Quantification of Non-Exhaust Particulate Matter Traffic Emissions and the Impact of COVID-19 Lockdown at London Marylebone Road
Abstract
:1. Introduction
2. Methods
2.1. Measurement Locations
2.2. Atmospheric Measurements
2.2.1. PM10 and PM2.5 Mass
2.2.2. Elemental Composition
2.2.3. Carbon Dioxide and Nitrogen Oxides
2.2.4. Traffic and Meteorological Data
2.3. Calculating Non-Exhaust Concentrations
2.4. CO2 Dilution Approach
- A roadside CO2 increment was obtained by subtracting the background from the roadside CO2 concentrations:
- A dilution factor for CO2 was calculated by combining the speed-dependent tailpipe CO2 emission factors based on the number of LDVs and HDVs recorded on each lane with ambient CO2 increment measurements. This is represented in the following equation:
- The PM emission factors for Ba, Zn, and Si for the average of the fleet was calculated using the measured PM chemical composition data:
3. Results
3.1. Atmospheric Measurement Campaigns
3.1.1. Measurement Correlations
3.1.2. PM10, PM2.5, and Non-Exhaust Traffic Concentrations
3.2. Emission Factors
3.2.1. CO2 Dilution Approach
3.2.2. Non-Exhaust Emission Factors
4. Discussion
4.1. Brake Wear
4.2. Tyre Wear
4.3. Resuspension
5. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Committee on the Medical Effects of Air Pollutants (COMEAP). The Effects of Long-Term Exposure to Ambient Air Pollution on Cardiovascular Morbidity: Mechanistic Evidence; Committee on the Medical Effects of Air Pollutants: Chilton, UK, 2018. [Google Scholar]
- World Health Organization (WHO). Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Font, A.; Guiseppin, L.; Blangiardo, M.; Ghersi, V.; Fuller, G.W. A tale of two cities: Is air pollution improving in Paris and London? Environ. Pollut. 2019, 249, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Joshi, A.; Johnson, T. Gasoline particulate filters—A review. Emiss. Control Sci. Technol. 2018, 4, 219–239. [Google Scholar] [CrossRef]
- Harrison, R.M.; Jones, A.M.; Gietl, J.; Yin, J.; Green, D.C. Estimation of the contributions of brake dust, tire wear, and resuspension to nonexhaust traffic particles derived from atmospheric measurements. Environ. Sci. Technol. 2012, 46, 6523–6529. [Google Scholar] [CrossRef] [PubMed]
- Air Quality Expert Group (AQEG). Non-Exhaust Emissions from Road Traffic; Defra: London, UK, 2019. [Google Scholar]
- Committee on the Medical Effects of Air Pollutants (COMEAP). Statement on the Evidence for Health Effects Associated with Exposure to Non-Exhaust Particulate Matter from Road Transport; Committee on the Medical Effects of Air Pollutants: Chilton, UK, 2020. [Google Scholar]
- Eionet. Projected Emissions (March 2020 Submission). Updated 2020. Available online: http://cdr.eionet.europa.eu/gb/un/clrtap/projected/envxmo40w/overview (accessed on 12 October 2020).
- Ntziachristos, L.; Boulter, P. EMEP/EEA Air Pollutant Emission Inventory Guidebook 2019; EMEP/EEA: Copenhagen, Denmark, 2019. [Google Scholar]
- European Environment Agency. Directive (EU) 2016/2284 of the European Parliament and of the Council of 14 December 2016 on the reduction of national emissions of certain atmospheric pollutants, amending directive 2003/35/EC and repealing directive 2001/81/EC. Off. J. Eur. Union 2016, 344, 1–31. Available online: http://data.europa.eu/eli/dir/2016/2284/oj (accessed on 11 August 2020).
- Committee on Climate Change. Net Zero: The UK’s Contribution to Stopping Global Warming. 2019. Available online: https://www.theccc.org.uk/publication/net-zero-the-uks-contribution-to-stopping-global-warming/ (accessed on 15 August 2020).
