A New Post-Processing Method for Improving Track and Rainfall Ensemble Forecasts for Typhoons over Eastern China
Abstract
:1. Introduction
2. Data and Methodology
2.1. Data
2.2. Methodology
2.2.1. Three EMOMs for Typhoon Track
2.2.2. Neighborhood Method for Rainfall Forecast
2.2.3. Typhoon Rainfall Correction
- (1)
- Step 1: Calculate the distance Dis(LE − L0) between typhoon track from CMA L0 and track from low-resolution ensemble forecast LE. L0 represents the objective real-time typhoon position in EMOM_OP, the subjective track forecast in EMOM_SF, or the track constructed by objective real-time typhoon position and subjective track forecast in EMOM_OPSF. LE represents track forecast from EC_EPS, NCEP_EPS, or multi-model EPS;
- (2)
- Step 2: Sort the distance Dis(LE − L0) by increasing order and average the leading N members to compose a new track forecast F (F = AVE{Min|Dis(LE − L0)|N}). According to the calculation of F in 2014–2018 typhoons, N is chosen so that it provides the smallest distance error of F;
- (3)
- Step 3: Based on the selected number (N) of ensemble members, according to the best EMOM, the low-resolution rainfall ensemble forecast RL(iel, itl, ip) is constructed;
- (4)
- Step 4: Depending on the WARMS performance within 6 h before the forecast time, the best range is determined for the neighborhood method in order to transform WARMS to WARMS_EPS. And then, the high-resolution rainfall probability forecast RH(ith, ip) is obtained;
- (5)
- Step 5: Perform probability matching using the rainfall pattern and the rainfall frequency distribution. Thus, the probability-matching rainfall field RNEWEN(it, ip) is constructed.
2.2.4. Evaluation Method for Forecast Performance
3. Results
3.1. Ensemble Forecasting Performance Based on Ensemble Member Optimization Methods
3.2. Probability Forecast (WARMS_EPS) Based on the Neighborhood Method
3.3. Rainfall Forecast Performance after Application of Probability Matching
4. Case Study: Typhoon Lekima (No. 1909)
4.1. Overview of Typhoon Lekima
4.2. Typhoon Track and Rainfall Performance Based on EMOM_OPSF
4.3. Performance of the Probability-Matching Rainfall Forecasts
5. Case Study Typhoon Rumbia (No. 1818)
6. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xue, J.-j.; Li, J.-y.; Zhang, L.-s.; Wang, X.-r.; Xu, Y.-l. Characteristics of typhoon disasters in China and risk prevention strategies. Res. Meteorol. Disaster Reduct. 2012, 35, 62–67. [Google Scholar]
- Chen, J.; Chen, D.; Yan, H. A brief review on the development of ensemble prediction system. J. Appl. Meteor. Sci. 2002, 13, 497–507. [Google Scholar]
- Ma, J.-H.; Zhu, Y.-J.; Wang, P.-X.; Duan, M.-K. A Review on the developments of NCEP, ECMWF and CMC global ensemble forecast system. Trans. Atmos. Sci. 2011, 34, 370–380. [Google Scholar]
- Du, J.; Chen, J. The Corner Stone in Facilitating the Transition from Deterministic to Probabilistic Forecasts-Ensemble Forecasting and Its Impact on Numerical Weather Prediction. Meteor. Mon. 2010, 36, 1–11. [Google Scholar]
- Aberson, S.D.; Bender, M.A.; Tuleya, R.E. Ensemble forecasting of tropical cyclone tracks. Ensemble forecasting of tropical cyclone tracks. In Proceedings of the 12th Conference on Numerical Weather Prediction, Phoenix, Arizona, 11–16 January 1998; pp. 290–292. [Google Scholar]
