Most of the upregulated unigenes were enriched in flowers and leaves. The trustworthiness of the transcriptomic data was validated by real-time quantitative PCR (qRT-PCR). A total of 22 chemical constituents were identified by ultra-high performance liquid chromatography-quadrupole-electrostatic field Orbitrap mass spectrometry (UPLC-Q-Exactive MS), including 10 iridoids. A correlation analysis showed that the expression of 7-DLH and SLS was closely related to iridoids. The expression of 7-DLH and SLS was higher in flowers, indicating that flowers are important for iridoid biosynthesis in G. macrophylla. Full article
(This article belongs to the Special Issue Genetic Mechanism of Plant Responses to Environmental Stresses)
Show Figures

Figure 1

13 pages, 6868 KiB  
Article
Genome-Wide Identification of bHLH Transcription Factor in Medicago sativa in Response to Cold Stress
by Guangjun Li, Lei Jin and Song Sheng
Genes 2022, 13(12), 2371; https://doi.org/10.3390/genes13122371 - 15 Dec 2022
Cited by 5 | Viewed by 1748
Abstract
Alfalfa represents one of the most important legume forages, and it is also applied as an organic fertilizer to improve soil quality. However, this perennial plant is native to warmer temperate regions, and its valuable cold-acclimation-related regulatory mechanisms are still less known. In [...] Read more.
Alfalfa represents one of the most important legume forages, and it is also applied as an organic fertilizer to improve soil quality. However, this perennial plant is native to warmer temperate regions, and its valuable cold-acclimation-related regulatory mechanisms are still less known. In higher plants, the bHLH transcription factors play pleiotropic regulatory roles in response to abiotic stresses. The recently released whole genome sequencing data of alfalfa allowed us to identify 469 MsbHLHs by multi-step homolog search. Herein, we primarily identified 65 MsbHLH genes that significantly upregulated under cold stress, and such bHLHs were classified into six clades according to their expression patterns. Interestingly, the phylogenetic analysis and conserved motif screening of the cold-induced MsbHLHs showed that the expression pattern is relatively varied in each bHLH subfamily, this result indicating that the 65 MsbHLHs may be involved in a complex cold-responsive regulatory network. Hence, we analyzed the TFBSs at promoter regions that unraveled a relatively conserved TFBS distribution with genes exhibiting similar expression patterns. Eventually, to verify the core components involved in long-term cold acclimation, we examined transcriptome data from a freezing-tolerant species (cv. Zhaodong) in the field and compared the expression of cold-sensitive/tolerant subspecies of alfalfa, giving 11 bHLH as candidates, which could be important for further cold-tolerance enhancement and molecular breeding through genetic engineering in alfalfa. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

16 pages, 7652 KiB  
Article
Proteomic and Transcriptomic Landscapes of Alström and Bardet–Biedl Syndromes
by Urszula Smyczynska, Marcin Stanczak, Miljan Kuljanin, Aneta Włodarczyk, Ewelina Stoczynska-Fidelus, Joanna Taha, Bartłomiej Pawlik, Maciej Borowiec, Joseph D. Mancias, Wojciech Mlynarski, Piotr Rieske, Wojciech Fendler and Agnieszka Zmysłowska
Genes 2022, 13(12), 2370; https://doi.org/10.3390/genes13122370 - 15 Dec 2022
Cited by 5 | Viewed by 1914
Abstract
Alström syndrome (ALMS) and Bardet–Biedl syndrome (BBS) are rare genetic diseases with a number of common clinical features ranging from early-childhood obesity and retinal degeneration. ALMS and BBS belong to the ciliopathies, which are known to have the expression products of genes, encoding [...] Read more.
Alström syndrome (ALMS) and Bardet–Biedl syndrome (BBS) are rare genetic diseases with a number of common clinical features ranging from early-childhood obesity and retinal degeneration. ALMS and BBS belong to the ciliopathies, which are known to have the expression products of genes, encoding them as cilia-localized proteins in multiple target organs. The aim of this study was to perform transcriptomic and proteomic analysis on cellular models of ALMS and BBS syndromes to identify common and distinct pathological mechanisms present in both syndromes. For this purpose, epithelial cells were isolated from the urine of patients and healthy subjects, which were then cultured and reprogrammed into induced pluripotent stem (iPS) cells. The pathways of genes associated with the metabolism of lipids and glycosaminoglycan and the transport of small molecules were found to be concomitantly downregulated in both diseases, while transcripts related to signal transduction, the immune system, cell cycle control and DNA replication and repair were upregulated. Furthermore, protein pathways associated with autophagy, apoptosis, cilium assembly and Gli1 protein were upregulated in both ciliopathies. These results provide new insights into the common and divergent pathogenic pathways between two similar genetic syndromes, particularly in relation to primary cilium function and abnormalities in cell differentiation. Full article
(This article belongs to the Special Issue Molecular Basis of Rare Diseases)
Show Figures