- UN Economic Commission for Europe (UNECE). Convention on Long-Range Transboundary Air Pollution (LRTAP); European Environment Agency: Copenhagen, Denmark, 2020. [Google Scholar]
- Timmers, V.R.J.H.; Achten, P.A.J. Non-exhaust PM emissions from electric vehicles. Atmos. Environ. 2016, 134, 10–17. [Google Scholar] [CrossRef]
- Beddows, D.C.; Harrison, R.M. PM10 and PM2.5 emission factors for non-exhaust particles from road vehicles: Dependence upon vehicle mass and implications for battery electric vehicles. Atmos. Environ. 2021, 244, 117886. [Google Scholar] [CrossRef]
- Hagino, H.; Oyama, M.; Sasaki, S. Laboratory testing of airborne brake wear particle emissions using a dynamometer system under urban city driving cycles. Atmos. Environ. 2016, 131, 269–278. [Google Scholar] [CrossRef] [Green Version]
- Garg, B.D.; Cadle, S.H.; Mulawa, P.A.; Groblicki, P.J.; Laroo, C.; Parr, G.A. Brake wear particulate matter emissions. Environ. Sci. Technol. 2000, 34, 4463–4469. [Google Scholar] [CrossRef]
- Sanders, P.G.; Xu, N.; Dalka, T.M.; Maricq, M.M. Airborne brake wear debris: Size distributions, composition, and a comparison of dynamometer and vehicle tests. Environ. Sci. Technol. 2003, 37, 4060–4069. [Google Scholar] [CrossRef]
- Gustafsson, M.; Blomqvist, G.; Gudmundsson, A.; Dahl, A.; Jonsson, P.; Swietlicki, E. Factors influencing PM10 emissions from road pavement wear. Atmos. Environ. 2009, 43, 4699–4702. [Google Scholar] [CrossRef]
- Park, I.; Kim, H.; Lee, S. Characteristics of tire wear particles generated in a laboratory simulation of tire/road contact conditions. J. Aerosol Sci. 2018, 124, 30–40. [Google Scholar] [CrossRef]
- Mathissen, M.; Grigoratos, T.; Lähde, T.; Vogt, R. Brake wear particle emissions of a passenger car measured on a chassis dynamometer. Atmosphere 2019, 10, 556. [Google Scholar] [CrossRef] [Green Version]
- Charron, A.; Polo-Rehn, L.; Besombes, J.-L.; Golly, B.; Buisson, C.; Chanut, H.; Marchand, N.; Guillaud, G.; Jaffrezo, J.-L. Identification and quantification of particulate tracers of exhaust and non-exhaust vehicle emissions. Atmos. Chem. Phys. Discuss. 2019, 19, 5187–5207. [Google Scholar] [CrossRef] [Green Version]
- Dante, R.C. Handbook of Friction Materials and Their Applications; Woodhead Publishing Ltd.: Cambridge, UK, 2015; pp. 1–6. [Google Scholar]
- Crilley, L.R.; Lucarelli, F.; Bloss, W.J.; Harrison, R.M.; Beddows, D.C.; Calzolai, G.; Nava, S.; Valli, G.; Bernardoni, V.; Vecchi, R. Source apportionment of fine and coarse particles at a roadside and urban background site in London during the 2012 summer ClearfLo campaign. Environ. Pollut. 2017, 220, 766–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Visser, S.; Slowik, J.G.; Furger, M.; Zotter, P.; Bukowiecki, N.; Canonaco, F.; Flechsig, U.; Appel, K.; Green, D.C.; Tremper, A.H.; et al. Advanced source apportionment of size-resolved trace elements at multiple sites in London during winter. Atmos. Chem. Phys. Discuss. 2015, 15, 11291–11309. [Google Scholar] [CrossRef] [Green Version]
- Grigoratos, T.; Martini, G. Brake wear particle emissions: A review. Environ. Sci. Pollut. Res. 2015, 22, 2491–2504. [Google Scholar] [CrossRef] [Green Version]
- Grigoratos, T.; Martini, G. Non-Exhaust Traffic Related Emissions. Brake and Tyre Wear PM. 2014. Available online: https://publications.jrc.ec.europa.eu/repository/bitstream/JRC89231/jrc89231-online%20final%20version%202.pdf (accessed on 5 November 2020).
