Spatiotemporal Analysis of Extreme Rainfall and Meteorological Drought Events over the Angat Watershed, Philippines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Preliminary Data Analysis
- Class 1 (Useful), which rejects one or zero null hypothesis of the four tests. Under this category, the series is considered homogenous and can be used for further analysis.
- Class 2 (Doubtful), which rejects two null hypotheses of the four tests with indication of inhomogeneity in the series. Results of trend analysis should be critically inspected due to possible presence of inhomogeneities.
- Class 3 (Suspect), when three or all null hypotheses are rejected. In this category, the series lacks credibility. Rainfall series that fall under this category were compared to the nearby stations for cross-validation of the inhomogeneity of the series. Necessary adjustments to the identified break point/s were made.
2.2. Trend Analysis
2.3. Drought Analysis
2.3.1. Rainfall Deviation and Percent of Normal Rainfall Index
2.3.2. Standardized Precipitation Index (SPI)
2.4. The Teleconnection of El Niño–Southern Oscillation (ENSO)
3. Results and Discussion
3.1. Rainfall Characteristics
3.2. Trend Analysis of Seasonal and Annual Rainfall Series
3.3. Meteorological Drought Analysis in Angat Watershed
3.4. Correlation Analysis of Extreme Rainfall Indices and Drought Indices to ENSO
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ibañez, S.C.; Dajac, C.V.G.; Liponhay, M.P.; Legara, E.F.T.; Esteban, J.M.H.; Monterola, C.P. Forecasting Reservoir Water Levels Using Deep Neural Networks: A Case Study of Angat Dam in the Philippines. Water 2022, 14, 34. [Google Scholar] [CrossRef]
- Tansengco-Schapero, S.; Frauendorfer, R.; Van Klaveren, P.; Tan, N.; Bolt, R. Philippines: Water Supply and Sanitation Sector Assessment, Strategy, and Road Map; Asian Development Bank: Mandaluyong City, Philippines, 2013; ISBN 9789290929413. [Google Scholar]
- Tabios, G.Q.; De Leon, T.Z. Assessing the Philippine Irrigation Development Program. 2020. Available online: https://www.pids.gov.ph/publication/policy-notes/assessing-the-philippine-irrigation-development-program (accessed on 11 November 2023).
- Department of Energy (DOE). List of Existing Power Plants as of August 30, 2023. Available online: https://www.doe.gov.ph/electric-power/?q=list-existing-power-plants (accessed on 11 November 2023).
- Philippine Atmospheric Geophysical and Astronomical Services Administration (DOST-PAGASA); National Irrigation Administration (NIA); National Power Corporation (NPC). Flood Operation Rule for Angat Dam; Nippon Koei Co.; CTI Engineering Co.; Basic Technology and Management Corporation: 1987. Available online: https://www.pagasa.dost.gov.ph/flood (accessed on 31 October 2023).
- Jaranilla-Sanchez, P.A.; Koike, T.; Nyunt, C.T.; Rasmy, M.; Hasegawa, I.; Matsumura, A.; Ogawada, D. Hydrological Impacts of a Changing Climate on Floods and Droughts in Philippine River Basins. J. Jpn. Soc. Civ. Eng. 2013, 69, I_13–I_18. [Google Scholar] [CrossRef] [PubMed]
- Jaranilla-sanchez, P.A.; Shibuo, Y.; Koike, T. Optimization of Dam Operation for Maximizing Water Use and Flood Prevention: A Case of Angat Dam, Philippines. Internet J. Soc. Soc. Manag. Syst. 2014, 9. [Google Scholar]
- Gusyev, M.A.; Hasegawa, A.; Magome, J.; Kuribayashi, D.; Sawano, H.; Lee, S. Drought Assessment in the Pampanga River Basin, the Philippines—Part 1: Characterizing a Role of Dams in Historical Droughts with Standardized Indices. In Proceedings of the 21st International Congress on Modelling and Simulation, Gold Coast, Australia, 29 November–4 December 2015; Weber, T., McPhee, M.J., Anderssen, R.S., Eds.; Modelling and Simulation Society of Australia and New Zealand: Canberra, Australia, 2015; pp. 1586–1592, ISBN 978-0-9872143-5-5. [Google Scholar]