Graphical abstract

11 pages, 718 KiB  
Article
TWIST1 Plays Role in Expression of Stemness State Markers in ESCC
by Mohammad Hossein Izadpanah and Mohammad Mahdi Forghanifard
Genes 2022, 13(12), 2369; https://doi.org/10.3390/genes13122369 - 15 Dec 2022
Cited by 2 | Viewed by 1457
Abstract
Background: Stemness markers play critical roles in the maintenance of key properties of embryonic stem cells (ESCs), including the pluripotency, stemness state, and self-renewal capacities, as well as cell fate decision. Some of these features are present in cancer stem cells (CSCs). TWIST1, [...] Read more.
Background: Stemness markers play critical roles in the maintenance of key properties of embryonic stem cells (ESCs), including the pluripotency, stemness state, and self-renewal capacities, as well as cell fate decision. Some of these features are present in cancer stem cells (CSCs). TWIST1, as a bHLH transcription factor oncogene, is involved in the epithelial–mesenchymal transition (EMT) process in both embryonic and cancer development. Our aim in this study was to investigate the functional correlation between TWIST1 and the involved genes in the process of CSCs self-renewal in human esophageal squamous cell carcinoma (ESCC) line KYSE-30. Methods: TWIST1 overexpression was enforced in the ESCC KYSE-30 cells using retroviral vector containing the specific pruf-IRES-GFP-hTWIST1 sequence. Following RNA extraction and cDNA synthesis, the mRNA expression profile of TWIST1 and the stem cell markers, including BMI1, CRIPTO1, DPPA2, KLF4, SOX2, NANOG, and MSI1, were assessed using relative comparative real-time PCR. Results: Ectopic expression of TWIST1 in KYSE-30 cells resulted in an increased expression of TWIST1 compared to control GFP cells by nearly 9-fold. Transduction of TWIST1-retroviral particles caused a significant enhancement in BMI1, CRIPTO1, DPPA2, KLF4, and SOX2 mRNA expression, approximately 4.5-, 3.2-, 5.5-, 3.5-, and 3.7-folds, respectively, whereas this increased TWIST1 expression caused no change in the mRNA expression of NANOG and MSI1 genes. Conclusions: TWIST1 gene ectopic expression in KYSE-30 cells enhanced the level of cancer stem cell markers’ mRNA expression. These results may emphasize the role of TWIST1 in the self-renewal process and may corroborate the involvement of TWIST1 in the stemness state capacity of ESCC cell line KYSE-30, as well as its potential as a therapeutic target. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