- Amato, F.; Cassee, F.R.; Van Der Gon, H.A.D.; Gehrig, R.; Gustafsson, M.; Hafner, W.; Harrison, R.M.; Jozwicka, M.; Kelly, F.J.; Moreno, T.; et al. Urban air quality: The challenge of traffic non-exhaust emissions. J. Hazard. Mater. 2014, 275, 31–36. [Google Scholar] [CrossRef]
- Thiyagarajan, V.; Kalaichelvan, K.; Vijay, R.; Singaravelu, D.L. Influence of thermal conductivity and thermal stability on the fade and recovery characteristics of non-asbestos semi-metallic disc brake pad. J. Braz. Soc. Mech. Sci. Eng. 2015, 38, 1207–1219. [Google Scholar] [CrossRef]
- Jang, J. Brake friction materials. In Encyclopaedia of Tribology; Wang, Q.J., Chung, Y., Eds.; Springer: Boston, MA, USA, 2013. [Google Scholar]
- Güney, B.; Öz, A. Microstructure and chemical analysis of vehicle brake wear particle emissions. Eur. J. Sci. Technol. 2020, 19, 633–642. [Google Scholar] [CrossRef]
- Breuer, B.; Bill, K. Bremsenhandbuch, 5th ed.; Springer Vieweg: Wiesbaden, Germany, 2017. [Google Scholar]
- Karthikeyan, S.S.; Balakrishnan, E.; Meganathan, S.; Balachander, M.; Ponshanmugakumar, A. Elemental analysis of brake pad using natural fibres. Mater. Today Proc. 2019, 16, 1067–1074. [Google Scholar] [CrossRef]
- Harrison, R.M.; Beddows, D.C.S.; Dall’Osto, M. PMF Analysis of wide-range particle size spectra collected on a major highway. Environ. Sci. Technol. 2011, 45, 5522–5528. [Google Scholar] [CrossRef]
- Grigoratos, T.; Gustafsson, M.; Eriksson, O.; Martini, G. Experimental investigation of tread wear and particle emission from tyres with different treadwear marking. Atmospheric Environment. 2018, 182, 200–212. Available online: http://www.sciencedirect.com/science/article/pii/S1352231018302036 (accessed on 29 January 2021). [CrossRef]
- Kesarkar, A.P.; Biswal, A.; Kesarkar, A.P.; Mor, S.; Ravindra, K. High resolution vehicular PM10 emissions over megacity Delhi: Relative contributions of exhaust and non-exhaust sources. Sci. Total Environ. 2020, 699, 134273. [Google Scholar] [CrossRef]
- Panko, J.M.; Hitchcock, K.M.; Fuller, G.W.; Green, D. Evaluation of tire wear contribution to PM2.5 in urban environments. Atmosphere 2019, 10, 99. [Google Scholar] [CrossRef] [Green Version]
- Baensch-Baltruschat, B.; Kocher, B.; Stock, F.; Reifferscheid, G. Tyre and road wear particles (TRWP)—A review of generation, properties, emissions, human health risk, ecotoxicity, and fate in the environment. Sci. Total Environ. 2020, 733, 137823. [Google Scholar] [CrossRef] [PubMed]
- Kole, P.J.; Löhr, A.J.; Van Belleghem, F.G.A.J.; Ragas, A.M.J. Wear and tear of tyres: A stealthy source of microplastics in the environment. Int. J. Environ. Res. Public Health 2017, 14, 1265. [Google Scholar] [CrossRef]
- Klöckner, P.; Reemtsma, T.; Eisentraut, P.; Braun, U.; Ruhl, A.S.; Wagner, S. Tire and road wear particles in road environment—Quantification and assessment of particle dynamics by Zn determination after density separation. Chemosphere 2019, 222, 714–721. [Google Scholar] [CrossRef]
- Wagner, S.; Hüffer, T.; Klöckner, P.; Wehrhahn, M.; Hofmann, T.; Reemtsma, T. Tire wear particles in the aquatic environment—A review on generation, analysis, occurrence, fate and effects. Water Res. 2018, 139, 83–100. [Google Scholar] [CrossRef]
- Halsband, C.; Sørensen, L.; Booth, A.M.; Herzke, D. Car tire crumb rubber: Does leaching produce a toxic chemical cocktail in coastal marine systems? Front. Environ. Sci. 2020, 8, 125. [Google Scholar] [CrossRef]
- Pant, P.; Harrison, R.M. Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: A review. Atmos. Environ. 2013, 77, 78–97. [Google Scholar] [CrossRef]
- Hjortenkrans, D. Road Traffic Metals—Sources and Emissions; Linnaeus University: Kalmar, Sweden, 2008. [Google Scholar]
