PM2.5 Pollution Levels and Chemical Components at Teahouses along the Poon Hill Trek in Nepal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Indoor and Outdoor PM2.5, Temperature, and Relative Humidity Measurements
2.3. Elemental and Carbon Analyses
2.4. Statistical Analyses
3. Results
3.1. Summary Statistics for PM2.5, PM2.5 Chemical Components, Temperature, and Relative Humidity
3.2. Associations between Sample Location and PM2.5, PM2.5 Chemical Components, Temperature, and Relative Humidity
3.3. Line Graphs of PM2.5, PM2.5 Chemical Components, Temperature, and Relative Humidity during the Sampling Period
4. Discussion
4.1. PM2.5
4.2. PM2.5 Chemical Components
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Health Effects Institute. Global Burden of Disease. State of Global Air 2020: A Special Report on Global Exposure to Air Pollution and Its Health Impacts. 2020. Available online: https://www.stateofglobalair.org/sites/default/files/documents/2020-10/soga-2020-report.pdf (accessed on 12 March 2022).
- World Health Organization. Kathmandu, Nepal. 2022. Available online: https://www.who.int/initiatives/urban-health-initiative/pilot-projects/kathmandu (accessed on 12 March 2022).
- Gurung, A.; Bell, M.L. The state of scientific evidence on air pollution and human health in Nepal. Environ. Res. 2013, 124, 54–64. [Google Scholar] [CrossRef]
- Shakya, K.M.; Rupakheti, M.; Shahi, A.; Maskey, R.; Pradhan, B.; Panday, A.; Puppala, S.P.; Lawrence, M.; Peltier, R.E. Near-road sampling of PM2.5, BC, and fine-particle chemical components in Kathmandu Valley, Nepal. Atmos. Chem. Phys. 2017, 17, 6503–6516. [Google Scholar] [CrossRef] [Green Version]
- Mannucci, P.M.; Harari, S.; Martinelli, I.; Franchini, M. Effects on health of air pollution: A narrative review. Intern. Emerg. Med. 2015, 10, 657–662. [Google Scholar] [CrossRef]
- GBD 2013 Risk Factors Collaborators; Forouzanfar, M.H.; Alexander, L.; Anderson, H.R.; Bachman, V.F.; Biryukov, S.; Brauer, M.; Burnett, R.; Casey, D.; Coates, M.M.; et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015, 386, 2287–2323. [Google Scholar]
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide. Available online: https://apps.who.int/iris/bitstream/handle/10665/345329/9789240034228-eng.pdf?sequence=1&isAllowed=y (accessed on 12 March 2022).
- Saud, B.; Paudel, G. The Threat of Ambient Air Pollution in Kathmandu, Nepal. J. Environ. Public Health 2018, 2018, 1504591. [Google Scholar] [CrossRef] [Green Version]
- Panday, A.K.; Prinn, R.G. Diurnal cycle of air pollution in the Kathmandu Valley, Nepal: Observations. J. Geophys. Res. Atmos. 2009, 114, D09305. [Google Scholar] [CrossRef]
- Ministry of Population and Environment, Government of Nepal. Biomass Energy Strategy 2017. 2017. Available online: https://www.aepc.gov.np/uploads/docs/2018-07-29_Biomass%20Energy%20Strategy%202073%20BS%20(2017)%20English.pdf (accessed on 12 March 2022).
- Awale, S. Breathing Can Kill You. Nepali Times. 2022. Available online: https://www.nepalitimes.com/banner/breathing-can-kill-you/ (accessed on 22 June 2022).