- Hasegawa, A.; Gusyev, M.; Ushiyama, T.; Magome, J.; Iwami, Y. Drought Assessment in the Pampanga River Basin, the Philippines—Part 2: A Comparative SPI Approach for Quantifying Climate Change Hazards. In Proceedings of the 21st International Congress on Modelling and Simulation, Gold Coast, Australia, 29 November–4 December 2015; Weber, T., McPhee, M.J., Anderssen, R.S., Eds.; Modelling and Simulation Society of Australia and New Zealand: Canberra, Australia, 2015; pp. 2388–2394, ISBN 978-0-9872143-5-5. [Google Scholar]
- Jose, A.M.; Sosa, L.M.; Cruz, N.A. Vulnerability Assessment of Angat Water Reservoir to Climate Change. Water Air Soil Pollut. 1996, 92, 191–201. [Google Scholar] [CrossRef]
- Jose, A.M.; Cruz, N. Climate Change Impacts and Responses in the Philippines: Water Resources. Clim. Res. 1999, 12, 77–84. [Google Scholar] [CrossRef]
- Chang, C.P.; Zhuo, W.; John, M.; Ching-Hwang, L. Annual Cycle of Southeast Asia—Maritime Continent Rainfall and the Asymmetric. J. Clim. 2005, 18, 287–301. [Google Scholar] [CrossRef]
- Lyon, B.; Cristi, H.; Verceles, E.R.; Hilario, F.D.; Abastillas, R. Seasonal Reversal of the ENSO Rainfall Signal in the Philippines. Geophys. Res. Lett. 2006, 33, 1–5. [Google Scholar] [CrossRef]
- Lyon, B.; Camargo, S.J. The Seasonally-Varying Influence of ENSO on Rainfall and Tropical Cyclone Activity in the Philippines. Clim. Dyn. 2009, 32, 125–141. [Google Scholar] [CrossRef]
- McPhaden, M.J.; Zebiak, S.E.; Glantz, M.H. ENSO as an Integrating Concept in Earth Science. Science 2006, 314, 1740–1745. [Google Scholar] [CrossRef]
- Stuecker, M.F.; Tigchelaar, M.; Kantar, M.B. Climate Variability Impacts on Rice Production in the Philippines. PLoS ONE 2018, 13, e0201426. [Google Scholar] [CrossRef]
- Delos Reyes, M.L.F.; David, W.P. The Effect of El Nino on Rice Production in the Philippines. Philipp. Agric. Sci. 2009, 92, 170–185. [Google Scholar]
- Lansigan, F.P.; Santos, W.L.D.L.; Coladilla, J.O. Agronomic Impacts of Climate Variability on Rice Production in the Philippines. Agric. Ecosyst. Environ. 2000, 82, 129–137. [Google Scholar] [CrossRef]
- Jaranilla-Sanchez, P.A.; Wang, L.; Koike, T. Modeling the Hydrologic Responses of the Pampanga River Basin, Philippines: A Quantitative Approach for Identifying Droughts. Water Resour. Res. 2011, 47, 1–21. [Google Scholar] [CrossRef]
- De Los Reyes, R.B.; David, W.P. Spatial and Temporal Effects of El Niño on Philippine Rainfall and Cyclones. Philipp. Agric. Sci. 2006, 89, 296–308. [Google Scholar]
- Sekhon, N.; David, C.P.C.; Geronia, M.C.M.; Custado, M.J.G.; Ibarra, D.E. Investigating the Response of Hydrological Processes to El Niño Events Using a 100-Year Dataset from the Western Pacific Ocean. J. Hydrol. Reg. Stud. 2022, 42, 101174. [Google Scholar] [CrossRef]
- Corporal-Lodangco, I.L.; Leslie, L.M.; Lamb, P.J. Impacts of ENSO on Philippine Tropical Cyclone Activity. J. Clim. 2016, 29, 1877–1897. [Google Scholar] [CrossRef]
- Cinco, T.A.; de Guzman, R.G.; Hilario, F.D.; Wilson, D.M. Long-Term Trends and Extremes in Observed Daily Precipitation and near Surface Air Temperature in the Philippines for the Period 1951–2010. Atmos. Res. 2014, 145, 12–26. [Google Scholar] [CrossRef]
- Villafuerte, M.Q.; Matsumoto, J.; Akasaka, I.; Takahashi, H.G.; Kubota, H.; Cinco, T.A. Long-Term Trends and Variability of Rainfall Extremes in the Philippines. Atmos. Res. 2014, 137, 1–13. [Google Scholar] [CrossRef]
- Matsumoto, J.; Olaguera, L.M.P.; Nguyen-Le, D.; Kubota, H.; Villafuerte, M.Q. Climatological Seasonal Changes of Wind and Rainfall in the Philippines. Int. J. Climatol. 2020, 40, 4843–4857. [Google Scholar] [CrossRef]
- Salvacion, A.R.; Magcale-Macandog, D.B.; Pompe, P.C.; Saludes, R.B.; Pangga, I.B.; Cumagun, C.J.R. Exploring Spatial Patterns of Trends in Monthly Rainfall and Temperature in the Philippines Based on Climate Research Unit Grid. Spat. Inf. Res. 2018, 26, 471–481. [Google Scholar] [CrossRef]