- Aberson, S.D.; Bender, M.A.; Tuleya, R.E. Ensemble forecasting of tropical cyclone intensity. In Proceedings of the Symposium on Tropical Cyclone Intensity Change, Phoenix, Arizona, 11–16 January 1998; pp. 150–153. [Google Scholar]
- Goerss, J.S. Tropical cyclone track forecasts using an ensemble of dynamical models. Mon. Wea Rev. 2000, 128, 1187–1193. [Google Scholar] [CrossRef]
- Barkmeijer, J.; Buizza, R.; Palmer, T.N.; Puri, K.; Mahfouf, J.-F. Tropical singular vectors computed with linearized diabatic physics. Q. J. R. Meteorol. Soc. 2001, 127, 685–708. [Google Scholar] [CrossRef]
- Puri, K.; Barkmeijer, J.; Palmer, T.N. Ensemble prediction of tropical cyclones using targeted diabatic singular vectors. Q. J. R. Meteorol. Soc. 2001, 127, 709–731. [Google Scholar] [CrossRef]
- Zhang, Z.; Krishnamurti, T.N. Ensemble forecasting of hurricane tracks. Bull. Amer. Meteor. Soc. 1997, 78, 2785–2795. [Google Scholar] [CrossRef]
- Zhang, F.; Weng, Y.; Kuo, Y.H.; Whitaker, J.S.; Xie, B. Predicting typhoon Morakot’s catastrophic rainfall with a convection-permitting mesoscale ensemble system. Weather. Forecast. 2010, 25, 1816–1825. [Google Scholar] [CrossRef]
- Shen, F.; Min, J.; Xu, D. Assimilation of radar radial velocity data with the WRF Hybrid ETKF-3DVAR system for the prediction of Hurricane Ike (2008). Atmos. Res. 2016, 169 Pt A, 127–138. [Google Scholar] [CrossRef]
- Shen, F.; Xue, M.; Min, J. A comparison of limited-area 3DVAR and ETKF-En3DVAR data assimilation using radar observations at convective scale for the prediction of Typhoon Saomai (2006). Meteorol. Appl. 2017, 24, 628–641. [Google Scholar] [CrossRef]
- Shen, F.; Xu, D.; Xue, M.; Min, J. A comparison between EDA-EnVar and ETKF-EnVar data assimilation techniques using radar observations at convective scales through a case study of Hurricane Ike (2008). Meteorol. Atmos. Phys. 2018, 130, 649–666. [Google Scholar] [CrossRef]
- Shen, F.; Xu, D.; Min, J. Effect of momentum control variables on assimilating radar observations for the analysis and forecast for Typhoon Chanthu (2010). Atmos. Res. 2019, 230, 104622. [Google Scholar] [CrossRef]
- Shen, F.; Song, L.; He, Z.; Xu, D.; Chen, J.; Huang, L. Impacts of adding hydrometeor control variables on the radar reflectivity data assim-ilation for the 6–8 August 2018 mesoscale convective system case. Atmos. Res. 2023, 295, 107012. [Google Scholar] [CrossRef]
- Xu, D.; Shu, A.; Li, H.; Shen, F.; Li, Q.; Su, H. Effects of Assimilating Clear-Sky FY-3D MWHS2 Radiance on the Numerical Simulation of Tropical Storm Ampil. Remote Sens. 2021, 13, 2873. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, X.; Li, H.; Wu, H.; Shen, F.; Shu, A.; Wang, Y.; Zhuang, X. Evaluation of the Simulation of Typhoon Lekima (2019) Based on Different Physical Parameterization Schemes and FY-3D Satellite’s MWHS-2 Data Assimilation. Remote Sens. 2021, 13, 4556. [Google Scholar] [CrossRef]
- Shu, A.; Shen, F.; Jiang, L.; Zhang, T.; Xu, D. Assimilation of Clear-sky FY-4A AGRI radiances within the WRFDA system for the prediction of a landfalling Typhoon Hagupit (2020). Atmos. Res. 2023, 283, 106556. [Google Scholar] [CrossRef]
- Xu, D.; Liu, Z.; Huang, X.Y.; Min, J.; Wang, H. Impact of assimilating IASI radiance observations on forecasts of two tropical cyclones. Meteorol. Atmos. Phys. 2013, 122, 1–18. [Google Scholar] [CrossRef]