- Kitada, T.; Regmi, R.P. Dynamics of Air Pollution Transport in Late Wintertime over Kathmandu Valley, Nepal: As Revealed with Numerical Simulation. J. Appl. Meteorol. 2003, 42, 1770–1798. [Google Scholar] [CrossRef]
- Hindman, E.E.; Upadhyay, B.P. Air pollution transport in the Himalayas of Nepal and Tibet during the 1995–1996 dry season. Atmos. Environ. 2002, 36, 727–739. [Google Scholar] [CrossRef]
- Egger, J.; Bajrachaya, S.; Egger, U.; Heinrich, R.; Reuder, J.; Shayka, P.; Wendt, H.; Wirth, V. Diurnal Winds in the Himalayan Kali Gandaki Valley. Part I: Observations. Mon. Weather Rev. 2000, 128, 1106–1122. [Google Scholar] [CrossRef]
- Davidson, C.I.; Lin, S.F.; Osborn, J.F.; Pandey, M.R.; Rasmussen, R.A.; Khalil, M.A.K. Indoor and outdoor air pollution in the Himalayas. Environ. Sci. Technol. 1986, 20, 561–567. [Google Scholar] [CrossRef]
- Pratali, L.; Marinoni, A.; Cogo, A.; Ujka, K.; Gilardoni, S.; Bernardi, E.; Bonasoni, P.; Bruno, R.M.; Bastiani, L.; Vuillermoz, E.; et al. Indoor air pollution exposure effects on lung and cardiovascular health in the High Himalayas, Nepal: An observational study. Eur. J. Intern. Med. 2019, 61, 81–87. [Google Scholar] [CrossRef]
- Michael, A.S.; Smriti, D.; Sanjay, N.; Schuett, M.A.; Dahal, S.; Nepal, S. Local perspectives on benefits of an integrated conservation and development project: The Annapurna conservation area in Nepal. Int. J. Biodivers. Conserv. 2016, 8, 138–146. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Household Air Pollution and Health. 2018. Available online: https://www.who.int/news-room/fact-sheets/detail/household-air-pollution-and-health (accessed on 21 May 2021).
- Fine, P.M.; Cass, G.R.; Simoneit, B.R.T. Chemical Characterization of Fine Particle Emissions from Fireplace Combustion of Woods Grown in the Northeastern United States. Environ. Sci. Technol. 2001, 35, 2665–2675. [Google Scholar] [CrossRef]
- Rau, J.A. Composition and Size Distribution of Residential Wood Smoke Particles. Aerosol Sci. Technol. 1989, 10, 181–192. [Google Scholar] [CrossRef] [Green Version]
- Bølling, A.K.; Pagels, J.; Yttri, K.E.; Barregard, L.; Sallsten, G.; Schwarze, P.E.; Boman, C. Health effects of residential wood smoke particles: The importance of combustion conditions and physicochemical particle properties. Part. Fibre Toxicol. 2009, 6, 29. [Google Scholar] [CrossRef] [Green Version]
- Bell, M.L.; Ebisu, K.; Leaderer, B.P.; Gent, J.F.; Lee, H.J.; Koutrakis, P.; Wang, Y.; Dominici, F.; Peng, R.D. Associations of PM2.5 Constituents and Sources with Hospital Admissions: Analysis of Four Counties in Connecticut and Massachusetts (USA) for Persons ≥ 65 Years of Age. Environ. Health Perspect. 2014, 122, 138–144. [Google Scholar] [CrossRef] [Green Version]
- Burnett, R.T.; Brook, J.; Dann, T.; Delocla, C.; Philips, O.; Cakmak, S.; Vincent, R.; Goldberg, M.S.; Krewski, D. Association between Particulate- and Gas-Phase Components of Urban Air Pollution and Daily Mortality in Eight Canadian Cities. Inhal. Toxicol. 2000, 12 (Suppl. 4), 15–39. [Google Scholar] [CrossRef]
- Ostro, B.; Roth, L.; Malig, B.; Marty, M. The Effects of Fine Particle Components on Respiratory Hospital Admissions in Children. Environ. Health Perspect. 2009, 117, 475–480. [Google Scholar] [CrossRef] [Green Version]
- Ebisu, K.; Bell, M.L. Airborne PM2.5 Chemical Components and Low Birth Weight in the Northeastern and Mid-Atlantic Regions of the United States. Environ. Health Perspect. 2012, 120, 1746–1752. [Google Scholar] [CrossRef] [Green Version]
- Bell, M.L.; Belanger, K.; Ebisu, K.; Gent, J.F.; Lee, H.J.; Koutrakis, P.; Leaderer, B.P. Prenatal Exposure to Fine Particulate Matter and Birth Weight: Variations by Particulate Constituents and Sources. Epidemiology 2010, 21, 884–891. [Google Scholar] [CrossRef] [Green Version]
- Code of Federal Regulations Title 45, Public Welfare. Protection of Human Subjects; Definitions for Purposes of This Policy. Available online: https://www.law.cornell.edu/cfr/text/45/46.102 (accessed on 22 June 2022).
