Bioaerosol in Composting Facilities: A Survey on Full-Scale Plants in Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Questionnaire
2.2. Data Analysis
- GWCP (1 plant): Green Waste Composting Plants use only green waste such as greenery, leaves, and ligneous waste;
- ADCP (4 plants): Anaerobic Digestion plus Composting Plants use the green waste and organic fraction of municipal solid waste;
- CP (6 plants): Composting Plants use green waste and the organic fraction of municipal solid waste and only aerobic treatment is performed.
2.3. Microbiological Analysis
2.4. Statistical Analysis
3. Results
3.1. Area Description
3.2. Plant Design, Process, and Management Description
- In the reception area, an average of 1920 m3 of organic waste in CPs, 7667 m3 in ADCPs, and 1000 m3 in GWCP are stocked;
- In the composting area, an average of 17,683 m3 of biomass in CPs, 5427 m3 in ADCPs, and 53,300 m3 in GWCP are stocked; and
- In the final product area, an of average 4200 m3 in CPs, 2000 m3 in ADCPs, and 7300 m3 in GWCP are stocked.
3.3. Biological Risk for Workers
3.4. Occupational Monitoring
3.4.1. Bioaerosol and Contact Microbiological Analyses
3.4.2. Personal Microbiological Analysis
3.4.3. Particulate Matter Monitoring
3.5. Plants Location
3.6. Work Environment and Personal Hygiene
3.7. Personal and Collective Protective Equipment
3.8. Occupational Health Surveillance
4. Discussion
4.1. Bioaerosol Influencing Factors
4.2. Analysis of the Management Practices
4.3. Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ishii, K.; Fukui, M.; Takii, S. Microbial succession during a composting process as evaluated by denaturing gradient gel electrophoresis analysis. J. Appl. Microbiol. 2000, 89, 768–777. [Google Scholar] [CrossRef] [Green Version]
- Hansgate, A.M.; Schloss, P.D.; Hay, A.G.; Walker, L.P. Molecular characterization of fungal community dynamics in the initial stages of composting. FEMS Microbiol. Ecol. 2005, 51, 209–214. [Google Scholar] [CrossRef]
- Wéry, N. Bioaerosols from composting facilities—A review. Front. Cell. Infect. Microbiol. 2014, 4, 42. [Google Scholar]
- Commission of the European Communities. GREEN PAPER—On the Management of Bio-waste in the European Union—COM(2008) 811 Final; Publications Office of the European Union: Luxembourg, 2008. [Google Scholar]
- ISPRA. Municipal Waste Report—Edition 2019; Vol.313; Istituto Superiore per la Protezione e la Ricerca Ambientale: Rome, Italy, 2018; ISBN 978-88-448-0971-3. [Google Scholar]
- Eurostat Municipal Waste Statistics. Available online: http://ec.europa.eu/eurostat/statistics-explained/ (accessed on 4 December 2019).
- Douglas, P.; Robertson, S.; Gay, R.; Hansell, A.L.; Gant, T.W. A systematic review of the public health risks of bioaerosols from intensive farming. Int. J. Hyg. Environ. Health 2018, 221, 134–173. [Google Scholar] [CrossRef]
- ACGIH. TLVs and BEIs, Based on the Documentation of the Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices.; American Conference of Governmental Indutrial Hygienists: Cincinnati, OH, USA, 2006; ISBN 978-1882417629. [Google Scholar]
- Kim, K.; Kabir, E.; Jahan, S.A. Airborne bioaerosols and their impact on human health. J. Environ. Sci. 2018, 67, 23–35. [Google Scholar] [CrossRef]
- Ellwood, P.; Bradbrook, S.; Reynolds, J.; Duckworth, M. Green Jobs, New Risks? New and Emerging Risks to Occupational Safety and Health in the Electricity Sector; Pubblications Office of the European Union: Luxembourg, 2014. [Google Scholar]
- Duquenne, P. On the identification of culturable microorganisms for the assessment of biodiversity in bioaerosols. Ann. Work Expo. Health 2018, 62, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Pearson, C.; Littlewood, E.; Douglas, P.; Robertson, S.; Gant, T.W.; Hansell, A.L. Exposures and Health Outcomes in Relation to Bioaerosol Emissions From Composting Facilities: A Systematic Review of Occupational and Community Studies. J. Toxicol. Environ. Health Part B 2015, 18, 43–69. [Google Scholar] [CrossRef]
