lmo4a Contributes to Zebrafish Inner Ear and Vestibular Development via Regulation of the Bmp Pathway
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. The Use of Spatial Transcript Omics DataBase
2.3. In Situ Hybridization and Immunohistochemistry
2.4. Phalloidin Staining
2.5. Small-Molecule Chemical Inhibition
2.6. Antisense Morpholino Oligonucleotides and mRNA Misexpression
2.7. Zebrafish lmo4a Knockout
2.8. Microscopy and Image Analysis
2.9. Motion Trajectory Measurement
2.10. Statistical Analysis
3. Results
3.1. lmo4a Is Constitutively Expressed in the Otic Placode and Otic Vesicle
3.2. Targeted Knockdown and Knockout of lmo4a
3.3. Loss of lmo4a Results in Deficiency of Sensory Organs in Zebrafish Otocysts
3.4. Knockdown of lmo4a Expression Leads to Defects in Semicircular Canal Morphogenesis
3.5. Knockout of lmo4a Replicates the Phenotypic Changes in lmo4a Knockdown and Leads to Abnormal Swimming Behavior of Zebrafish
3.6. Overall Otic Deformities Result from Disruption of Preplacodal Ectoderm (PPE) Patterning
3.7. bmp2b and bmp4 Expressions Are Upregulated and Extended in lmo4a Morphants
3.8. Blockage of Bmp Signaling Attenuates Vestibular Defects Caused by Downregulation of lmo4a in Zebrafish
4. Discussion
4.1. lmo4a Contributes to Inner Ear Sensory Organ Formation through Regulating PPE Patterning
4.2. lmo4a Plays a Regulatory Role in Semicircular Canal Morphogenesis
4.3. lmo4 Regulates Bmp Signaling during Regulation of Semicircular Canal Formation
4.4. Conservation of the Function of lmo4 between Species
4.5. Clinical Significance of LMO4
4.6. Limitations of the Current Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Ekdale, E.G. Form and function of the mammalian inner ear. J. Anat. 2016, 228, 324–337. [Google Scholar] [CrossRef] [PubMed]
- Alsina, B.; Giraldez, F.; Pujades, C. Patterning and cell fate in ear development. Int. J. Dev. Biol. 2009, 53, 1503–1513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, J.-Y.; You, D.; Li, W.-Y.; Lu, X.-L.; Sun, S.; Li, H.-W. Bone morphogenetic proteins and inner ear development. J. Zhejiang Univ. B 2019, 20, 131–145. [Google Scholar] [CrossRef] [PubMed]
- Mowbray, C.; Hammerschmidt, M.; Whitfield, T.T. Expression of BMP signalling pathway members in the developing zebrafish inner ear and lateral line. Mech. Dev. 2001, 108, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Morsli, H.; Choo, D.; Ryan, A.; Johnson, R.; Wu, D.K. Development of the mouse inner ear and origin of its sensory organs. J. Neurosci. 1998, 18, 3327–3335. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.K.; Oh, S.H. Sensory organ generation in the chick inner ear. J. Neurosci. 1996, 16, 6454–6462. [Google Scholar] [CrossRef] [Green Version]
- Hemmati-Brivanlou, A.; Thomsen, G.H. Ventral mesodermal patterning inXenopus embryos: Expression patterns and activities of BMP-2 and BMP-4. Dev. Genet. 1995, 17, 78–89. [Google Scholar] [CrossRef]
- Kenny, D.A.; Jurata, L.W.; Saga, Y.; Gill, G.N. Identification and characterization of LMO 4, an LMO gene with a novel pattern of expression during embryogenesis. Proc. Natl. Acad. Sci. USA 1998, 95, 11257–11262. [Google Scholar] [CrossRef] [Green Version]
- Sum, E.Y.; Segara, D.; Duscio, B.; Bath, M.L.; Field, A.S.; Sutherland, R.L.; Lindeman, G.L.; Visvader, J.E. Overexpression of LMO4 induces mammary hyperplasia, promotes cell invasion, and is a predictor of poor outcome in breast. Proc. Natl. Acad. Sci. USA 2005, 102, 7659–7664. [Google Scholar] [CrossRef] [Green Version]
- Deng, M.; Pan, L.; Xie, X.; Gan, L. Differential expression of LIM domain-only (LMO) genes in the developing mouse inner ear. Gene Expr. Patterns 2006, 6, 857–863. [Google Scholar] [CrossRef]
- Deng, M.; Luo, X.-J.; Pan, L.; Yang, H.; Xie, X.; Liang, G.; Huang, L.; Hu, F.; Kiernan, A.E.; Gan, L. LMO4 Functions as a Negative Regulator of Sensory Organ Formation in the Mammalian Cochlea. J. Neurosci. 2014, 34, 10072–10077. [Google Scholar] [CrossRef]