- Hong, J.; Agustin, W.; Yoon, S.; Park, J.S. Changes of Extreme Precipitation in the Philippines, Projected from the CMIP6 Multi-Model Ensemble. Weather Clim. Extrem. 2022, 37, 100480. [Google Scholar] [CrossRef]
- Cruz, F.T.; Narisma, G.T.; Villafuerte, M.Q.; Cheng Chua, K.U.; Olaguera, L.M. A Climatological Analysis of the Southwest Monsoon Rainfall in the Philippines. Atmos. Res. 2013, 122, 609–616. [Google Scholar] [CrossRef]
- Fernandez, C.G.P.; Tejada, A.J.T.; Ella, V.B. Temporal Trend Analysis of Annual, Maximum, and Seasonal Rainfall in Selected Weather Stations in Region IV-A, Philippines. Philipp. J. Sci. 2023, 152, 165–183. [Google Scholar]
- Cheong, W.K.; Timbal, B.; Golding, N.; Sirabaha, S.; Kwan, K.F.; Cinco, T.A.; Archevarahuprok, B.; Vo, V.H.; Gunawan, D.; Han, S. Observed and Modelled Temperature and Precipitation Extremes over Southeast Asia from 1972 to 2010. Int. J. Climatol. 2018, 38, 3013–3027. [Google Scholar] [CrossRef]
- Supari; Tangang, F.; Juneng, L.; Cruz, F.; Chung, J.X.; Ngai, S.T.; Salimun, E.; Mohd, M.S.F.; Santisirisomboon, J.; Singhruck, P.; et al. Multi-Model Projections of Precipitation Extremes in Southeast Asia Based on CORDEX-Southeast Asia Simulations. Environ. Res. 2020, 184, 109350. [Google Scholar] [CrossRef] [PubMed]
- Manton, M.J.; Della-Marta, P.M.; Haylock, M.R.; Hennessy, K.J.; Nicholls, N.; Chambers, L.E.; Collins, D.A.; Daw, G.; Finet, A.; Gunawan, D.; et al. Trends in Extreme Daily Rainfall and Temperature in Southeast Asia and the South Pacific: 1961–1998. Int. J. Climatol. 2001, 21, 269–284. [Google Scholar] [CrossRef]
- Singh, V.; Qin, X. Study of Rainfall Variabilities in Southeast Asia Using Long-Term Gridded Rainfall and Its Substantiation through Global Climate Indices. J. Hydrol. 2020, 585, 124320. [Google Scholar] [CrossRef]
- Hijioka, Y.; Lin, E.; Pereira, J.J.; Corlett, R.T.; Cui, X.; Insarov, G.E.; Lasco, R.D.; Lindgren, E.; Surjan, A. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects; Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; Cambridge University Press: New York, NY, USA, 2014; pp. 1327–1370. [Google Scholar]
- Endo, N.; Matsumoto, J.; Lwin, T. Trends in Precipitation Extremes over Southeast Asia. Sci. Online Lett. Atmos. 2009, 5, 168–171. [Google Scholar] [CrossRef]
- Shaw, R.; Luo, Y.; Cheong, T.S.; Halim, S.A.; Chaturvedi, S.; Hashizume, M.; Insarov, G.E.; Ishikawa, Y.; Jafari, M.; Kitoh, A.; et al. Asia.Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. In Climate Change 2022: Impacts, Adaptation and Vulnerability; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; Cambridge University Press: New York, NY, USA, 2022. [Google Scholar]
- Seneviratne, S.I.; Zhang, X.; Adnan, M.; Badi, W.; Dereczynski, C.; Luca, A.D.; Ghosh, S.; Iskandar, I.; Kossin, J.; Lewis, S.; et al. Weather and Climate Extreme Events in a Changing Climate. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; Cambridge University Press: New York, NY, USA, 2021; ISBN 9781009157896. [Google Scholar]
- Intergovernmental Panel on Climate Change. Climate Change 2021 the Physical Science Basis Summary for Policymakers Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2021; ISBN 9789291691586. [Google Scholar]
- World Meteorological Organization. Global Water Partnership Handbook of Drought Indicators and Indices. In Integrated Drought Management Tools and Guidelines Series 2; Svoboda, M.D., Fuchs, B.A., Eds.; WMO: Geneva, Switzerland; GWP: Geneva, Switzerland, 2016; pp. 155–208. ISBN 9789263111739. [Google Scholar]
- Department of Science and Technology—Philippine Atmospheric, Geophysical and Astronomical Services Administration (DOST-PAGASA). Climate Montly Monitoring Products. Available online: https://www.pagasa.dost.gov.ph/climate/climate-monthly-monitoring-products (accessed on 31 October 2023).