- Wright, S.L.; Ulke, J.; Font, A.; Chan, K.; Kelly, F. Atmospheric microplastic deposition in an urban environment and an evaluation of transport. Environ. Int. 2020, 136, 105411. [Google Scholar] [CrossRef]
- Boucher, J.; Friot, D. Primary Microplastics in the Oceans: A Global Evaluation of Sources; IUCN: Gland, Switzerland, 2017. [Google Scholar]
- Harrison, R.M. Airborne particulate matter. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2020, 378, 20190319. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, K.; Branson, J.; Giess, P.; Cannell, R. The effects of vehicle activity on particle resuspension. J. Aerosol Sci. 1989, 20, 1425–1428. [Google Scholar] [CrossRef]
- Nicholson, K.; Branson, J. Factors affecting resuspension by road traffic. Sci. Total Environ. 1990, 93, 349–358. [Google Scholar] [CrossRef]
- Amato, F.; Karanasiou, A.; Moreno, T.; Alastuey, A.; Orza, J.A.G.; Lumbreras, J.; Borge, R.; Boldo, E.; Linares, C.; Querol, X. Emission factors from road dust resuspension in a Mediterranean freeway. Atmos. Environ. 2012, 61, 580–587. [Google Scholar] [CrossRef] [Green Version]
- Furger, M.; Rai, P.; Slowik, J.G.; Cao, J.; Visser, S.; Baltensperger, U.; Prévôt, A.S. Automated alternating sampling of PM10 and PM2.5 with an online XRF spectrometer. Atmos. Environ. 2020, 5, 100065. [Google Scholar] [CrossRef]
- Huang, S.; Taddei, P.; Lawrence, J.; Martins, M.A.; Li, J.; Koutrakis, P. Trace element mass fractions in road dust as a function of distance from road. J. Air Waste Manag. Assoc. 2020, 70, 34001. [Google Scholar] [CrossRef]
- Amato, F.; Favez, O.; Pandolfi, M.; Alastuey, A.; Querol, X.; Moukhtar, S.; Bruge, B.; Verlhac, S.; Orza, J.A.G.; Bonnaire, N.; et al. Traffic induced particle resuspension in Paris: Emission factors and source contributions. Atmos. Environ. 2016, 129, 114–124. [Google Scholar] [CrossRef]
- Wallin, A. PARTICLES—Sources and Dispersion in Stockholm; Stockholm University: Stockholm, Sweden, 2009. [Google Scholar]
- De la Paz, D.; Borge, R.; Vedrenne, M.; Lumbreras, J.; Amato, F.; Karanasiou, A.; Boldo, E.; Moreno, T. Implementation of road dust resuspension in air quality simulations of particulate matter in Madrid (Spain). Front. Environ. Sci. 2015, 3, 72. [Google Scholar] [CrossRef]
- Thorpe, A.J.; Harrison, R.M.; Boulter, P.G.; McCrae, I.S. Estimation of particle resuspension source strength on a major London Road. Atmos. Environ. 2007, 41, 8007–8020. [Google Scholar] [CrossRef]
- Beddows, D.C.S.; Harrison, R.M.; Green, D.C.; Fuller, G.W. Receptor modelling of both particle composition and size distribution from a background site in London, UK. Atmos. Chem. Phys. Discuss. 2015, 15, 10107–10125. [Google Scholar] [CrossRef] [Green Version]
- Bukowiecki, N.; Lienemann, P.; Hill, M.; Furger, M.; Richard, A.; Amato, F.; Prévôt, A.; Baltensperger, U.; Buchmann, B.; Gehrig, R. PM10 emission factors for non-exhaust particles generated by road traffic in an urban street canyon and along a freeway in Switzerland. Atmos. Environ. 2010, 44, 2330–2340. [Google Scholar] [CrossRef]
- Matzer, C.; Weller, K.; Dippold, M.; Lipp, S.; Röck, M.; Rexeis, M.; Hausberger, S. Update of Emission Factors for HBEFA Version 4.1; TU Graz: Graz, Austria, 2019. [Google Scholar]
- Ferm, M.; Sjöberg, K. Concentrations and emission factors for PM 2.5 and PM 10 from road traffic in Sweden. Atmos. Environ. 2015, 119, 211–219. [Google Scholar] [CrossRef]
- Ghaffarpasand, O.; Beddows, D.C.; Ropkins, K.; Pope, F.D. Real-world assessment of vehicle air pollutant emissions subset by vehicle type, fuel and EURO class: New findings from the recent UK EDAR field campaigns, and implications for emissions restricted zones. Sci. Total Environ. 2020, 734, 139416. [Google Scholar] [CrossRef] [PubMed]