- Deng, M.; Pan, L.; Xie, X.; Gan, L. Requirement for Lmo4 in the vestibular morphogenesis of mouse inner ear. Dev. Biol. 2010, 338, 38–49. [Google Scholar] [CrossRef] [Green Version]
- Rathinam, R.; Rosati, R.; Jamesdaniel, S. CRISPR/Cas9-mediated knockout of Lim-domain only four retards organ of Corti cell growth. J. Cell. Biochem. 2018, 119, 3545–3553. [Google Scholar] [CrossRef]
- Jamesdaniel, S.; Rathinam, R.; Neumann, W.L. Targeting nitrative stress for attenuating cisplatin-induced downregulation of cochlear LIM domain only 4 and ototoxicity. Redox Biol. 2016, 10, 257–265. [Google Scholar] [CrossRef] [Green Version]
- Rathinam, R.; Ghosh, S.; Neumann, W.; Jamesdaniel, S. Cisplatin-induced apoptosis in auditory, renal, and neuronal cells is associated with nitration and downregulation of LMO4. Cell Death Discov. 2015, 1, 15052. [Google Scholar] [CrossRef] [Green Version]
- Jamesdaniel, S. Downstream Targets of Lmo4 Are Modulated by Cisplatin in the Inner Ear of Wistar Rats. PLoS ONE 2014, 9, e115263. [Google Scholar] [CrossRef] [Green Version]
- Jamesdaniel, S.; Coling, D.; Hinduja, S.; Ding, D.; Li, J.; Cassidy, L.; Seigel, G.M.; Qu, J.; Salvi, R. Cisplatin-induced Ototoxicity Is Mediated by Nitroxidative Modification of Cochlear Proteins Characterized by Nitration of Lmo4. J. Biol. Chem. 2012, 287, 18674–18686. [Google Scholar] [CrossRef] [Green Version]
- Rosati, R.; Shahab, M.; Ramkumar, V.; Jamesdaniel, S. Lmo4 Deficiency Enhances Susceptibility to Cisplatin-Induced Cochlear Apoptosis and Hearing Loss. Mol. Neurobiol. 2021, 58, 2019–2029. [Google Scholar] [CrossRef]
- Chang, W.; Lin, Z.; Kulessa, H.; Hebert, J.; Hogan, B.L.M.; Wu, D.K. Bmp4 Is Essential for the Formation of the Vestibular Apparatus that Detects Angular Head Movements. PLoS Genet. 2008, 4, e1000050. [Google Scholar] [CrossRef] [Green Version]
- Hwang, C.H.; Keller, J.; Renner, C.; Ohta, S.; Wu, D.K. Genetic interactions support an inhibitory relationship between bone morphogenetic protein 2 and netrin 1 during semicircular canal formation. Development 2019, 146, dev174748. [Google Scholar] [CrossRef]
- Mm, W. The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish Danio (Brachydanio) Rerio1994; Zebrafish International Resource Center: Eugene, OR, USA, 1994. [Google Scholar]
- Pyati, U.J.; Webb, A.E.; Kimelman, D. Transgenic zebrafish reveal stage-specific roles for Bmp signaling in ventral and posterior mesoderm development. Development 2005, 132, 2333–2343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Li, R.; Li, Y.; Lin, X.; Zhao, K.; Liu, Q.; Wang, S.; Yang, X.; Shi, X.; Ma, Y.; et al. Spatiotemporal mapping of gene expression landscapes and developmental trajectories during zebrafish embryogenesis. Dev. Cell 2022, 57, 1284–1298.e5. [Google Scholar] [CrossRef] [PubMed]
- Sahly, I.; Andermann, P.; Petit, C. The zebrafish eya1 gene and its expression pattern during embryogenesis. Dev. Genes Evol. 1999, 209, 399–410. [Google Scholar] [CrossRef] [PubMed]
- Nikaido, M.; Tada, M.; Saji, T.; Ueno, N. Conservation of BMP signaling in zebrafish mesoderm patterning. Mech. Dev. 1997, 61, 75–88. [Google Scholar] [CrossRef] [PubMed]
- Thisse, C.; Thisse, B.; Schilling, T.F.; Postlethwait, J.H. Structure of the zebrafish snail1 gene and its expression in wild-type, spadetail and no tail mutant embryos. Development 1993, 119, 1203–1215. [Google Scholar] [CrossRef]
- Wu, R.S.; Lam, I.I.; Clay, H.; Duong, D.N.; Deo, R.C.; Coughlin, S.R. A rapid method for directed gene knockout for screening in G0 zebrafish. Dev. Cell 2018, 46, 112–125.e4. [Google Scholar] [CrossRef] [Green Version]
- Omata, Y.; Nojima, Y.; Nakayama, S.; Okamoto, H.; Nakamura, H.; Funahashi, J.-I. Role of Bone morphogenetic protein 4 in zebrafish semicircular canal development. Dev. Growth Differ. 2007, 49, 711–719. [Google Scholar] [CrossRef]
- Ellies, D.L.; Stock, D.W.; Hatch, G.; Giroux, G.; Weiss, K.M.; Ekker, M. Relationship between the genomic organization and the overlapping embryonic expression patterns of the ZebrafishdlxGenes. Genomics 1997, 45, 580–590. [Google Scholar] [CrossRef]