- Chang, M.W.; Lee, C.R.; Hung, H.F.; Teng, K.S.; Huang, H.; Chuang, C.Y. Bioaerosols from a food waste composting plant affect human airway epithelial cell remodeling genes. Int. J. Environ. Res. Public Health 2014, 11, 337–354. [Google Scholar] [CrossRef] [Green Version]
- Bünger, J.; Schappler-Scheele, B.; Hilgers, R.; Hallier, E. A 5-year follow-up study on respiratory disorders and lung function in workers exposed to organic dust from composting plants. Int. Arch. Occup. Environ. Health 2007, 80, 306–312. [Google Scholar] [CrossRef]
- Schlosser, O.; Huyard, A.; Cartnick, K.; Yañez, A.; Catalán, V.; Do Quang, Z. Bioaerosol in Composting Facilities: Occupational Health Risk Assessment. Water Environ. Res. 2009, 81, 866–877. [Google Scholar] [CrossRef]
- Stang, A.; Poole, C.; Kuss, O. The ongoing tyranny of statistical significance testing in biomedical research. Eur. J. Epidemiol. 2010, 25, 225–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liebers, V.; van Kampen, V.; Bünger, J.; Düser, M.; Stubel, H.; Brüning, T.; Raulf-Heimsoth, M. Assessment of Airborne Exposure to Endotoxin and Pyrogenic Active Dust Using Electrostatic Dustfall Collectors (EDCs). J. Toxicol. Environ. Health Part A 2012, 75, 501–507. [Google Scholar] [CrossRef]
- Douglas, P.; Bakolis, I.; Fecht, D.; Pearson, C.; Leal Sanchez, M.; Kinnersley, R.; de Hoogh, K.; Hansell, A.L. Respiratory hospital admission risk near large composting facilities. Int. J. Hyg. Environ. Health 2016, 219, 372–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walser, S.M.; Gerstner, D.G.; Brenner, B.; Bünger, J.; Eikmann, T.; Janssen, B.; Kolb, S.; Kolk, A.; Nowak, D.; Raulf, M.; et al. Evaluation of exposure-response relationships for health effects of microbial bioaerosols—A systematic review. Int. J. Hyg. Environ. Health 2015, 218, 577–589. [Google Scholar] [CrossRef] [PubMed]
- Basu, S.; Poole, J.; Frost, G.; Fox, D. Developing a questionnaire to assess the health effects of bioaerosols. Occup. Med. 2018, 68, 448–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Kampen, V.; Sander, I.; Liebers, V.; Deckert, A.; Neumann, H.D.; Buxtrup, M.; Willer, E.; Felten, C.; Jäckel, U.; Klug, K.; et al. Concentration of bioaerosols in composting plants using different quantification methods. Ann. Occup. Hyg. 2014, 58, 693–706. [Google Scholar]
- UNI EN 13098 Guidelines for Measurement of Airborne Microorganisms and Endotoxin; UNI Ente Italiano di Normazione: Milan, Italy, 2019.
- Edmonds, J.M. Efficient methods for large-area surface sampling of sites contaminated with pathogenic microorganisms and other hazardous agents: Current state, needs, and perspectives. Appl. Microbiol. Biotechnol. 2009, 84, 811–816. [Google Scholar] [CrossRef]
- Dacarro, C.; Grignani, E.; Lodola, L.; Grisoli, P.; Cottica, D. Proposed microbiological indexes for the assessment of air quality in buildings. Giornale Italiano di Medicina del Lavoro ed Ergonomia 2000, 22, 229–235. [Google Scholar]
- Ministry of the Environment and Protection of the Territory and the Sea. Regolamento Recante i Criteri Operativi e le Procedure Autorizzative Semplificate per il Compostaggio di Comunità di Rifiuti Organici ai Sensi dell’articolo 180, Comma 1-octies, del Decreto Legislativo 3 aprile 2006, n.152, così come introdotto dall’artic; Gazzetta Ufficiale della Repubblica Italiana: Rome, Italy, 2011. [Google Scholar]
- Ministry of Labour Decreto Legislativo 81/08, Testo Unico sulla salute e Sicurezza sul Lavoro; Gazzetta Ufficiale della Repubblica Italiana: Rome, Italy, 2008.