23 pages, 3857 KiB  
Article
Potential Cytoprotective and Regulatory Effects of Ergothioneine on Gene Expression of Proteins Involved in Erythroid Adaptation Mechanisms and Redox Pathways in K562 Cells
by Victoria Simões Bernardo, Flaviene Felix Torres, Carla Peres de Paula, João Pedro Maia de Oliveira da Silva, Eduardo Alves de Almeida, Anderson Ferreira da Cunha and Danilo Grünig Humberto da Silva
Genes 2022, 13(12), 2368; https://doi.org/10.3390/genes13122368 - 15 Dec 2022
Cited by 3 | Viewed by 1819
Abstract
This study aimed to establish the importance of ergothioneine (ERT) in the erythroid adaptation mechanisms by appraising the expression levels of redox-related genes associated with the PI3K/AKT/FoxO3 and Nrf2-ARE pathways using K562 cells induced to erythroid differentiation and H2O2-oxidative [...] Read more.
This study aimed to establish the importance of ergothioneine (ERT) in the erythroid adaptation mechanisms by appraising the expression levels of redox-related genes associated with the PI3K/AKT/FoxO3 and Nrf2-ARE pathways using K562 cells induced to erythroid differentiation and H2O2-oxidative stress. Cell viability and gene expression were evaluated. Two concentrations of ERT were assessed, 1 nM (C1) and 100 µM (C2), with and without stress induction (100 µM H2O2). Assessments were made in three periods of the cellular differentiation process (D0, D2, and D4). The C1 treatment promoted the induction of FOXO3 (D0 and 2), PSMB5, and 6 expressions (D4); C1 + H2O2 treatment showed the highest levels of NRF2 transcripts, KEAP1 (D0), YWHAQ (D2 and 4), PSMB5 (D2) and PSMB6 (D4); and C2 + H2O2 (D2) an increase in FOXO3 and MST1 expression, with a decrease of YWHAQ and NRF2 was observed. in C2 + H2O2 (D2) an increase in FOXO3 and MST1, with a decrease in YWHAQ and NRF2 was observed All ERT treatments increased gamma-globin expression. Statistical multivariate analyzes highlighted that the Nrf2-ARE pathway presented a greater contribution in the production of PRDX1, SOD1, CAT, and PSBM5 mRNAs, whereas the PI3K/AKT/FoxO3 pathway was associated with the PRDX2 and TRX transcripts. In conclusion, ERT presented a cytoprotective action through Nrf2 and FoxO3, with the latter seeming to contribute to erythroid proliferation/differentiation. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Graphical abstract

13 pages, 705 KiB  
Case Report
Helsmoortel–Van der Aa Syndrome—Cardiothoracic and Ectodermal Manifestations in Two Patients as Further Support of a Previous Observation on Phenotypic Overlap with RASopathies
by Tímea Margit Szabó, István Balogh, Anikó Ujfalusi, Zsuzsanna Szűcs, László Madar, Katalin Koczok, Beáta Bessenyei, Ildikó Csürke and Katalin Szakszon
Genes 2022, 13(12), 2367; https://doi.org/10.3390/genes13122367 - 15 Dec 2022
Cited by 1 | Viewed by 3735
Abstract
The ADNP-gene-related neurodevelopmental disorder Helsmoortel–Van der Aa syndrome is a rare syndromic-intellectual disability—an autism spectrum disorder first described by Helsmoortel and Van der Aa in 2014. Recently, a large cohort including 78 patients and their detailed phenotypes were presented by Van Dijck [...] Read more.
The ADNP-gene-related neurodevelopmental disorder Helsmoortel–Van der Aa syndrome is a rare syndromic-intellectual disability—an autism spectrum disorder first described by Helsmoortel and Van der Aa in 2014. Recently, a large cohort including 78 patients and their detailed phenotypes were presented by Van Dijck et al., 2019, who reported developmental delay, speech delay and autism spectrum disorder as nearly constant findings with or without variable cardiological, gastroenterological, urogenital, endocrine and neurological manifestations. Among cardiac malformations, atrial septal defect, patent ductus arteriosus, patent foramen ovale and mitral valve prolapse were the most common findings, but other unspecified defects, such as mild pulmonary valve stenosis, were also described. We present two patients with pathogenic ADNP variants and unusual cardiothoracic manifestations—Bland–White–Garland syndrome, pectus carinatum superiorly along the costochondral junctions and pectus excavatum inferiorly in one patient, and Kawasaki syndrome with pericardiac effusion, coronary artery dilatation and aneurysm in the other—who were successfully treated with intravenous immunoglobulin, corticosteroid and aspirin. Both patients had ectodermal and/or skeletal features overlapping those seen in RASopathies, supporting the observations of Alkhunaizi et al. 2018. on the clinical overlap between Helsmoortel–Van der Aa syndrome and Noonan syndrome. We observed a morphological overlap with the Noonan-like disorder with anagen hair in our patients. Full article
(This article belongs to the Special Issue Genetics of Neurodevelopmental Disorders)
Show Figures