- Xu, D.; Min, J.; Shen, F.; Ban, J.; Chen, P. Assimilation of MWHS radiance data from the FY–3B satellite with the WRF Hybrid–3DVAR system for the forecasting of binary typhoons. Adv. Model. Earth Sys. 2016, 8, 1014–1028. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, X.; Liu, Z.; Shen, F. All-sky infrared radiance data assimilation of FY-4A AGRI with different physical parameterizations for the prediction of an extremely heavy rainfall event. Atmos. Res. 2023, 293, 106898. [Google Scholar] [CrossRef]
- Du, J.; Li, J. Application of ensemble methodology to heavy-rain research and prediction. Adv. Meteorol. Sci. Technol. 2014, 4, 15. [Google Scholar]
- Qian, Q.; Zhang, C.; Gao, S.; Lin, Z.; Lin, D. Real-time correction method for ensemble forecasting of typhoon tracks. J. Trop. Meteorol. 2014, 30, 905–910. [Google Scholar]
- Chen, B.Y.; Dai, K.; Tang, J.; Guo, Y.; Qian, Q. Research and application experiment on post-processing technology of typhoon rain-storm forecast based on multi-model QPF fusion. Meteor. Mon. 2020, 46, 1261–1271. [Google Scholar]
- Fang, X.; Kuo, Y.H. Improving Ensemble-Based Quantitative Precipitation Forecasts for Topography-Enhanced Typhoon Heavy Rainfall over Taiwan with a Modified Probability-Matching Technique. Mon. Weather. Rev. 2013, 141, 3908–3932. [Google Scholar] [CrossRef]
- Theis, S.; Hense, A.; Damrath, U. Probabilistic precipitation forecasts from a deterministic model: A pragmatic approach. Meteor. Appl. 2005, 12, 257–268. [Google Scholar] [CrossRef]
- Zadeh, L. Fuzzy sets. Inf. Control. 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Schwartz, C.S.; Kain, J.S.; Weiss, S.J.; Xue, M.; Bright, D.R.; Kong, F.; Thomas, K.W.; Levit, J.J.; Coniglio, M.C.; Wandishin, M.S. Toward improved convection allowing ensembles: Model physics sensitivities and optimizing probabilistic guidance with small ensemble membership. Weather Forecast 2010, 25, 263–280. [Google Scholar] [CrossRef]
- Sokol, Z.; Mejsnar, J.; Pop, L.; Bližnák, V. Probabilistic precipitation nowcasting based on an extrapolation of radar reflectivity and an ensemble approach. Atmos. Res. 2017, 194, 245–257. [Google Scholar] [CrossRef]
- Linyi, L.; Xinmin, W.; Han, L. Verification and Analysis of SMS-WARMS Forecast for “7·19” Extraordinary Rainstorm in Henan Province. Meteorol. Environ. Sci. 2019, 42, 101–109. [Google Scholar]
- Han, S.; Shi, C.X.; Xu, B.; Sun, S.; Zhang, T.; Jiang, L.; Liang, X. Development and evaluation of hourly and kilometer resolution retrospective and realtime surface meteorological blended forcing dataset (SMBFD) in China. J. Meteor. Res. 2019, 33, 1168–1181. [Google Scholar] [CrossRef]
- Shi, C.X.; Xie, Z.H.; Qian, H.; Liang, M.L.; Yang, X.C. China land soil moisture EnKF data assimilation based on satellite remote sensing data. Sci. China Earth Sci. 2011, 54, 1430–1440. [Google Scholar] [CrossRef]
- Ebert, E.E. Ability of a poor man’s ensemble to predict the probability and distribution of precipitation. Mon. Weather Rev. 2001, 129, 2461–2480. [Google Scholar] [CrossRef]
- Accadia, C.; Mariani, S.; Casaioli, M.; Lavagnini, A.; Speranza, A. Verification of precipitation forecasts from two limited area models over Italy and comparison with ECMWF forecasts using a resampling technique. Weather Forecast 2005, 20, 276–300. [Google Scholar] [CrossRef]