- Vimercati, L.; Baldassarre, A.; Gatti, M.F.; De Maria, L.; Caputi, A.; Dirodi, A.A.; Cuccaro, F.; Bellino, R.M. Respiratory health in waste collection and disposal workers. Int. J. Environ. Res. Public Health 2016, 13, 631. [Google Scholar] [CrossRef]
- de Meer, G.; Heederik, D.; Wouters, I.M. Change in airway responsiveness over a workweek in organic waste loaders. Int. Arch. Occup. Environ. Health 2007, 80, 649–652. [Google Scholar] [CrossRef]
- Heldal, K.K.; Madsø, L.; Eduard, W. Airway inflammation among compost workers exposed to actinomycetes spores. Ann. Agric. Environ. Med. 2015, 22, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Heldal, K.K.; Halstensen, A.S.; Thorn, J.; Eduard, W.; Halstensen, T.S. Airway inflammation in waste handlers exposed to bioaerosols assessed by induced sputum. Eur. Respir. J. 2003, 21, 641–645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaviria-Figueroa, A.; Preisner, E.C.; Hoque, S.; Feigley, C.E.; Norman, R.S. Emission and dispersal of antibiotic resistance genes through bioaerosols generated during the treatment of municipal sewage. Sci. Total Environ. 2019, 686, 402–412. [Google Scholar] [CrossRef] [PubMed]
- Humbal, C.; Joshi, S.K.; Trivedi, U.K.; Gautam, S. Evaluating the colonization and distribution of fungal and bacterial bio-aerosol in Rajkot, western India using multi-proxy approach. Air Qual. Atmos. Health 2019, 12, 693–704. [Google Scholar] [CrossRef]
- UNI CEN/TS 16115-1 Measurement of Bioaerosols. Part 1: Determination of Moulds Using Filter Sampling Systems and Culture-Based Analyses; UNI Ente Italiano di Normazione: Milan, Italy, 2011. [Google Scholar]
- Ausschuss für Biologische Arbeitsstoffe (ABAS)TRBA 400, Handlungsanleitung zur GEFÄHRDUNGSBEURTEILUNG und für die Unterrichtung der Be- schäftigten bei Tätigkeiten mit Biologischen Arbeitsstoffen; Bundesanstalt für Arbeitsschutz und Arbeitsmedizin (BAuA): Berlin, Germany, 2018.
- Rao, C.Y.; Burge, H.A.; Chang, J.C.S. Review of Quantitative Standards and Guidelines for Fungi in Indoor Air. J. Air Waste Manag. Assoc. 1996, 46, 899–908. [Google Scholar] [CrossRef]
- UK Environment Agency. Technical Guidance Note—M9 Environmental Monitoring of Bioaerosols at Regulated Facilities; UK Environment Agency: Rotherham, UK, 2018. [Google Scholar]
- Gutarowska, B.; Skóra, J.; Stępień, Ł.; Szponar, B.; Otlewska, A.; Pielech-Przybylska, K. Assessment of microbial contamination within working environments of different types of composting plants. J. Air Waste Manag. Assoc. 2015, 65, 466–478. [Google Scholar] [CrossRef]
- Pinckard, J.K.; Rosenbluth, D.B.; Patel, K.; Dehner, L.P.; Pfeifer, J.D. Pulmonary hyalinizing granuloma associated with Aspergillus infection. Int. J. Surg. Pathol. 2003, 11, 39–42. [Google Scholar] [CrossRef]
- Soubani, A.O.; Chandrasekar, P.H. The clinical spectrum of pulmonary aspergillosis. Chest 2002, 121, 1988–1999. [Google Scholar] [CrossRef] [Green Version]
- Person, A.K.; Chudgar, S.M.; Norton, B.L.; Tong, B.C.; Stout, J.E. Aspergillus niger: An unusual cause of invasive pulmonary aspergillosis. J. Med. Microbiol. 2010, 59, 834–838. [Google Scholar] [CrossRef] [Green Version]
- Poole, C.J.M.; Wong, M. Allergic bronchopulmonary aspergillosis in garden waste (compost) collectors-occupational implications. Occup. Med. 2013, 63, 517–519. [Google Scholar] [CrossRef] [Green Version]
- Mbareche, H.; Veillette, M.; Dubuis, M.È.; Bakhiyi, B.; Marchand, G.; Zayed, J.; Lavoie, J.; Bilodeau, G.J.; Duchaine, C. Fungal bioaerosols in biomethanization facilities. J. Air Waste Manag. Assoc. 2018, 68, 1198–1210. [Google Scholar] [CrossRef] [PubMed]
- Nasir, Z.A.; Rolph, C.; Collins, S.; Stevenson, D.; Gladding, T.L.; Hayes, E.; Williams, B.; Khera, S.; Jackson, S.; Bennett, A.; et al. A controlled study on the characterisation of bioaerosols emissions from compost. Atmosphere 2018, 9, 379. [Google Scholar] [CrossRef] [Green Version]
- Tourlousse, D.M.; Ahmad, F.; Stedtfeld, R.D.; Seyrig, G.; Duran, M.; Alm, E.W.; Hashsham, S.A. Detection and Occurrence of Indicator Organisms and Pathogens. Water Environ. Res. 2008, 80, 898–928. [Google Scholar] [CrossRef]
- Shneider, J.; Nagi, C.; Read, B. EU Air Quality Policy and WHO Guideline Values for Health. 2014. Available online: https://www.europarl.europa.eu/RegData/etudes/STUD/2014/536285/IPOL_STU(2014)536285_EN.pdf (accessed on 16 April 2020).