- Akimenko, M.A.; Ekker, M.; Wegner, J.; Lin, W.; Westerfield, M. Combinatorial expression of three zebrafish genes related to distal-less: Part of a homeobox gene code for the head. J. Neurosci. 1994, 14, 3475–3486. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, M.; Osanai, H.; Kawakami, K.; Yamamoto, M. Expression of three zebrafish Six4 genes in the cranial sensory placodes and the developing somites. Mech. Dev. 2000, 98, 151–155. [Google Scholar] [CrossRef]
- Lee, S.-K.; Jurata, L.W.; Nowak, R.; Lettieri, K.; Kenny, D.A.; Pfaff, S.L.; Gill, G.N. The LIM domain-only protein LMO4 is required for neural tube closure. Mol. Cell. Neurosci. 2005, 28, 205–214. [Google Scholar] [CrossRef]
- Fekete, D.M.; Wu, D.K. Revisiting cell fate specification in the inner ear. Curr. Opin. Neurobiol. 2002, 12, 35–42. [Google Scholar] [CrossRef]
- Hammond, K.L.; Loynes, H.E.; Mowbray, C.; Runke, G.; Hammerschmidt, M.; Mullins, M.C.; Hildreth, V.; Chaudhry, B.; Whitfield, T.T. A late role for bmp2b in the morphogenesis of semicircular canal ducts in the zebrafish inner ear. PLoS ONE 2009, 4, e4368. [Google Scholar] [CrossRef] [Green Version]
- Robledo, R.F.; Lufkin, T. Dlx5 andDlx6 homeobox genes are required for specification of the mammalian vestibular apparatus. Genes 2006, 44, 425–437. [Google Scholar] [CrossRef]
- Riccomagno, M.M.; Takada, S.; Epstein, D.J. Wnt-dependent regulation of inner ear morphogenesis is balanced by the opposing and supporting roles of Shh. Genes Dev. 2005, 19, 1612–1623. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Grimmer, J.; Van De Water, T.R.; Lufkin, T. Hmx2 and Hmx3 Homeobox Genes Direct Development of the Murine Inner Ear and Hypothalamus and Can Be Functionally Replaced by Drosophila Hmx. Dev. Cell 2004, 7, 439–453. [Google Scholar] [CrossRef] [Green Version]
- Merlo, G.R.; Paleari, L.; Mantero, S.; Zeregab, B.; Adamska, M.; Rinkwitzc, S.; Boberc, E.; Levi, G. The Dlx5 Homeobox Gene Is Essential for Vestibular Morphogenesis in the Mouse Embryo through a BMP4-Mediated Pathway. Dev. Biol. 2002, 248, 157–169. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Hill, J.; Yatteau, A.; Wong, L.; Jiang, T.; Petrovic, J.; Gan, L.; Dong, L.; Wu, D.K. Reciprocal Negative Regulation Between Lmx1a and Lmo4 Is Required for Inner Ear Formation. J. Neurosci. 2018, 38, 5429–5440. [Google Scholar] [CrossRef]
- Rosati, R.; Shahab, M.; Neumann, W.L.; Jamesdaniel, S. Inhibition of protein nitration prevents cisplatin-induced inactivation of STAT3 and promotes anti-apoptotic signaling in organ of Corti cells. Exp. Cell Res. 2019, 381, 105–111. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. ClinVar; Variation ID 442387. Available online: https://preview.ncbi.nlm.nih.gov/clinvar/variation/442387 (accessed on 10 July 2019).
Target | Sequence(5′ → 3′) |
---|---|
lmo4a Target 1 | TAATACGACTCACTATAGGCTCCGCGGTTGCGGTAACGTTTTAGAGCTAGAAATAGC |
lmo4a Target 2 | TAATACGACTCACTATAGGCTGCTCTTCTCTATGGATGTTTTAGAGCTAGAAATAGC |
lmo4a Target 3 | TAATACGACTCACTATAGGACCTGCTTCAGCAAAGGAGTTTTAGAGCTAGAAATAGC |
lmo4a Target 4 | TAATACGACTCACTATAGGCCGAAATCGCTTGGTTCCGTTTTAGAGCTAGAAATAGC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, L.; Ping, L.; Gao, R.; Zhang, B.; Chen, X. lmo4a Contributes to Zebrafish Inner Ear and Vestibular Development via Regulation of the Bmp Pathway. Genes 2023, 14, 1371. https://doi.org/10.3390/genes14071371
Sun L, Ping L, Gao R, Zhang B, Chen X. lmo4a Contributes to Zebrafish Inner Ear and Vestibular Development via Regulation of the Bmp Pathway. Genes. 2023; 14(7):1371. https://doi.org/10.3390/genes14071371
Chicago/Turabian StyleSun, Le, Lu Ping, Ruzhen Gao, Bo Zhang, and Xiaowei Chen. 2023. "lmo4a Contributes to Zebrafish Inner Ear and Vestibular Development via Regulation of the Bmp Pathway" Genes 14, no. 7: 1371. https://doi.org/10.3390/genes14071371
APA StyleSun, L., Ping, L., Gao, R., Zhang, B., & Chen, X. (2023). lmo4a Contributes to Zebrafish Inner Ear and Vestibular Development via Regulation of the Bmp Pathway. Genes, 14(7), 1371. https://doi.org/10.3390/genes14071371