- Johnston, J.D.; Hawks, M.E.; Johnston, H.B.; Johnson, L.A.; Beard, J.D. Comparison of Liquefied Petroleum Gas Cookstoves and Wood Cooking Fires on PM2.5 Trends in Brick Workers’ Homes in Nepal. Int. J. Environ. Res. Public Health 2020, 17, 5681. [Google Scholar] [CrossRef]
- Lawless, P.A.; Rodes, C.E.; Ensor, D.S. Multiwavelength absorbance of filter deposits for determination of environmental tobacco smoke and black carbon. Atmos. Environ. 2004, 38, 3373–3383. [Google Scholar] [CrossRef]
- Sloan, C.D.; Weber, F.; Bradshaw, R.K.; Philipp, T.J.; Barber, W.B.; Palmer, V.L.; Graul, R.J.; Tuttle, S.C.; Chartier, R.T.; Johnston, J.D. Elemental analysis of infant airborne particulate exposures. J. Expo. Sci. Environ. Epidemiol. 2017, 27, 526–534. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Compendium Method IO3.3: Determination of Metals in Ambient Particulate Matter Using X-ray Fluorescence (XRF) Spectroscopy; United States Environmental Protection Agency: Washington, DC, USA, 1999. [Google Scholar]
- Thygerson, S.M.; Beard, J.D.; House, M.J.; Smith, R.L.; Burbidge, H.C.; Andrus, K.N.; Weber, F.X.; Chartier, R.; Johnston, J.D. Air-Quality Assessment of On-Site Brick-Kiln Worker Housing in Bhaktapur, Nepal: Chemical Speciation of Indoor and Outdoor PM2.5 Pollution. Int. J. Environ. Res. Public Health 2019, 16, 4114. [Google Scholar] [CrossRef] [Green Version]
- Rodes, C.E. Standard Operating Procedure MicroPEM v 3.2A [Gates Foundation Version] Aerosol Exposure SOP M-300: Setup, Preparation, Calibration, Deployment, Data Processing and Servicing; RTI International: Research Triangle Park, NC, USA, 2013; pp. 1–46. [Google Scholar]
- Bai, L.; He, Z.; Li, C.; Chen, Z. Investigation of yearly indoor/outdoor PM2.5 levels in the perspectives of health impacts and air pollution control: Case study in Changchun, in the northeast of China. Sustain. Cities Soc. 2020, 53, 101871. [Google Scholar] [CrossRef]
- World Health Organization. What Are the WHO Air Quality Guidelines? Available online: https://www.who.int/news-room/feature-stories/detail/what-are-the-who-air-quality-guidelines (accessed on 12 March 2022).
- Fullerton, D.G.; Bruce, N.; Gordon, S. Indoor air pollution from biomass fuel smoke is a major health concern in the developing world. Trans. R. Soc. Trop. Med. Hyg. 2008, 102, 843–851. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Smith, K.R. Household Air Pollution from Coal and Biomass Fuels in China: Measurements, Health Impacts, and Interventions. Environ. Health Perspect. 2007, 115, 848–855. [Google Scholar] [CrossRef]
- Kim, K.-H.; Jahan, S.A.; Kabir, E. A review of diseases associated with household air pollution due to the use of biomass fuels. J. Hazard. Mater. 2011, 192, 425–431. [Google Scholar] [CrossRef]
