Behavior of Water Mass Beneath the Tsushima Warm Current in the Japan Sea
Abstract
:1. Introduction
2. Data and Method
2.1. CTD, XBT, O2 and PO4 Observations
2.2. AOU and OUR Analyses
2.3. Preformed PO4 Analyses
3. Results
3.1. The Path of TWC in June, 2011
3.2. Relationships Among θ, S and O2
3.3. Vertical Cross-Sections of Water Properties Along Lines A to F
3.4. Inference of Original Waters Beneath the TWC Using the Preformed PO4
4. Discussions
5. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Coefficient A (mL L−1) | Coefficient B (mL L−1) |
A1 = −173.4292 A2 = 249.6339 A3 = 143.3483 A4 = −21.8492 | B1 = −0.033096 B2 = 0.014259 B3 = −0.001700 |
Appendix B
Source | P | O2 | Area | Depth |
---|---|---|---|---|
Redfield et al., 1963 [11] | 1.0 | 138 | Atlantic Ocean | in ocean deep waters |
Takahashi et al., 1985 [18] | 1.0 | 172 | Atlantic and Indian ocean | in the deep ocean |
Broecker et al., 1985 [16]; Peng and Broecker, 1987 [19] | 1.0 | 175 | entire world ocean | all depths |
Minster and Boulahdid, 1987 [20]; Boulahdid and Minster, 1989 [21] | 1.0 | 172 | in all oceans | decreased with depth to approximately 115 |
Anderson and Sarmiento, 1994 [12] | 1.0 | 170 ± 10 | Pacific basins | between 400 and 4000 m depth |
Anderson, 1995 [23] | 1.0 | 140 − 160 | ||
Chen et al., 1996 [22] | 1.0 | 196 ± 27 | marginal seas of the northwest Pacific | |
Chen et al., 1996, GRL [13] | 1.0 | 121 ± 7 | beneath the thermocline in Japan Sea | 1:125 ± 5 for waters deeper than 2000 m |
Kortzinger et al., 2001 [24] | 1.0 | 165 ± 15 | surface ocean | surface ocean |
Hedges et al., 2002 [25] | 1.0 | 154 | global ocean |
References
- Uda, M. The results of simultaneous oceanographic investigations in the Japan Sea and its adjacent waters in May and June. J. Imp. Fish. Exp. Sta. 1934, 5, 57–190. (In Japanese) [Google Scholar]
- Talley, L.; Min, D.-H.; Lobanov, V.; Luchin, V.; Ponomarev, V.; Salyuk, A.; Shcherbina, A.; Tishchenko, P.; Zhabin, I. Japan/East Sea water masses and their relation to the sea’s circulation. Oceanography 2006, 19, 32–49. [Google Scholar] [CrossRef] [Green Version]
- Senjyu, T.; Sudo, H. Interannual variation of the upper portion of the Japan Sea Proper Water and its probable cause. J. Oceanogr. 1996, 52, 27–42. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, T.; Hirai, M.; Yamada, H. High-Salinity intermediate water of the Japan Sea in the eastern Japan Basin. J. Geophy. Res. 2001, 106, 11437–11450. [Google Scholar] [CrossRef]
- Yoshikawa, Y.; Awaji, T.; Akimoto, K. Formation and circulation processes of intermediate water in the Japan sea. J. Phys. Oceanogr. 1999, 29, 1701–1722. [Google Scholar] [CrossRef]
- Boyle, E.A. Cadmium: Chemical tracer of deep water paleoceanography. Paleoceanogr. Paleoclimatol. 1988, 3, 471–489. [Google Scholar] [CrossRef]
- Kudo, I.; Kokubun, H.; Matsunaga, K. Cadmium in the southwest Pacific Ocean two factors significantly affecting the Cd-PO4 relationship in the ocean. Mar. Chem. 1996, 54, 55–67. [Google Scholar] [CrossRef]
- Morel, F.M.M.; Hudson, R.J.M. The geobiological cycles of trace elements in aquatic systems: Redfield revisited. In Chemical Processes in Lakes; Stumm, W., Ed.; Interscience Publishers: New York, NY, USA, 1985; pp. 251–281. [Google Scholar]
- Gruber, N.; Sarmiento, J.L.; Jin, X.; Dunne, J.P.; Armstrong, R.A. Diagnosing the contribution of phytoplankton functional groups to the production and export of particulate organic carbon, CaCO3, and opal from global nutrient alkalinity distributions. Glob. Biogeochem. Cycles 2006, 20, GB2015. [Google Scholar] [CrossRef] [Green Version]
- Emerson, S.; Hedges, J.H. Chemical Oceanography and the Carbon Cycle; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar] [CrossRef]
- Redfield, A.C.; Ketchum, B.H.; Richards, F.A. The influence of organisims on the composition of seawater. In The Sea: Ideas and Observations on Progress in the Study of the Seas; Hill, M.N., Ed.; Interscience Publishers: New York, NY, USA, 1963; Volume 2, pp. 26–77. [Google Scholar]
- Anderson, L.A.; Sarmiento, J.L. Redfield ratios of remineralization determined by nutrient data analysis. Glob. Biogeochem. Cycles 1994, 8, 65–80. [Google Scholar] [CrossRef]
- Chen, C.-T.A.; Gong, G.-C.; Wang, S.-L.; Bychkov, A.S. Redfield ratios and regeneration rates of particulate matter in the Sea of Japan as a model of closed system. Geophys. Res. Lett. 1996, 23, 1785–1788. [Google Scholar] [CrossRef]
- Oguma, S.; Usui, T. Guide for Data Quality Control of Oceanic CO2-Related Data. Available online: https://www.jodc.go.jp/jodc_pub/manual/Ocean_CO2_QC.pdf (accessed on 30 July 2020).