Figure 1

12 pages, 2465 KiB  
Article
Spotlight on a Short-Time Treatment with the IL-4/IL-13 Receptor Blocker in Patients with CRSwNP: microRNAs Modulations and Preliminary Clinical Evidence
by Selena Mimmi, Nicola Lombardo, Domenico Maisano, Giovanna Piazzetta, Corrado Pelaia, Girolamo Pelaia, Marta Greco, Daniela Foti, Vincenzo Dattilo and Enrico Iaccino
Genes 2022, 13(12), 2366; https://doi.org/10.3390/genes13122366 - 15 Dec 2022
Cited by 7 | Viewed by 1822
Abstract
Already used for the treatment of some allergic and inflammatory diseases, such as asthma or atopic dermatitis, dupilumab has also been approved as add-on therapy for patients with CRSwNP, and it could represent the keystone to reducing the remission time as well as [...] Read more.
Already used for the treatment of some allergic and inflammatory diseases, such as asthma or atopic dermatitis, dupilumab has also been approved as add-on therapy for patients with CRSwNP, and it could represent the keystone to reducing the remission time as well as to improve healing and quality of life. On the other hand, the role of miRNAs as potential biomarkers of immune modulation is emerging. We analyzed the effects of a short-time treatment with dupilumab in patients with CRSwNP, analyzing the immune response modification as well as miRNAs modulations. First, in this early observation stage, all patients experienced remarkable improvement and were clinically stable. Indeed, we observed a significant decrease in CD4+ T cells and a significant reduction in total IgE (p < 0.05) and serum IL-8 levels (p < 0.01), indicating a reduction in the general inflammatory condition. In addition, we analyzed a panel of about 200 circulating miRNAs. After treatment, we noted a significant downregulation of hsa-mir-25-3p (p-value = 0.02415) and hsa-mir-185-5p (p-value = 0.04547), two miRNAs involved in the proliferation, inflammation, and dug-resistance, in accordance with the clinical status of patients. All these preliminary data aimed to identify new biomarkers of prognosis, identifiable with non-invasive procedures for patients. Further, these patients are still under observation, and others with different levels of responsiveness to treatment need to be enrolled to increase the statistical data. Full article
(This article belongs to the Section RNA)
Show Figures

Figure 1

12 pages, 936 KiB  
Article
The Value of a Comprehensive Genomic Evaluation in Prenatal Diagnosis of Genetic Diseases: A Retrospective Study
by Fang Fu, Ru Li, Qiu-Xia Yu, Xiao Dang, Shu-Juan Yan, Hang Zhou, Ken Cheng, Rui-Bin Huang, You Wang, Yong-Ling Zhang, Xiang-Yi Jing, Li-Na Zhang, Dong-Zhi Li and Can Liao
Genes 2022, 13(12), 2365; https://doi.org/10.3390/genes13122365 - 14 Dec 2022
Cited by 1 | Viewed by 1740
Abstract
Currently, there are still many challenges in prenatal diagnosis, such as limited or uncertain fetal phenotyping, variant interpretation, and rapid turnaround times. The aim of this study was to illustrate the value of a comprehensive genomic evaluation in prenatal diagnosis. We retrospectively reviewed [...] Read more.
Currently, there are still many challenges in prenatal diagnosis, such as limited or uncertain fetal phenotyping, variant interpretation, and rapid turnaround times. The aim of this study was to illustrate the value of a comprehensive genomic evaluation in prenatal diagnosis. We retrospectively reviewed 20 fetuses with clinically significant copy number variants (CNVs) detected by chromosomal microarray analysis (CMA) and no further exome sequencing testing in our tertiary center between 2019 and 2020. The residual DNA from the prenatal cases was used for the parallel implementation of CNV sequencing (CNV-seq) and trio-based clinical exome sequencing (trio-CES). CMA revealed 26 clinically significant CNVs (18 deletions and eight duplications) in 20 fetuses, in which five fetuses had two or more CNVs. There were eight fetuses with pathogenic CNVs (e.g., del 1p36), nine fetuses with likely pathogenic CNVs (e.g., dup 22q11.21), and three fetuses with variants of unknown significance (VOUS, e.g., dup 1q21.1q21.2). Trio-CES identified four fetuses with likely pathogenic mutations (SNV/InDels). Of note, a fetus was detected with a maternally inherited hemizygous variant in the SLX4 gene due to a 16p13.3 deletion on the paternal chromosome. The sizes of CNVs detected by CNV-seq were slightly larger than that of the SNP array, and four cases with mosaic CNVs were all identified by CNV-seq. In conclusion, microdeletion/duplication syndromes and monogenic disorders may co-exist in a subject, and CNV deletion may contribute to uncovering additional recessive disease alleles. The application of a comprehensive genomic evaluation (CNVs and SNV/InDels) has great value in the prenatal diagnosis arena. CNV-seq based on NGS technology is a reliable and a cost-effective technique for identifying CNVs. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