- Bouman, B.M.; Lampayan, R.M.; Tuong, T.P. Water Management in Irrigated Rice: Coping with Water Scarcity; International Rice Research Institute (IRRI): Los Baños, Philippines, 2007; ISBN 9789712202193. [Google Scholar]
- Torio, P.C.; Harris, L.M.; Angeles, L.C. The Rural–Urban Equity Nexus of Metro Manila’s Water System. Water Int. 2019, 44, 115–128. [Google Scholar] [CrossRef]
- Allis, E. Managing Competing Water Uses in the Philippines: Angat Reservoir. 2003. Available online: https://iri.columbia.edu/wp-content/uploads/2013/07/angat.pdf (accessed on 11 November 2023).
- Rola, A.C.; Elazegui, D.D. Role of Institution in Managing Agriculture-Related Climate Risks: Angat Reservoir Case Study, Bulacan, Philippines. J. Environ. Sci. Manag. 2008, 11, 26–39. [Google Scholar]
- Elazegui, D.D.; Rabang, M.J.M.; Rola, A.C. The Philippine Experience with El Nino 2009–2010: Policy and Institutional Responses; University of the Philippines Los Baños (UPLB): Laguna, Philippines, 2011. [Google Scholar]
- Corporal-Lodangco, I.L.; Leslie, L.M. Defining Philippine Climate Zones Using Surface and High-Resolution Satellite Data. Procedia Comput. Sci. 2017, 114, 324–332. [Google Scholar] [CrossRef]
- Ibarra, D.E.; David, C.P.C.; Tolentino, P.L.M. Technical Note: Evaluation and Bias Correction of an Observation-Based Global Runoff Dataset Using Streamflow Observations from Small Tropical Catchments in the Philippines. Hydrol. Earth Syst. Sci. 2021, 25, 2805–2820. [Google Scholar] [CrossRef]
- World Meteorological Organization. Guidelines on Climate Metadata and Homogenization (WMO-TD No.1186); WMO: Geneva, Switzerland, 2003. [Google Scholar]
- Wijngaard, J.B.; Klein Tank, A.M.G.; Können, G.P. Homogeneity of 20th Century European Daily Temperature and Precipitation Series. Int. J. Climatol. 2003, 23, 679–692. [Google Scholar] [CrossRef]
- World Meteorological Organization. Guidelines on Analysis of Extremes in a Changing Climate in Support of Informed Decisions for Adaptation (WMO-TD No. 1500); Klein Tank, A.M.G., Zwiers, F.W., Zhang, X., Eds.; WMO: Geneva, Switzerland, 2009. [Google Scholar]
- Mann, H.B. Non-Parametric Test Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Stuart, A. Rank Correlation Methods. By M. G. Kendall, 2nd edition. Br. J. Stat. Psychol. 1956, 9, 68. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- World Meteorological Organization. Guidelines on the Calculation of Climate Normals (WMO-No. 1203). ISBN 9789263112033. 2017. Available online: https://library.wmo.int/viewer/55797?medianame=1203_en_#page=4&viewer=picture&o=bookmark&n=0&q= (accessed on 11 November 2023).