- Duo, E.; Bruno, R.M.; Basnyat, B.; Neupane, M.; Pomidori, L.; Thapa, G.B.; Pratali, L.; Cogo, A. Indoor pollution in high-altitude dwellings: An assessment of affecting factors across four Sherpa villages in the Khumbu region, Nepal. Indoor Built Environ. 2018, 27, 442–451. [Google Scholar] [CrossRef]
- Raatikainen, T.; Hyvärinen, A.-P.; Hatakka, J.; Panwar, T.; Hooda, R.; Sharma, V.; Lihavainen, H. The effect of boundary layer dynamics on aerosol properties at the Indo-Gangetic plains and at the foothills of the Himalayas. Atmos. Environ. 2014, 89, 548–555. [Google Scholar] [CrossRef]
- Khalil, M.; Rasmussen, R. Tracers of wood smoke. Atmos. Environ. 2003, 37, 1211–1222. [Google Scholar] [CrossRef]
- Molnár, P.; Gustafson, P.; Johannesson, S.; Boman, J.; Barregard, L.; Sällsten, G. Domestic wood burning and PM2.5 trace elements: Personal exposures, indoor and outdoor levels. Atmos. Environ. 2005, 39, 2643–2653. [Google Scholar] [CrossRef]
- Watson, J.G.; Chow, J.C.; Houck, J.E. PM2.5 chemical source profiles for vehicle exhaust, vegetative burning, geological material, and coal burning in Northwestern Colorado during 1995. Chemosphere 2001, 43, 1141–1151. [Google Scholar] [CrossRef]
- Jorquera, H.; Barraza, F.; Heyer, J.; Valdivia, G.; Schiappacasse, L.N.; Montoya, L.D. Indoor PM2.5 in an urban zone with heavy wood smoke pollution: The case of Temuco, Chile. Environ. Pollut. 2018, 236, 477–487. [Google Scholar] [CrossRef]
- Lind, T.; Vaimari, T.; Kauppinen, E.; Nilsson, K.; Sfiris, G.; Maenhaut, W. ASH formation mechanisms during combustion of wood in circulating fluidized beds. Proc. Combust. Inst. 2000, 28, 2287–2295. [Google Scholar] [CrossRef]
- Hong, N.; Zhu, P.; Liu, A.; Zhao, X.; Guan, Y. Using an innovative flag element ratio approach to tracking potential sources of heavy metals on urban road surfaces. Environ. Pollut. 2018, 243, 410–417. [Google Scholar] [CrossRef]
- Hjortenkrans, D.S.T.; Bergbäck, B.G.; Häggerud, A.V. Metal Emissions from Brake Linings and Tires: Case Studies of Stockholm, Sweden 1995/1998 and 2005. Environ. Sci. Technol. 2007, 41, 5224–5230. [Google Scholar] [CrossRef]
- Jeong, C.-H.; Wang, J.M.; Hilker, N.; Debosz, J.; Sofowote, U.; Su, Y.; Noble, M.; Healy, R.M.; Munoz, T.; Dabek-Zlotorzynska, E.; et al. Temporal and spatial variability of traffic-related PM2.5 sources: Comparison of exhaust and non-exhaust emissions. Atmos. Environ. 2019, 198, 55–69. [Google Scholar] [CrossRef]
- Kumari, S.; Jain, M.K.; Elumalai, S.P. Assessment of Pollution and Health Risks of Heavy Metals in Particulate Matter and Road Dust Along the Road Network of Dhanbad, India. J. Health Pollut. 2021, 11, 210305. [Google Scholar] [CrossRef]