8 pages, 1079 KiB  
Article
Whole-Exome Sequencing and Copy Number Analysis in a Patient with Warburg Micro Syndrome
by Qiwei Wang, Tingfeng Qin, Xun Wang, Jing Li, Xiaoshan Lin, Dongni Wang, Zhuoling Lin, Xulin Zhang, Xiaoyan Li, Haotian Lin and Weirong Chen
Genes 2022, 13(12), 2364; https://doi.org/10.3390/genes13122364 - 14 Dec 2022
Cited by 2 | Viewed by 1500
Abstract
Warburg Micro syndrome (WARBM) is an autosomal recessive neuro-ophthalmologic syndrome characterized by microcephaly, microphthalmia, congenital cataracts, cortical dysplasia, corpus callosum hypoplasia, spasticity, and hypogonadism. WARBM is divided into four subtypes according to the causative genes, of which RAB3GAP1 (OMIM# 602536) accounts for the [...] Read more.
Warburg Micro syndrome (WARBM) is an autosomal recessive neuro-ophthalmologic syndrome characterized by microcephaly, microphthalmia, congenital cataracts, cortical dysplasia, corpus callosum hypoplasia, spasticity, and hypogonadism. WARBM is divided into four subtypes according to the causative genes, of which RAB3GAP1 (OMIM# 602536) accounts for the highest proportion. We collected detailed medical records and performed whole-exome sequencing (WES) for a congenital cataract patient. A novel heterozygous frameshift RAB3GAP1 variant was detected in a boy with a rare ocular phenotype of bilateral membranous cataracts accompanied by a persistent papillary membrane. Further copy number variation (CNV) analysis identified a novel deletion on chromosome 2q21.3 that removed 4 of the 24 exons of RAB3GAP1. The patient was diagnosed with WARBM following genetic testing. The present study expands the genotypic and phenotypic spectrum of WARBM. It suggests applying whole exome sequencing (WES) and CNV analysis for the early diagnosis of syndromic diseases in children with congenital cataracts. Full article
(This article belongs to the Collection Genotype-Phenotype Study in Disease)
Show Figures