- McKee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scale. In Proceedings of the AMS 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 179–184. [Google Scholar]
- Hayes, M.; Svoboda, M.; Wall, N.; Widhalm, M. The Lincoln Declaration on Drought Indices: Universal Meteorological Drought Index Recommended. Bull. Am. Meteorol. Soc. 2011, 92, 485–488. [Google Scholar] [CrossRef]
- World Meteorological Organization. Standardized Precipitation Index User Guide (WMO-No. 1090); WMO: Geneva, Switzerland, 2012; ISBN 978-92-63-11091-6. [Google Scholar]
- Thom, H.C.S. A Note on the Gamma Distribution. Mon. Weather Rev. 1958, 86, 117–122. [Google Scholar] [CrossRef]
- Thomas, J.; Prasannakumar, V. Temporal Analysis of Rainfall (1871–2012) and Drought Characteristics over a Tropical Monsoon-Dominated State (Kerala) of India. J. Hydrol. 2016, 534, 266–280. [Google Scholar] [CrossRef]
- Salameh, A.A.M.; Ojeda, M.G.V.; Esteban-Parra, M.J.; Castro-Díez, Y.; Gámiz-Fortis, S.R. Extreme Rainfall Indices in Southern Levant and Related Large-Scale Atmospheric Circulation Patterns: A Spatial and Temporal Analysis. Water 2022, 14, 3799. [Google Scholar] [CrossRef]
- Quan, N.T.; Khoi, D.N.; Hoan, N.X.; Phung, N.K.; Dang, T.D. Spatiotemporal Trend Analysis of Precipitation Extremes in Ho Chi Minh City, Vietnam During 1980–2017. Int. J. Disaster Risk Sci. 2021, 12, 131–146. [Google Scholar] [CrossRef]
- Basconcillo, J.Q.; Duran, G.A.W.; Francisco, A.A.; Abastillas, R.G.; Hilario, F.D.; Juanillo, E.L.; Solis, A.L.S.; Lucero, A.J.R.; Maratas, S.-L.A. Evaluation of Spatial Interpolation Techniques for Operational Climate Monitoring in the Philippines. Sola 2017, 13, 114–119. [Google Scholar] [CrossRef]
- Villafuerte, M.I.Q.; Lambrento, J.C.R.; Ison, C.M.S.; Vicente, A.A.S.; de Guzman, R.G.; Juanillo, E.L. ClimDatPh: An Online Platform for Philippine Climate Data Acquisition. Philipp. J. Sci. 2021, 150, 53–66. [Google Scholar] [CrossRef]
- Yatagai, A.; Kamiguchi, K.; Arakawa, O.; Hamada, A.; Yasutomi, N.; Kitoh, A. Aphrodite Constructing a Long-Term Daily Gridded Precipitation Dataset for Asia Based on a Dense Network of Rain Gauges. Bull. Am. Meteorol. Soc. 2012, 93, 1401–1415. [Google Scholar] [CrossRef]
- Huffman, G.; Bolvin, D. TRMM and Other Data Precipitation Data Set Documentation. Available online: https://gpm.nasa.gov/sites/default/files/document_files/3B42_3B43_doc_V7_180426.pdf (accessed on 11 November 2023).
- Faiz, M.A.; Zhang, Y.; Ma, N.; Baig, F.; Naz, F.; Niaz, Y. Drought Indices: Aggregation Is Necessary or Is It Only the Researcher’s Choice? Water Supply 2021, 21, 3987–4002. [Google Scholar] [CrossRef]
- Metropolitan Waterworks and Sewerage System (MWSS). Sumag River Diversion Project. Available online: https://mwss.gov.ph/projects/sumag-river-diversion-project/sumag-river-diversion-project/ (accessed on 11 November 2023).
- United Nations Convention to Combat Desertification National Drought Plan for the Philippines. Available online: https://www.droughtmanagement.info/drought-policies-and-plans/ (accessed on 11 November 2023).
- Philippine Atmospheric Geophysical and Astronomical Services Administration (DOST-PAGASA). Southeast Asia Climate Monitoring Project. Available online: https://seacm.pagasa.dost.gov.ph/ (accessed on 11 November 2023).