- Bilos, C.; Colombo, J.; Skorupka, C.; Presa, M.R. Sources, distribution and variability of airborne trace metals in La Plata City area, Argentina. Environ. Pollut. 2000, 111, 149–158. [Google Scholar] [CrossRef]
- Jayarathne, T.; Stockwell, C.E.; Bhave, P.V.; Praveen, P.S.; Rathnayake, C.M.; Islam, M.R.; Panday, A.K.; Adhikari, S.; Maharjan, R.; Goetz, J.D.; et al. Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): Emissions of particulate matter from wood-and dung-fueled cooking fires, garbage and crop residue burning, brick kilns, and other sources. Atmos. Chem. Phys. 2018, 18, 2259–2286. [Google Scholar] [CrossRef] [Green Version]
- LaRosa, L.E.; Buckley, T.J.; Wallace, L.A. Real-Time Indoor and Outdoor Measurements of Black Carbon in an Occupied House: An Examination of Sources. J. Air Waste Manag. Assoc. 2002, 52, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.U.; Siyi, L.; Yousaf, B.; Abbas, Q.; Hameed, R.; Zheng, C.; Kuang, X.; Wong, M.H. Emission sources and full spectrum of health impacts of black carbon associated polycyclic aromatic hydrocarbons (PAHs) in urban environment: A review. Crit. Rev. Environ. Sci. Technol. 2021, 51, 857–896. [Google Scholar] [CrossRef]
- Shrestha, G.; Traina, S.J.; Swanston, C.W. Black Carbon’s Properties and Role in the Environment: A Comprehensive Review. Sustainability 2010, 2, 294–320. [Google Scholar] [CrossRef] [Green Version]
- Johnston, J.; Beard, J.; Montague, E.; Sanjel, S.; Lu, J.; McBride, H.; Weber, F.; Chartier, R. Chemical Composition of PM2.5 in Wood Fire and LPG Cookstove Homes of Nepali Brick Workers. Atmosphere 2021, 12, 911. [Google Scholar] [CrossRef]
- Sankhyan, S.; Patel, S.; Katz, E.F.; DeCarlo, P.F.; Farmer, D.K.; Nazaroff, W.W.; Vance, M.E. Indoor black carbon and brown carbon concentrations from cooking and outdoor penetration: Insights from the HOMEChem study. Environ. Sci. Process. Impacts 2021, 23, 1476–1487. [Google Scholar] [CrossRef]
Above LDL b | ||||||
---|---|---|---|---|---|---|
Variable a | Below LDL b, n (%) | n (%) | GMc | 95% CI c | Min d | Max d |
Sampling time, minutes | NA | 5 (100) | 815.37 e | 798.05, 832.68 e | 792.50 | 827.33 |
PM2.5, μg/m3 | 0 (0) | 5 (100) | 44.4 | 26.1, 75.7 | 34.1 | 94.8 |
PM2.5 aluminum (Al), μg/m3 | 0 (0) | 5 (100) | 0.30 | 0.21, 0.44 | 0.24 | 0.50 |
PM2.5 barium (Ba), μg/m3 | 3 (60) | 2 (40) | 0.010 f | 0.0046, 0.022 f | 0.0015 | 0.025 |
PM2.5 bromine (Br), μg/m3 | 1 (20) | 4 (80) | 0.010 f | 0.0059, 0.019 f | 0.0073 | 0.020 |
PM2.5 brown carbon (BrC), μg/m3 | 0 (0) | 5 (100) | 14.4 | 8.5, 24.6 | 7.3 | 20.9 |
PM2.5 cesium (Cs), μg/m3 | 4 (80) | 1 (20) | 0.0038 f | 0.0012, 0.012 f | 0.0083 | 0.0083 |
PM2.5 calcium (Ca), μg/m3 | 0 (0) | 5 (100) | 0.23 | 0.15, 0.37 | 0.14 | 0.39 |
PM2.5 chlorine (Cl), μg/m3 | 0 (0) | 5 (100) | 0.057 | 0.025, 0.13 | 0.023 | 0.13 |