- Duquenne, P.; Ambroise, D.; Görner, P.; Clerc, F.; Greff-Mirguet, G. Exposure to airborne Endotoxins among sewer workers: An exploratory study. Ann. Occup. Hyg. 2014, 58, 283–293. [Google Scholar]
- Madsen, A.M.; Frederiksen, M.W.; Bjerregaard, M.; Tendal, K. Measures to reduce the exposure of waste collection workers to handborne and airborne microorganisms and inflammogenic dust. Waste Manag. 2020, 101, 241–249. [Google Scholar] [CrossRef]
- Currie, S.L.; Beattie, T.K.; Knapp, C.W.; Lindsay, D.S.J. Legionella spp. in UK composts-a potential public health issue? Clin. Microbiol. Infect. 2014, 20, O224–O229. [Google Scholar] [CrossRef] [Green Version]
- Casati, S.; Conza, L.; Bruin, J.; Gaia, V. Compost facilities as a reservoir of Legionella pneumophila and other Legionella species. Clin. Microbiol. Infect. 2010, 16, 945–947. [Google Scholar] [CrossRef] [Green Version]
- Steere, A.C. Lyme disease. N. Engl. J. Med. 2001, 345, 115–125. [Google Scholar] [CrossRef]
- Levine, O.S.; Levine, M.M. Houseflies (Musca domestica) as Mechanical Vectors of. Rev. Infect. Dis. 1991, 13, 688–696. [Google Scholar] [CrossRef]
- Bünger, J.; Antlauf-lammers, M.; Schulz, T.G.; Westphal, G.A.; Müller, M.M.; Ruhnau, P.; Hallier, E.; Hamburg, D. Health complaints and immunological markers of exposure to bioaerosols among biowaste collectors and compost workers. Occup. Environ. Med. 2000, 57, 458–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Waste Typology | Minimum (Tons per Year) | Maximum (Tons per Year) |
---|---|---|
OFMSW | 19,124 | 96,000 |
Greenery | 3680 | 34,700 |
Others 1 | 2400 | 12,198 |
Areas | Volume Area (m3) | Number of Changes per Hour | |
---|---|---|---|
Mean | Standard Deviation | ||
Reception | 9686 | 5373 | 2–3 |
Composting | 19,601 | 10,987 | 3–5 |
Screening | 10,196 | 2923 | 3 |
Parameters (Log CFU/m3) | N | Minimum | Maximum | Mean | Standard Deviation |
---|---|---|---|---|---|
Fungi and yeasts | 78 | 1.000 | 4.646 | 2.907 | 0.816 |
Escherichia coli | 65 | 0.000 | 3.778 | 0.933 | 0.861 |
Enterococcus spp. | 59 | 0.301 | 4.288 | 1.550 | 1.081 |
Bacterial count at 30 °C | 51 | 1.699 | 4.875 | 3.490 | 0.645 |
Mesophilic bacterial count | 34 | 2.041 | 3.778 | 2.958 | 0.504 |
Bacterial count at 22 °C | 32 | 2.114 | 4.410 | 3.270 | 0.500 |
Staphylococcus spp. | 28 | 0.000 | 2.114 | 0.968 | 0.531 |
Pseudomonadaceae | 27 | 0.000 | 1.799 | 0.935 | 0.410 |
Staphylococcus aureus | 26 | 0.301 | 1.643 | 0.790 | 0.396 |
Total Coliforms | 20 | 0.000 | 2.575 | 0.732 | 0.797 |
Clostridia | 16 | 0.000 | 2.574 | 1.368 | 1.113 |
Salmonella spp. | 16 | 0.000 | 2.574 | 1.067 | 1.116 |
Legionella spp. | 14 | 0.000 | 0.000 | 0.000 | 0.000 |
Total bacteria | 12 | 2.000 | 3.322 | 2.734 | 0.427 |