- Valete, M.A.P.; Perez, G.J.P.; Enricuso, O.B.; Comiso, J.C. Spatiotemporal Evaluation of Historical Drought in the Philippines. In Proceedings of the 40th Asian Conference on Remote Sensing (ACRS 2019); Progress of Remote Sensing Technology for Smart Future, Daejeon, Republic of Korea, 14–18 October 2019; Curran Associates, Inc.: New York, NY, USA, 2020; Volume V, pp. 1–8. [Google Scholar]
- Anandharuban, P.; Elango, L. Spatio-Temporal Analysis of Rainfall, Meteorological Drought and Response from a Water Supply Reservoir in the Megacity of Chennai, India. J. Earth Syst. Sci. 2021, 130, 17. [Google Scholar] [CrossRef]
- Lorenzo-Lacruz, J.; Vicente-Serrano, S.M.; López-Moreno, J.I.; Beguería, S.; García-Ruiz, J.M.; Cuadrat, J.M. The Impact of Droughts and Water Management on Various Hydrological Systems in the Headwaters of the Tagus River (Central Spain). J. Hydrol. 2010, 386, 13–26. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Zabalza-Martínez, J.; Borràs, G.; López-Moreno, J.I.; Pla, E.; Pascual, D.; Savé, R.; Biel, C.; Funes, I.; Azorin-Molina, C.; et al. Extreme Hydrological Events and the Influence of Reservoirs in a Highly Regulated River Basin of Northeastern Spain. J. Hydrol. Reg. Stud. 2017, 12, 13–32. [Google Scholar] [CrossRef]
- Liao, W.; Fan, Y.; Zhu, S.; Huang, Y.; Lv, Y. Monthly Variations of the Winter Precipitation over the Philippines During the Mature Phase of Eastern Pacific El Niño. Front. Earth Sci. 2021, 8, 625455. [Google Scholar] [CrossRef]
Station | Climate Type * | Elevation (m AMSL) | Temporal Duration | No. of Years | % Missing Values |
---|---|---|---|---|---|
Maputi | III | 557.99 | 1987–2021 | 35 | 22.67 |
Talaguio | I | 644.38 | 1987–2021 | 35 | 7.07 |
Matulid | III | 494.33 | 1987–2021 | 35 | 19.54 |
Angat | I | 323.55 | 1987–2021 | 35 | - |
Umiray | IV | 258.69 | 2022–2021 | 20 | 3.11 |
Index | Definition * | Units |
---|---|---|
PCPTOT | Total amount of rainfall in wet days | mm |
RX1day | Maximum 1-day rainfall | mm |
RX5day | Maximum 5-day rainfall | mm |
CDD | Maximum length of dry days | day |
CWD | Maximum length of wet days | day |
R10mm | Count of days when rainfall ≥ 10 mm | day |
R20mm | Count of days when rainfall ≥ 20 mm | day |
R75mm | Count of days when rainfall ≥ 75 mm | day |
Classification | Criteria |
---|---|
Drought |
|
Dry Spell |
|
Dry Condition |
|
Station | Timeseries | Classification | Pettitt’s Test | SNHT | Buishand’s Test | Von Neumann’s |
---|---|---|---|---|---|---|
Angat | January | Doubtful | 2006 | 2021 | 2006 | 0.2141 |
Maputi | January | Doubtful | 2010 | 2017 | 2010 | 0.0492 |
Matulid | January | Doubtful | 1999 | 1999 | 1999 | 0.2437 |
Matulid | March | Doubtful | 1999 | 1999 | 1999 | 0.0127 |
Matulid | February | Suspect | 2000 | 2000 | 2000 | 0.0801 |
Matulid | DJF | Suspect | 1999 | 1999 | 1999 | 0.0582 |
Station | PCI | SI | CV | PCPTOT | RX1day | RX5day | CDD | CWD | R10mm | R20mm | R75mm |
---|---|---|---|---|---|---|---|---|---|---|---|
Angat | 15.56 | 0.76 | 0.19 | 2619 | 177 | 334 | 37 | 20 | 66 | 40 | 5 |
Maputi | 12.70 | 0.58 | 0.23 | 3919 | 224 | 409 | 16 | 34 | 95 | 55 | 8 |
Matulid | 13.93 | 0.65 | 0.26 | 3734 | 238 | 444 | 21 | 27 | 88 | 53 | 9 |
Talaguio | 14.78 | 0.72 | 0.21 | 3067 | 229 | 402 | 24 | 25 | 71 | 44 | 6 |