PM2.5 chromium (Cr), μg/m3 | 4 (80) | 1 (20) | 0.0019 f | 0.00049, 0.0075 f | 0.0049 | 0.0049 |
PM2.5 copper (Cu), μg/m3 | 4 (80) | 1 (20) | 0.0032 f | 0.0019, 0.0052 f | 0.0045 | 0.0045 |
PM2.5 iron (Fe), μg/m3 | 0 (0) | 5 (100) | 0.24 | 0.14, 0.41 | 0.18 | 0.48 |
PM2.5 lead (Pb), μg/m3 | 4 (80) | 1 (20) | 0.0068 f | 0.0015, 0.032 f | 0.019 | 0.019 |
PM2.5 magnesium (Mg), μg/m3 | 0 (0) | 5 (100) | 0.072 | 0.053, 0.099 | 0.053 | 0.10 |
PM2.5 manganese (Mn), μg/m3 | 2 (40) | 3 (60) | 0.0057 f | 0.0028, 0.012 f | 0.0069 | 0.016 |
PM2.5 nickel (Ni), μg/m3 | 4 (80) | 1 (20) | 0.0024 f | 0.0022, 0.0026 f | 0.0025 | 0.0025 |
PM2.5 phosphorus (P), μg/m3 | 2 (40) | 3 (60) | 0.0078 f | 0.0045, 0.014 f | 0.0087 | 0.014 |
PM2.5 potassium (K), μg/m3 | 0 (0) | 5 (100) | 0.88 | 0.46, 1.69 | 0.60 | 2.19 |
PM2.5 rubidium (Rb), μg/m3 | 4 (80) | 1 (20) | 0.0044 f | 0.0022, 0.0090 f | 0.0072 | 0.0072 |
PM2.5 silicon (Si), μg/m3 | 0 (0) | 5 (100) | 0.76 | 0.53, 1.09 | 0.62 | 1.18 |
PM2.5 sodium (Na), μg/m3 | 0 (0) | 5 (100) | 0.22 | 0.16, 0.30 | 0.15 | 0.29 |
PM2.5 sulfur (S), μg/m3 | 0 (0) | 5 (100) | 1.41 | 1.06, 1.88 | 1.07 | 1.99 |
PM2.5 titanium (Ti), μg/m3 | 0 (0) | 5 (100) | 0.016 | 0.0091, 0.029 | 0.0089 | 0.028 |
PM2.5 vanadium (V), μg/m3 | 3 (60) | 2 (40) | 0.0025 f | 0.0018, 0.0036 f | 0.0031 | 0.0037 |
PM2.5 zinc (Zn), μg/m3 | 0 (0) | 5 (100) | 0.077 | 0.058, 0.10 | 0.055 | 0.093 |
Relative humidity, % | NA | 5 (100) | 55.1 e | 44.4, 65.8 e | 47.5 | 68.6 |
Temperature, °C | NA | 5 (100) | 17.5 e | 10.4, 24.6 e | 10.7 | 25.0 |
Variable | n (%) | Median | p-Value a |
---|---|---|---|
PM2.5, μg/m3 | |||
Indoor | 3 (60) | 41.3 | |
Outdoor | 2 (40) | 34.7 | 0.22 |
PM2.5 aluminum (Al), μg/m3 | |||
Indoor | 3 (60) | 0.30 | |
Outdoor | 2 (40) | 0.26 | 0.44 |
PM2.5 brown carbon (BrC), μg/m3 | |||
Indoor | 3 (60) | 19.0 | |
Outdoor | 2 (40) | 9.8 | 0.22 |
PM2.5 calcium (Ca), μg/m3 | |||
Indoor | 3 (60) | 0.27 | |
Outdoor | 2 (40) | 0.18 | 0.44 |
PM2.5 chlorine (Cl), μg/m3 | |||
Indoor | 3 (60) | 0.081 | |
Outdoor | 2 (40) | 0.032 | 0.22 |
PM2.5 iron (Fe), μg/m3 | |||
Indoor | 3 (60) | 0.28 | |
Outdoor | 2 (40) | 0.19 | 0.79 |
PM2.5 magnesium (Mg), μg/m3 | |||
Indoor | 3 (60) | 0.081 | |
Outdoor | 2 (40) | 0.059 | 0.22 |
PM2.5 potassium (K), μg/m3 | |||
Indoor | 3 (60) | 0.85 | |
Outdoor | 2 (40) | 0.69 | 0.79 |
PM2.5 silicon (Si), μg/m3 | |||
Indoor | 3 (60) | 0.87 | |
Outdoor | 2 (40) | 0.63 | 0.79 |
PM2.5 sodium (Na), μg/m3 | |||
Indoor | 3 (60) | 0.28 | |
Outdoor | 2 (40) | 0.21 | 0.79 |
PM2.5 sulfur (S), μg/m3 | |||
Indoor | 3 (60) | 1.49 | |
Outdoor | 2 (40) | 1.33 | 0.79 |
PM2.5 titanium (Ti), μg/m3 | |||
Indoor | 3 (60) | 0.022 | |
Outdoor | 2 (40) | 0.013 | 0.44 |
PM2.5 zinc (Zn), μg/m3 | |||
Indoor | 3 (60) | 0.091 | |
Outdoor | 2 (40) | 0.077 | 0.79 |
Relative humidity, % | |||