- Anthes, R.A.; Kuo, Y.-H.; Hsie, E.-Y.; Low-Nam, S.; Bettge, T.W. Estimation of skill and uncertainty in regional numerical models. Quart. J. R. Meteor. Soc. 1989, 115, 763–806. [Google Scholar] [CrossRef]
- Brier, G.W. Verification of forecasts expressed in terms of probability. Mon. Weather Rev. 1950, 78, 1–3. [Google Scholar] [CrossRef]
- Liu, C.; Deng, H.Q.; Qiu, X.X.; Zheng, L.; Lu, Y.; Zhang, Y. Improving precipitation ensemble forecasts of typhoon heavy rainfall over East China with a modified probability-matching technique. Bulletion Atmos. Sci. Technol. 2022, 3, 4. [Google Scholar] [CrossRef]
- Clark, A.J. Generation of ensemble mean precipitation forecasts from convection-allowing ensembles. Weather Forecasting 2017, 32, 1569–1583. [Google Scholar] [CrossRef]
- Qiao, X.; Wang, S.; Schwartz, C.S.; Liu, Z.; Min, J. A method for probability matching based on the ensemble maximum for quantitative precipitation forecasts. Mon. Weather Rev. 2020, 148, 3379–3396. [Google Scholar] [CrossRef]
Typhoon Number | Rainfall Period Studied | Typhoon Name |
---|---|---|
201410 | 22–25 July 2014 | MATMO |
201513 | 7–11 August 2015 | SOUDELOR |
201521 | 28 September–2 October 2015 | DUJUAN |
201614 | 14–17 September 2016 | MERANTI |
201617 | 27 September–1 October 2016 | MEGI |
201622 | 20–22 October 2016 | HAIMA |
201710 | 29 July–4 August 2017 | HAITANG |
201814 | 11–17 August 2018 | YAGI |
201818 | 16–20 August 2018 | RUMBIA |
201909 | 9–11 August 2019 | LEKIMA |
EC_EPS | NCEP_EPS | |
---|---|---|
Model resolution | TL669L91 | T254L28 |
Vertical levels | 62 | 28 |
Initial time (UTC) | 0000; 1200 | 0000; 0600; 1200; 1800 |
Ensemble size | 51 | 21 |
Scheme Name | New Forecast Type | Rainfall Pattern Adjustment | Rainfall Frequency Adjustment |
---|---|---|---|
S1 | deterministic | AVE[RL(iel, itl, ip)] | RH(itl, ip) |
S2 | deterministic | AVE[0.5 RL(iel, itl, ip) + 0.5 WRH(ith, ip)] | RH(itl, ip) |
Beginning Time | At 20:00 on the 8th | At 8:00 on the 9th | At 20:00 on the 9th | At 8:00 on the 10th | At 20:00 on the 10th | At 8:00 on the 11th | At 20:00 on the 11th | |
---|---|---|---|---|---|---|---|---|
Threshold (unit: mm/6 h) | ||||||||
0.1 | 330 | 550 | 1000 | 495 | 330 | 600 | 600 | |
5 | 330 | 660 | 1000 | 440 | 330 | 275 | 600 | |
10 | 385 | 600 | 1200 | 550 | 330 | 330 | 600 | |
25 | 385 | 600 | 1200 | 600 | 600 | 330 | 600 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Deng, H.; Qiu, X.; Lu, Y.; Li, J. A New Post-Processing Method for Improving Track and Rainfall Ensemble Forecasts for Typhoons over Eastern China. Atmosphere 2024, 15, 874. https://doi.org/10.3390/atmos15080874
Liu C, Deng H, Qiu X, Lu Y, Li J. A New Post-Processing Method for Improving Track and Rainfall Ensemble Forecasts for Typhoons over Eastern China. Atmosphere. 2024; 15(8):874. https://doi.org/10.3390/atmos15080874
Chicago/Turabian StyleLiu, Chun, Hanqing Deng, Xuexing Qiu, Yanyu Lu, and Jiayun Li. 2024. "A New Post-Processing Method for Improving Track and Rainfall Ensemble Forecasts for Typhoons over Eastern China" Atmosphere 15, no. 8: 874. https://doi.org/10.3390/atmos15080874
APA StyleLiu, C., Deng, H., Qiu, X., Lu, Y., & Li, J. (2024). A New Post-Processing Method for Improving Track and Rainfall Ensemble Forecasts for Typhoons over Eastern China. Atmosphere, 15(8), 874. https://doi.org/10.3390/atmos15080874