Umiray | 12.71 | 0.54 | 0.16 | 5478 | 272 | 538 | 15 | 31 | 127 | 78 | 15 |
PCIannual | Classification | Angat | Maputi | Matulid | Talaguio | Umiray |
---|---|---|---|---|---|---|
<10 | Uniform | - | - | 2.86 | - | 4.76 |
10–15 | Moderate | 48.57 | 88.57 | 68.57 | 60.00 | 80.95 |
16–20 | Irregular | 42.86 | 11.43 | 28.57 | 37.14 | 14.29 |
>20 | Strongly Irregular | 8.57 | - | - | 2.86 | - |
Time Scale | Station | PCPTOT | RX1day | RX5day | CWD | CDD | R10mm | R20mm | R75mm |
---|---|---|---|---|---|---|---|---|---|
Annual | Angat | 13.07 | 0.66 | 2.27 | 0.1 | −0.27 ** | 0.33 ** | 0.13 | 0.08 |
Maputi | 31.83 ** | 0.58 | 2.32 | 0.2 | 0 | 0.86 * | 0.58 * | 0.09 ** | |
Matulid | 7.44 | −0.89 | 0.44 | −0.47 * | −0.04 | 0.05 | 0.14 | 0 | |
Talaguio | 3.87 | 0.44 | 0.32 | −0.04 | −0.11 | 0.25 | 0.11 | −0.06 | |
Umiray | 40.85 | −4.61 | −5.07 | 0.37 | −0.33 | 1.44 * | 1 * | 0.08 | |
Amihan | Angat | 7.35 * | 1.1 * | 2.3 ** | 0.05 | −0.5 * | 0.17 * | 0.1 * | 0 |
Season | Maputi | 16.48 * | 2.69 * | 4.09 | 0.15 * | −0.04 | 0.38 * | 0.28 * | 0 |
Matulid | 19.41 * | 2.52 * | 5.59* | −0.13 | −0.13 | 0.42 * | 0.29 * | 0 | |
Talaguio | 7.26 * | 1.07 | 2.28 | 0 | 0 | 0.2 * | 0.09 * | 0 | |
Umiray | 64.28 * | 6.92 * | 16.78 * | 0.37 | −0.07 | 1.09 * | 0.79 | 0.33 * | |
Summer | Angat | 2.29 | 0.43 | −0.18 | 0 | 0.04 | 0.05 | 0 | 0 |
Season | Maputi | −2.11 | 0 | −1.25 | 0.06 | 0 | 0 | −0.04 | 0 |
Matulid | 3.96 | 0.72 | 0.6 | 0 | −0.1 | 0.06 | 0 | 0 | |
Talaguio | 0.05 | −0.65 | −0.79 | 0.03 | 0 | 0.05 | 0 | 0 | |
Umiray | 3.56 | 1.09 | −0.33 | 0 | −0.25 | 0.36 | 0 | 0 | |
Habagat | Angat | 2.37 | 0.7 | 1.46 | 0.11 | 0 | 0.08 | 0.06 | 0 |
Season | Maputi | 1.29 | −0.45 | −0.17 | 0 | 0 | 0.16 | 0.1 | 0 |
Matulid | −10.75 | −0.64 | −1 | 0 | 0.04 | −0.26 | −0.13 | 0 | |
Talaguio | −0.14 | 0.22 | −0.71 | 0.18 | 0 | 0.04 | 0 | 0 | |
Umiray | 1.52 | −0.41 | −2.03 | 0.43 ** | 0 | 0.19 | −0.18 | 0 | |
Monsoon | Angat | −1.04 | −0.33 | 0.86 | −0.08 | −0.05 | −0.04 | −0.04 | 0 |
Transition | Maputi | 14.27 | 1.18 | 3.33 | 0.14 | 0 | 0.33 * | 0.25 * | 0.08 * |
Season | Matulid | −0.76 | −1 | 0.38 | −0.17 ** | 0 | 0 | 0 | 0 |
Talaguio | −6.31 | 0.57 | 1.16 | -0.15 ** | 0 | -0.07 | -0.06 | 0 | |
Umiray | −14.03 | −8.27 | −7.2 | 0.14 | 0 | 0.29 | 0.17 | 0 |
Start | End | Duration | Magnitude | Intensity | Type | Interval | |
---|---|---|---|---|---|---|---|
SPI-3 | |||||||
1988-Jul ** | - | 1989-Feb ** | 8 | 8.60 | 1.08 | Extreme | - |
1989-Nov | - | 1990-Mar | 5 | 6.33 | 1.27 | Severe | 9 |
1990-Nov | - | 1991-May * | 7 | 8.14 | 1.16 | Severe | 8 |
1991-Oct* | - | 1992-Jul | 10 | 12.71 | 1.27 | Severe | 5 |
1992-Dec | - | 1993-Nov | 12 | 18.16 | 1.51 | Extreme | 5 |
1997-Jan | - | 1997-Apr | 4 | 2.26 | 0.57 | Moderate | 38 |
1997-Aug * | - | 1999-Jan ** | 18 | 18.86 | 1.05 | Extreme | 4 |
2000-Oct ** | - | 2000-Nov ** | 2 | 2.19 | 1.09 | Severe | 21 |
2002-May | - | 2002-Jun * | 2 | 1.50 | 0.75 | Mild | 18 |
2004-Apr | - | 2004-Jul * | 4 | 5.45 | 1.36 | Extreme | 22 |
2005-Feb * | - | 2005-Nov ** | 10 | 9.59 | 0.96 | Severe | 7 |
2008-Feb ** | - | 2008-Apr ** | 3 | 2.37 | 0.79 | Severe | 27 |
2009-Dec * | - | 2010-Nov ** | 12 | 8.67 | 0.72 | Severe | 20 |
2013-Dec | - | 2015-Feb * | 15 | 8.68 | 0.58 | Extreme | 37 |