Figure 1

20 pages, 4609 KiB  
Article
A Tet-Inducible CRISPR Platform for High-Fidelity Editing of Human Pluripotent Stem Cells
by Shawna L. Jurlina, Melissa K. Jones, Devansh Agarwal, Diana V. De La Toba, Netra Kambli, Fei Su, Heather M. Martin, Ryan Anderson, Ryan M. Wong, Justin Seid, Saisantosh V. Attaluri, Melissa Chow and Karl J. Wahlin
Genes 2022, 13(12), 2363; https://doi.org/10.3390/genes13122363 - 14 Dec 2022
Cited by 1 | Viewed by 3299
Abstract
Pluripotent stem cells (PSCs) offer an exciting resource for probing human biology; however, gene-editing efficiency remains relatively low in many cell types, including stem cells. Gene-editing using the CRISPR-Cas9 system offers an attractive solution that improves upon previous gene-editing approaches; however, like other [...] Read more.
Pluripotent stem cells (PSCs) offer an exciting resource for probing human biology; however, gene-editing efficiency remains relatively low in many cell types, including stem cells. Gene-editing using the CRISPR-Cas9 system offers an attractive solution that improves upon previous gene-editing approaches; however, like other technologies, off-target mutagenesis remains a concern. High-fidelity Cas9 variants greatly reduce off-target mutagenesis and offer a solution to this problem. To evaluate their utility as part of a cell-based gene-editing platform, human PSC lines were generated with a high-fidelity (HF) tetracycline-inducible engineered Streptococcus pyogenes SpCas9 (HF-iCas9) integrated into the AAVS1 safe harbor locus. By engineering cells with controllable expression of Cas9, we eliminated the need to include a large Cas9-expressing plasmid during cell transfection. Delivery of genetic cargo was further optimized by packaging DNA targeting guide RNAs (gRNAs) and donor fragments into a single plasmid backbone. The potential of homology-directed repair (HDR) based gene knock-in at the CLYBL safe harbor site and endogenous SOX2 and SIX6 genes were demonstrated. Moreover, we used non-homologous end-joining (NHEJ) for gene knockout of disease-relevant alleles. These high-fidelity CRISPR tools and the resulting HF-iCas9 cell lines will facilitate the production of cell-type reporters and mutants across different genetic backgrounds. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Graphical abstract

15 pages, 3089 KiB  
Article
A Framework for Comparison and Assessment of Synthetic RNA-Seq Data
by Felitsiya Shakola, Dean Palejev and Ivan Ivanov
Genes 2022, 13(12), 2362; https://doi.org/10.3390/genes13122362 - 14 Dec 2022
Cited by 2 | Viewed by 1968
Abstract
The ever-growing number of methods for the generation of synthetic bulk and single cell RNA-seq data have multiple and diverse applications. They are often aimed at benchmarking bioinformatics algorithms for purposes such as sample classification, differential expression analysis, correlation and network studies and [...] Read more.
The ever-growing number of methods for the generation of synthetic bulk and single cell RNA-seq data have multiple and diverse applications. They are often aimed at benchmarking bioinformatics algorithms for purposes such as sample classification, differential expression analysis, correlation and network studies and the optimization of data integration and normalization techniques. Here, we propose a general framework to compare synthetically generated RNA-seq data and select a data-generating tool that is suitable for a set of specific study goals. As there are multiple methods for synthetic RNA-seq data generation, researchers can use the proposed framework to make an informed choice of an RNA-seq data simulation algorithm and software that are best suited for their specific scientific questions of interest. Full article
Show Figures