- Dey, S.; Caulfield, B.; Ghosh, B. Modelling uncertainty of vehicular emissions inventory: A case study of Ireland. J. Clean. Prod. 2019, 213, 1115–1126. [Google Scholar] [CrossRef]
- Vaughan, A.R.; Lee, J.; Misztal, P.K.; Metzger, S.; Shaw, M.D.; Lewis, A.C.; Purvis, R.M.; Carslaw, D.C.; Goldstein, A.H.; Hewitt, C.N.; et al. Spatially resolved flux measurements of NOx from London suggest significantly higher emissions than predicted by inventories. Faraday Discuss. 2015, 189, 455–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denby, B.; Sundvor, I.; Johansson, C.; Pirjola, L.; Ketzel, M.; Norman, M.; Kupiainen, K.; Gustafsson, M.; Blomqvist, G.; Omstedt, G. A coupled road dust and surface moisture model to predict non-exhaust road traffic induced particle emissions (NORTRIP). Part 1: Road dust loading and suspension modelling. Atmos. Environ. 2013, 77, 283–300. [Google Scholar] [CrossRef]
- Denby, B.; Sundvor, I.; Johansson, C.; Pirjola, L.; Ketzel, M.; Norman, M.; Kupiainen, K.; Gustafsson, M.; Blomqvist, G.; Kauhaniemi, M.; et al. A coupled road dust and surface moisture model to predict non-exhaust road traffic induced particle emissions (NORTRIP). Part 2: Surface moisture and salt impact modelling. Atmos. Environ. 2013, 81, 485–503. [Google Scholar] [CrossRef] [Green Version]
- Fuller, G.W.; Green, D. Evidence for increasing concentrations of primary PM10 in London. Atmos. Environ. 2006, 40, 6134–6145. [Google Scholar] [CrossRef]
- Hernández-Paniagua, I.Y.; Lowry, D.; Clemitshaw, K.C.; Fisher, R.; France, J.; Lanoisellé, M.; Ramonet, M.; Nisbet, E.G. Diurnal, seasonal, and annual trends in atmospheric CO2 at southwest London during 2000–2012: Wind sector analysis and comparison with Mace Head, Ireland. Atmos. Environ. 2015, 105, 138–147. [Google Scholar] [CrossRef]
- Palas. Operating Manual Fine Dust Monitor System Fidas; Palas: Karlsruhe, Germany, 2015. [Google Scholar]
- Ricardo Energy & Environment. Automatic Urban and Rural Network: Site Operator’s Manual; Ricardo Energy & Environment: Didcot, UK, 2020; pp. 21.1–21.6. [Google Scholar]
- Cooper Environmental. Xact™ 625 Monitoring System. 2014. Available online: https://www.et.co.uk/assets/resources/files/xact-625-product-datasheet.pdf (accessed on 5 November 2020).
- Tremper, A.H.; Font, A.; Priestman, M.; Hamad, S.; Chung, T.-C.; Pribadi, A.; Brown, R.J.; Goddard, S.; Grassineau, N.; Petterson, K.; et al. Field and laboratory evaluation of a high time resolution X-ray fluorescence instrument for determining the elemental composition of ambient aerosols. Atmos. Meas. Tech. 2018, 11, 3541–3557. [Google Scholar] [CrossRef] [Green Version]
- Furger, M.; Minguillón, M.C.; Yadav, V.; Slowik, J.G.; Hueglin, C.; Fröhlich, R.; Petterson, K.; Baltensperger, U.; Prévôt, A.S.H. Elemental composition of ambient aerosols measured with high temporal resolution using an online XRF spectrometer. Atmos. Meas. Tech. 2017, 10, 2061–2076. [Google Scholar] [CrossRef] [Green Version]
- Park, S.-S.; Cho, S.-Y.; Jo, M.-R.; Gong, B.; Park, J.-S.; Lee, S.-J. Field evaluation of a near-real time elemental monitor and identification of element sources observed at an air monitoring supersite in Korea. Atmos. Pollut. Res. 2014, 5, 119–128. [Google Scholar] [CrossRef] [Green Version]
- LICOR. LI-820 CO2 Analyzer; LI-COR Inc.: 2017. Available online: https://www.licor.com/documents/ww4sm0xupfr051ti3amn (accessed on 20 November 2020).
- Vaisala. Road and Runway Sensor DRS511. 2017. Available online: https://www.vaisala.com/sites/default/files/documents/DRS511-Datasheet-B010115EN-C.pdf (accessed on 20 November 2020).