2015-May * | - | 2015-Sep * | 5 | 2.53 | 0.51 | Mild | 3 |
2016-Mar * | - | 2016-Oct ** | 8 | 7.95 | 0.99 | Severe | 6 |
2020-Aug ** | - | 2020-Sep ** | 2 | 2.05 | 1.03 | Moderate | 46 |
2021-May ** | - | 2021-Jul | 3 | 3.32 | 1.11 | Severe | 8 |
SPI-6 | |||||||
1988-Jul ** | - | 1989-Feb ** | 8 | 10.25 | 1.28 | Extreme | - |
1989-Dec | - | 1990-May | 6 | 6.05 | 1.01 | Severe | 10 |
1990-Dec | - | 1991-Aug * | 9 | 6.96 | 0.77 | Severe | 7 |
1991-Oct* | - | 1992-Jul | 10 | 13.07 | 1.31 | Extreme | 2 |
1993-Feb | - | 1994-Jan | 12 | 17.88 | 1.49 | Extreme | 7 |
1997-Apr | - | 1999-Mar ** | 24 | 27.68 | 1.15 | Extreme | 39 |
2004-May | - | 2004-Oct * | 6 | 4.90 | 0.82 | Moderate | 62 |
2005-May | - | 2006-Jan ** | 9 | 10.69 | 1.19 | Extreme | 7 |
2009-Dec* | - | 2011-Jan ** | 14 | 9.29 | 0.66 | Severe | 60 |
2014-Feb | - | 2015-Nov * | 22 | 14.01 | 0.64 | Moderate | 37 |
2016-Jun | - | 2016-Dec ** | 7 | 9.13 | 1.30 | Severe | 7 |
SPI-12 | |||||||
1988-Aug ** | - | 1989-Jul | 12 | 10.63 | 0.89 | Moderate | - |
1991-May* | - | 1992-Oct | 18 | 17.84 | 0.99 | Extreme | 23 |
1993-Apr | - | 1994-Jul | 16 | 14.56 | 0.91 | Extreme | 7 |
1997-Oct* | - | 1999-Jul ** | 22 | 37.08 | 1.69 | Extreme | 40 |
2005-Jul | - | 2006-Jul | 13 | 9.39 | 0.72 | Severe | 73 |
2010-May | - | 2011-Apr ** | 12 | 7.97 | 0.66 | Severe | 47 |
2014-Aug | - | 2017-Apr | 33 | 23.30 | 0.71 | Moderate | 41 |
Index | Season | |||
Amihan Monsoon | Summer | Habagat Monsoon | Monsoon Transition | |
Extreme Rainfall Index | ||||
PCPTOT | −0.42 * | −0.52 * | 0.11 | −0.46 * |
RX1day | 0.02 | −0.13 | 0.17 | −0.25 |
RX5day | −0.07 | −0.23 | 0.09 | −0.27 |
CWD | −0.36 * | −0.51 * | −0.08 | −0.23 |
CDD | 0.13 | 0.36 * | −0.14 | 0.51 * |
R10mm | −0.44 * | −0.4 * | 0.25 | −0.59 * |
R20mm | −0.56 * | −0.4 * | 0.14 | −0.46 * |
R75mm | −0.43 * | −0.16 | 0.12 | −0.56 * |
Meteorological Drought Index | ||||
PNRI | −0.45 * | −0.55 * | 0.09 | −0.45 * |
%DEV | −0.45 * | −0.55 * | 0.09 | −0.45 * |
SPI-3 | −0.55 * | −0.62 * | 0.04 | −0.24 |
SPI-6 | −0.56 * | −0.69 * | −0.05 | −0.08 |
SPI-12 | −0.40 * | −0.53 * | −0.06 | −0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tejada, A.T., Jr.; Sanchez, P.A.J.; Faderogao, F.J.F.; Gigantone, C.B.; Luyun, R.A., Jr. Spatiotemporal Analysis of Extreme Rainfall and Meteorological Drought Events over the Angat Watershed, Philippines. Atmosphere 2023, 14, 1790. https://doi.org/10.3390/atmos14121790
Tejada AT Jr., Sanchez PAJ, Faderogao FJF, Gigantone CB, Luyun RA Jr. Spatiotemporal Analysis of Extreme Rainfall and Meteorological Drought Events over the Angat Watershed, Philippines. Atmosphere. 2023; 14(12):1790. https://doi.org/10.3390/atmos14121790
Chicago/Turabian StyleTejada, Allan T., Jr., Patricia Ann J. Sanchez, Francis John F. Faderogao, Catherine B. Gigantone, and Roger A. Luyun, Jr. 2023. "Spatiotemporal Analysis of Extreme Rainfall and Meteorological Drought Events over the Angat Watershed, Philippines" Atmosphere 14, no. 12: 1790. https://doi.org/10.3390/atmos14121790
APA StyleTejada, A. T., Jr., Sanchez, P. A. J., Faderogao, F. J. F., Gigantone, C. B., & Luyun, R. A., Jr. (2023). Spatiotemporal Analysis of Extreme Rainfall and Meteorological Drought Events over the Angat Watershed, Philippines. Atmosphere, 14(12), 1790. https://doi.org/10.3390/atmos14121790