Figure 1

17 pages, 2225 KiB  
Article
A Patient with Corticobasal Syndrome and Progressive Non-Fluent Aphasia (CBS-PNFA), with Variants in ATP7B, SETX, SORL1, and FOXP1 Genes
by Katarzyna Gaweda-Walerych, Emilia J. Sitek, Małgorzata Borczyk, Ewa Narożańska, Bogna Brockhuis, Michał Korostyński, Michał Schinwelski, Mariusz Siemiński, Jarosław Sławek and Cezary Zekanowski
Genes 2022, 13(12), 2361; https://doi.org/10.3390/genes13122361 - 14 Dec 2022
Cited by 2 | Viewed by 1862
Abstract
Our aim was to analyze the phenotypic-genetic correlations in a patient diagnosed with early onset corticobasal syndrome with progressive non-fluent aphasia (CBS-PNFA), characterized by predominant apraxia of speech, accompanied by prominent right-sided upper-limb limb-kinetic apraxia, alien limb phenomenon, synkinesis, myoclonus, mild cortical sensory [...] Read more.
Our aim was to analyze the phenotypic-genetic correlations in a patient diagnosed with early onset corticobasal syndrome with progressive non-fluent aphasia (CBS-PNFA), characterized by predominant apraxia of speech, accompanied by prominent right-sided upper-limb limb-kinetic apraxia, alien limb phenomenon, synkinesis, myoclonus, mild cortical sensory loss, and right-sided hemispatial neglect. Whole-exome sequencing (WES) identified rare single heterozygous variants in ATP7B (c.3207C>A), SORL1 (c.352G>A), SETX (c.2385_2387delAAA), and FOXP1 (c.1762G>A) genes. The functional analysis revealed that the deletion in the SETX gene changed the splicing pattern, which was accompanied by lower SETX mRNA levels in the patient’s fibroblasts, suggesting loss-of-function as the underlying mechanism. In addition, the patient’s fibroblasts demonstrated altered mitochondrial architecture with decreased connectivity, compared to the control individuals. This is the first association of the CBS-PNFA phenotype with the most common ATP7B pathogenic variant p.H1069Q, previously linked to Wilson’s disease, and early onset Parkinson’s disease. This study expands the complex clinical spectrum related to variants in well-known disease genes, such as ATP7B, SORL1, SETX, and FOXP1, corroborating the hypothesis of oligogenic inheritance. To date, the FOXP1 gene has been linked exclusively to neurodevelopmental speech disorders, while our study highlights its possible relevance for adult-onset progressive apraxia of speech, which guarantees further study. Full article
(This article belongs to the Special Issue Study on Genotypes and Phenotypes of Neurodegenerative Diseases)
Show Figures

Graphical abstract

7 pages, 1048 KiB  
Article
Bothnian Palmoplantar Keratoderma: Further Delineation of the Associated Phenotype
by Laura Fertitta, Fabienne Charbit-Henrion, Stéphanie Leclerc-Mercier, Thao Nguyen-Khoa, Robert Baran, Caroline Alby, Julie Steffann, Isabelle Sermet-Gaudelus and Smail Hadj-Rabia
Genes 2022, 13(12), 2360; https://doi.org/10.3390/genes13122360 - 14 Dec 2022
Cited by 1 | Viewed by 1583
Abstract
Bothnian palmoplantar keratoderma (PPKB, MIM600231) is an autosomal dominant form of diffuse non-epidermolytic PPK characterized by spontaneous yellowish-white PPK associated with a spongy appearance after water-immersion. It is due to AQP5 heterozygous mutations. We report four patients carrying a novel AQP5 heterozygous mutation [...] Read more.
Bothnian palmoplantar keratoderma (PPKB, MIM600231) is an autosomal dominant form of diffuse non-epidermolytic PPK characterized by spontaneous yellowish-white PPK associated with a spongy appearance after water-immersion. It is due to AQP5 heterozygous mutations. We report four patients carrying a novel AQP5 heterozygous mutation (c.125T>A; p.(Ile42Asn)), and belonging to the same French family. Early palmoplantar swelling (before one year of age), pruritus and hyperhidrosis were constant. The PPK was finally characterized as transgrediens, non-progrediens, diffuse PPK with a clear delineation between normal and affected skin. The cutaneous modifications at water-immersion test, “hand-in-the-bucket sign”, were significantly evident after 3 to 6 min of immersion in the children and father, respectively. AQP5 protein is expressed in eccrine sweat glands (ESG), salivary and airway submucosal glands. In PPKB, gain of function mutations seem to widen the channel diameter of ESG and increase water movement. Thus, swelling seems to be induced by hypotonicity with water entrance into cells, while hyperhidrosis is the result of an increased cytosolic calcium concentration. Full article
(This article belongs to the Special Issue Molecular Biology and Treatment of Genodermatoses)
Show Figures