- Broecker, W.S. “NO”, a conservative water-mass tracer. Earth Planet. Sci. Lett. 1974, 23, 100–107. [Google Scholar] [CrossRef]
- Broecker, W.S.; Takahashi, T.; Takahashi, T. Sources and flows patterns of deep-ocean waters as deduced from potential temperature, salinity, an initial phosphate concentration. J. Geophys. Res. 1985, 90, 6925–6939. [Google Scholar] [CrossRef]
- Fleming, R.H. The composition of plankton and units for reporting population and production. In Proceedings of the Sixth Pacific Science Congress, Berkeley, CA, USA, 17 November 1939; University of California Press: Berkeley, CA, USA, 1940; pp. 535–540. [Google Scholar]
- Takahashi, T.; Broecker, W.S.; Langer, S. Redfield ratio based on chemical data from isopycnal surfaces. J. Geophys. Res. Space Phys. 1985, 90, 6907. [Google Scholar] [CrossRef]
- Peng, T.-H.; Broecker, W.S. C/P ratios in marine detritus. Glob. Biogeochem. Cycles 1987, 1, 155–161. [Google Scholar] [CrossRef]
- Minster, J.-F.; Boulahdid, M. Redfield ratios along isopycnal surfaces—A complementary study. Deep Sea Res. 1987, 34, 1981–2003. [Google Scholar] [CrossRef]
- Boulahdid, M.; Minster, J. Oxygen consumption and nutrient regeneration ratios along isopycnal horizons in the Pacific Ocean. Mar. Chem. 1989, 26, 133–153. [Google Scholar] [CrossRef]
- Chen, C.-T.A.; Lin, C.-M.; Huang, B.-T.; Chang, L.-F. Stoichiometry of carbon, hydrogen, nitrogen, sulfur and oxygen in the particulate matter of the western North Pacific marginal seas. Mar. Chem. 1996, 54, 179–190. [Google Scholar] [CrossRef]
- Anderson, L.A. On the hydrogen and oxygen content of marine phytoplankton. Deep Sea Res. 1995, 42, 1675–1680. [Google Scholar] [CrossRef]
- Körtzinger, A.; Koeve, W.; Kähler, P.; Mintrop, L. C:N ratios in the mixed layer during the productive season in the northeast Atlantic Ocean. Deep Sea Res. 2001, 48, 661–688. [Google Scholar] [CrossRef]
- Hedges, J.; Baldock, J.; Gélinas, Y.; Lee, C.; Peterson, M.; Wakeham, S. The biochemical and elemental compositions of marine plankton: A NMR perspective. Mar. Chem. 2002, 78, 47–63. [Google Scholar] [CrossRef]
Water Mass | Distinguishing Characteristic | Source |
---|---|---|
Tsushima Warm Water (TWW) | Vertical salinity maximum in upper 150 m | Tsushima Strait inflow, local evaporation and subduction |
Japan/East Sea Intermediate Water (JSIW) | Vertical salinity minimum in upper ocean | Subduction of fresh subpolar water southward across the Subpolar Front |
High-Salinity Intermediate Water (HSIW, Upper Japan Sea Proper Water, UJSPW) | Vertical salinity maximum between 200–500 m | Convective cooling of Tsushima Warm Water in the northeast subpolar gyre |
Japan Sea Proper Water | Vertically homogeneous water between the salinity maximum and bottom layer | Convective cooling of water in the northern subpolar gyre |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, X.; Isoda, Y.; Kudo, I.; Aramaki, T.; Imai, K.; Ebuchi, N. Behavior of Water Mass Beneath the Tsushima Warm Current in the Japan Sea. Water 2020, 12, 2184. https://doi.org/10.3390/w12082184
Fang X, Isoda Y, Kudo I, Aramaki T, Imai K, Ebuchi N. Behavior of Water Mass Beneath the Tsushima Warm Current in the Japan Sea. Water. 2020; 12(8):2184. https://doi.org/10.3390/w12082184
Chicago/Turabian StyleFang, Xiaorong, Yutaka Isoda, Isao Kudo, Takafumi Aramaki, Keiri Imai, and Naoto Ebuchi. 2020. "Behavior of Water Mass Beneath the Tsushima Warm Current in the Japan Sea" Water 12, no. 8: 2184. https://doi.org/10.3390/w12082184
APA StyleFang, X., Isoda, Y., Kudo, I., Aramaki, T., Imai, K., & Ebuchi, N. (2020). Behavior of Water Mass Beneath the Tsushima Warm Current in the Japan Sea. Water, 12(8), 2184. https://doi.org/10.3390/w12082184