- Gietl, J.K.; Lawrence, R.; Thorpe, A.J.; Harrison, R.M. Identification of brake wear particles and derivation of a quantitative tracer for brake dust at a major road. Atmos. Environ. 2010, 44, 141–146. [Google Scholar] [CrossRef]
- UK Department for Environment, Food and Rural Affairs. Emissions Factors Toolkit. Updated 2020. Available online: https://laqm.defra.gov.uk/review-and-assessment/tools/emissions-factors-toolkit.html (accessed on 25 September 2020).
- Boulter, P.; Barlow, T.; McCrae, I.; Latham, S. Emission Factors 2009: Final Summary Report; TRL: Wokingham, UK, 2009. [Google Scholar]
- Wakeling, D. National Atmospheric Emissions Inventory–Brake & Tyre & Road Abrasion; Ricardo Energy & Environment: Didcot, UK, 2020. Available online: https://naei.beis.gov.uk/resources/RoadtransportEFs_NAEI18_v1.xlsx (accessed on 25 November 2020).
Source | Trace Element | Scaling Factor |
---|---|---|
Brake Wear | Ba | 91 |
Tyre Wear | Zn | 50 |
Resuspension | Si | 3.6 |
Marylebone Road | Honor Oak Park | Roadside Increment (MY-HOP) | ||
---|---|---|---|---|
Mean | Mean | Mean | Roadside/Background Ratio | |
μg/m3 | μg/m3 | μg/m3 | ||
PM10 | 17.14 | 13.20 | 3.94 | 1.3 |
PM2.5 | 9.82 | 8.29 | 1.53 | 1.2 |
ng/m3 | ng/m3 | ng/m3 | ||
Ba | 24 | 3 | 21 | 8.0 |
Cu | 23 | 3 | 20 | 7.7 |
Fe | 1695 | 259 | 1436 | 6.5 |
Zn | 29 | 14 | 15 | 2.1 |
Si | 354 | 287 | 67 | 1.2 |
Ca | 372 | 253 | 119 | 1.5 |
Source | Overall | Pre-Lockdown | Lockdown | Change |
---|---|---|---|---|
μg/m3 | μg/m3 | μg/m3 | μg/m3 | |
PM10 Increment | 3.9 | 4.7 | 2.4 | −2.3 |
PM2.5 Increment | 1.5 | 2.1 | 0.5 | −1.6 |
Brake Wear | 1.9 | 2.6 | 1.6 | −1.0 |
Tyre Wear | 1.0 | 1.0 | 1.0 | 0.0 |
Resuspension | 1.1 | 1.1 | 1.1 | 0.0 |
Emission Factor (mg vkm−1) | Dry Road Surface | Wet Road Surface | Combined | ||||
---|---|---|---|---|---|---|---|
10–15 kmh−1 | 15–20 kmh−1 | 20–25 kmh−1 | 10–15 kmh−1 | 15–20 kmh−1 | 20–25 kmh−1 | 10–25 kmh−1 | |
PM10 | 30.8 | 29.0 | 45.4 | 18.2 | 18.1 | 24.5 | 34.5 |
Brake Wear | 7.9 | 11.1 | 18.4 | 6.5 | 7.1 | 14.1 | 12.9 |
Tyre Wear | 4.2 | 6.3 | 11.0 | 3.5 | 4.0 | 7.5 | 7.8 |
Resuspension | 4.0 | 6.8 | 11.3 | 2.4 | 5.3 | 7.5 | 8.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hicks, W.; Beevers, S.; Tremper, A.H.; Stewart, G.; Priestman, M.; Kelly, F.J.; Lanoisellé, M.; Lowry, D.; Green, D.C. Quantification of Non-Exhaust Particulate Matter Traffic Emissions and the Impact of COVID-19 Lockdown at London Marylebone Road. Atmosphere 2021, 12, 190. https://doi.org/10.3390/atmos12020190
Hicks W, Beevers S, Tremper AH, Stewart G, Priestman M, Kelly FJ, Lanoisellé M, Lowry D, Green DC. Quantification of Non-Exhaust Particulate Matter Traffic Emissions and the Impact of COVID-19 Lockdown at London Marylebone Road. Atmosphere. 2021; 12(2):190. https://doi.org/10.3390/atmos12020190
Chicago/Turabian StyleHicks, William, Sean Beevers, Anja H. Tremper, Gregor Stewart, Max Priestman, Frank J. Kelly, Mathias Lanoisellé, Dave Lowry, and David C. Green. 2021. "Quantification of Non-Exhaust Particulate Matter Traffic Emissions and the Impact of COVID-19 Lockdown at London Marylebone Road" Atmosphere 12, no. 2: 190. https://doi.org/10.3390/atmos12020190