Molds | 8 | 1.574 | 3.477 | 2.702 | 0.687 |
Enterobacteria | 8 | 0.602 | 2.628 | 1.215 | 0.851 |
Gram-negative | 6 | 1.477 | 3.176 | 2.432 | 0.656 |
Gram-positive | 6 | 2.000 | 3.279 | 2.775 | 0.571 |
Actinomyces | 1 | 2.690 | 2.690 | 2.690 | - |
GIMC | - | 2.458 | 4.897 | 3.996 | - |
IMC | - | −0.07 | −0.638 | −0.366 | - |
Parameters (Log CFU/m3) | Mixed (CP and ADCP) | Greenery (GWCP) | p-Value | ||
---|---|---|---|---|---|
Mean | Standard Deviation | Mean | Standard Deviation | ||
Staphylococcus aureus | 1.007 | 0.262 | 0.301 | 0.000 | <0.01 |
Enterococcus spp. | 1.865 | 1.076 | 0.704 | 0.485 | <0.01 |
Escherichia coli | 1.140 | 0.901 | 0.301 | 0.000 | <0.01 |
Total coliforms | 1.020 | 0.934 | 0.301 | 0.000 | <0.05 |
Parameters (Log CFU/m3) | Biocells | Windrows | Service Area | |||
---|---|---|---|---|---|---|
Mean | Standard Deviation | Mean | Standard Deviation | Mean | Standard Deviation | |
Fungi and yeasts | 3.228 | 0.591 | 2.457 | 1.068 | 2.967 | 0.195 |
Staphylococcus spp. | 1.206 | 0.519 | 0.651 | 0.365 | . | . |
Staphylococcus aureus | 1.000 | - | 0.000 | 1.017 | 0.408 | 0.301 |
Enterococcus spp. | 2.137 | - | 1.027 | 1.238 | 0.943 | 0.704 |
Escherichia coli | 1.368 | - | 0.907 | 0.506 | 0.502 | 0.301 |
Total coliforms | 1.547 | - | 1.017 | 0.492 | 0.468 | 0.301 |
ADCP Facilities | Minimum | Maximum | Mean | Standard Deviation |
---|---|---|---|---|
Inhalable dust (mg/m3) | 0.38 | 5.32 | 1.77 | 1.69 |
Breathable dust (mg/m3) | 0.22 | 0.35 | 0.28 | 0.12 |
CP Facilities | Minimum | Maximum | Mean | Standard Deviation |
---|---|---|---|---|
Inhalable dust (mg/m3) | 6.60 | 6.60 | 6.60 | - |
Environmental PM10 (mg/m3) | 0.83 | 7.80 | 3.19 | 2.34 |
Environmental PM2.5 (mg/m3) | 0.25 | 0.87 | 0.57 | 0.26 |
Environmental PM2.5/PM10 | 0.12 | 0.29 | 0.19 | 0.08 |
Personal PM10 (mg/m3) | 0.65 | 2.11 | 1.20 | 0.79 |
Personal PM2.5 (mg/m3) | 0.04 | 0.05 | 0.04 | 0.005 |
Personal PM2.5/PM10 | 0.02 | 0.06 | 0.04 | 0.02 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anedda, E.; Traversi, D. Bioaerosol in Composting Facilities: A Survey on Full-Scale Plants in Italy. Atmosphere 2020, 11, 398. https://doi.org/10.3390/atmos11040398
Anedda E, Traversi D. Bioaerosol in Composting Facilities: A Survey on Full-Scale Plants in Italy. Atmosphere. 2020; 11(4):398. https://doi.org/10.3390/atmos11040398
Chicago/Turabian StyleAnedda, Elisa, and Deborah Traversi. 2020. "Bioaerosol in Composting Facilities: A Survey on Full-Scale Plants in Italy" Atmosphere 11, no. 4: 398. https://doi.org/10.3390/atmos11040398
APA StyleAnedda, E., & Traversi, D. (2020). Bioaerosol in Composting Facilities: A Survey on Full-Scale Plants in Italy. Atmosphere, 11(4), 398. https://doi.org/10.3390/atmos11040398