Figure 1

12 pages, 1041 KiB  
Article
The Association of Variants within Types V and XI Collagen Genes with Knee Joint Laxity Measurements
by Samantha Beckley, Roopam Dey, Shaun Stinton, Willem van der Merwe, Thomas Branch, Alison V. September, Mike Posthumus and Malcolm Collins
Genes 2022, 13(12), 2359; https://doi.org/10.3390/genes13122359 - 14 Dec 2022
Cited by 2 | Viewed by 1701
Abstract
Joint laxity is a multifactorial phenotype with a heritable component. Mutations or common polymorphisms within the α1(V) (COL5A1), α1(XI) (COL11A1) and α2(XI) (COL11A2) collagen genes have been reported or proposed to associate with joint hypermobility, range [...] Read more.
Joint laxity is a multifactorial phenotype with a heritable component. Mutations or common polymorphisms within the α1(V) (COL5A1), α1(XI) (COL11A1) and α2(XI) (COL11A2) collagen genes have been reported or proposed to associate with joint hypermobility, range of motion and/or genu recurvatum. The aim of this study was to investigate whether polymorphisms within these collagen-encoding genes are associated with measurements of knee joint laxity and computed ligament length changes within the non-dominant leg. One hundred and six healthy participants were assessed for genu recurvatum (knee hyperextension), anterior-posterior tibial translation, external-internal tibial rotation and ligament length changes during knee rotation of their non-dominant leg. Participants were genotyped for COL5A1 rs12722 (T/C), COL11A1 rs3753841 (C/T), COL11A1 rs1676486 (T/C) and COL11A2 rs1799907 (A/T). The genotype-genotype combination of any two or more of the four COL5A1 rs12722 CC, COL11A1 rs3753841 CC, COL11A1 rs1676486 TT and COL11A2 rs1799907 AA genotypes was associated with decreased active and passive knee hyperextension. These genotype-genotype combinations, including sex (male), increased age and decreased body mass collectively, also contributed to decreased passive knee hyperextension. These findings suggest that COL5A1, COL11A1 and COL11A2 gene-gene interactions are associated with knee hyperextension measurements of the non-dominant leg of healthy individuals. Full article
(This article belongs to the Special Issue Genetics and Epigenetics of Musculoskeletal Pathologies)
Show Figures

Figure 1

11 pages, 2971 KiB  
Case Report
Congenital Defects in a Patient Carrying a Novel Homozygous AEBP1 Variant: Further Expansion of the Phenotypic Spectrum of Ehlers–Danlos Syndrome Classical-like Type 2?
by Niccolò Di Giosaffatte, Alessandro Ferraris, Federica Gaudioso, Valentina Lodato, Emanuele Savino, Claudia Celletti, Filippo Camerota, Simone Bargiacchi, Luigi Laino, Silvia Majore, Irene Bottillo and Paola Grammatico
Genes 2022, 13(12), 2358; https://doi.org/10.3390/genes13122358 - 14 Dec 2022
Cited by 4 | Viewed by 4248
Abstract
In 2018, a new clinical subtype, caused by biallelic variants in the AEBP1 gene, encoding the ACLP protein, was added to the current nosological classification of the Ehlers–Danlos Syndromes (EDS). This new phenotype, provisionally termed EDS classical-like type 2 (clEDS2), has not yet [...] Read more.
In 2018, a new clinical subtype, caused by biallelic variants in the AEBP1 gene, encoding the ACLP protein, was added to the current nosological classification of the Ehlers–Danlos Syndromes (EDS). This new phenotype, provisionally termed EDS classical-like type 2 (clEDS2), has not yet been fully characterized, as only nine cases have been reported to date. Here we describe a patient, homozygous for a novel AEBP1 pathogenic variant (NM_001129.5 c.2123_2124delTG (p.Val708AlafsTer5)), whose phenotype is reminiscent of classical EDS but also includes previously unreported multiple congenital malformations. Furthermore, we briefly summarize the current principal clinical manifestations of clEDS2 and the molecular evidence surrounding the role of AEBP1 in the context of extracellular matrix homeostasis and connective tissue development. Although a different coexisting etiology for the multiple congenital malformations of our patient cannot be formally excluded, the emerging role of ACLP in TGF-β and WNT pathways may explain their occurrence and the phenotypical variability of clEDS2. Full article
(This article belongs to the Section Technologies and Resources for Genetics)
Show Figures

Figure 1