Indoor | 3 (60) | 47.9 | |
Outdoor | 2 (40) | 63.0 | 0.22 |
Temperature, °C | |||
Indoor | 3 (60) | 19.9 | |
Outdoor | 2 (40) | 11.8 | 0.22 |
Variable | Below LDL, n (%) | Above LDL, n (%) | Exact OR a | Exact 95% CI a | Exact p-Value a |
---|---|---|---|---|---|
PM2.5 barium (Ba) | |||||
Indoor | 2 (67) | 1 (50) | 1.00 | Reference | |
Outdoor | 1 (33) | 1 (50) | 1.73 | 0.01, 234.50 | 1.00 |
PM2.5 bromine (Br) | |||||
Indoor | 1 (100) | 2 (50) | 1.00 | Reference | |
Outdoor | 0 (0) | 2 (50) | 0.67 b | 0.04, Infinity | 1.00 |
PM2.5 cesium (Cs) | |||||
Indoor | 2 (50) | 1 (100) | 1.00 | Reference | |
Outdoor | 2 (50) | 0 (0) | 1.50 b | 0.00, 28.50 | 1.00 |
PM2.5 chromium (Cr) | |||||
Indoor | 2 (50) | 1 (100) | 1.00 | Reference | |
Outdoor | 2 (50) | 0 (0) | 1.50 b | 0.00, 28.50 | 1.00 |
PM2.5 copper (Cu) | |||||
Indoor | 2 (50) | 1 (100) | 1.00 | Reference | |
Outdoor | 2 (50) | 0 (0) | 1.50 b | 0.00, 28.50 | 1.00 |
PM2.5 lead (Pb) | |||||
Indoor | 3 (75) | 0 (0) | 1.00 | Reference | |
Outdoor | 1 (25) | 1 (100) | 1.50 b | 0.08, Infinity | 0.80 |
PM2.5 manganese (Mn) | |||||
Indoor | 1 (50) | 2 (67) | 1.00 | Reference | |
Outdoor | 1 (50) | 1 (33) | 0.58 | <0.01, 78.17 | 1.00 |
PM2.5 nickel (Ni) | |||||
Indoor | 2 (50) | 1 (100) | 1.00 | Reference | |
Outdoor | 2 (50) | 0 (0) | 1.50 b | 0.00, 28.50 | 1.00 |
PM2.5 phosphorus (P) | |||||
Indoor | 0 (0) | 3 (100) | 1.00 | Reference | |
Outdoor | 2 (100) | 0 (0) | 0.16 b | 0.00, 1.71 | 0.20 |
PM2.5 rubidium (Rb) | |||||
Indoor | 2 (50) | 1 (100) | 1.00 | Reference | |
Outdoor | 2 (50) | 0 (0) | 1.50 b | 0.00, 28.50 | 1.00 |
PM2.5 vanadium (V) | |||||
Indoor | 1 (33) | 2 (100) | 1.00 | Reference | |
Outdoor | 2 (67) | 0 (0) | 0.46 b | 0.00, 5.12 | 0.60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johnston, J.D.; Beard, J.D.; Novilla, M.L.B.; Weber, F.X.; Chartier, R.T. PM2.5 Pollution Levels and Chemical Components at Teahouses along the Poon Hill Trek in Nepal. Atmosphere 2022, 13, 1018. https://doi.org/10.3390/atmos13071018
Johnston JD, Beard JD, Novilla MLB, Weber FX, Chartier RT. PM2.5 Pollution Levels and Chemical Components at Teahouses along the Poon Hill Trek in Nepal. Atmosphere. 2022; 13(7):1018. https://doi.org/10.3390/atmos13071018
Chicago/Turabian StyleJohnston, James D., John D. Beard, M. Lelinneth B. Novilla, Frank X. Weber, and Ryan T. Chartier. 2022. "PM2.5 Pollution Levels and Chemical Components at Teahouses along the Poon Hill Trek in Nepal" Atmosphere 13, no. 7: 1018. https://doi.org/10.3390/atmos13071018
APA StyleJohnston, J. D., Beard, J. D., Novilla, M. L. B., Weber, F. X., & Chartier, R. T. (2022). PM2.5 Pollution Levels and Chemical Components at Teahouses along the Poon Hill Trek in Nepal. Atmosphere, 13(7), 1018. https://doi.org/10.3390/atmos13071018