Response of Clementine Mandarin to Water-Saving Strategies under Water Scarcity Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site Characteristics and Crop Management
2.2. Estimation of Crop Evapotranspiration, Description of the Irrigation Treatments and Experimental Design
- ETo: the reference evapo-transpiration, estimated using the FAO Pennman-Monteith equation based on weather data [17] obtained from the closest meteorological station (Latitude: 30.52° N; Longitude: 8.71° W) and kindly made available to us by Phytoconsulting (www.Phytoconsulting.com), who runs and manages the regional weather-station network in the Souss-Massa region.
- kc: the crop cultural coefficient [17]. For the varieties used in this trial, the trees were of similar size and vigor and thus, their crop coefficients were identical and varied with the season: 0.3 in December, January and February; 0.5 in September, October, November, March, April and May; and 0.6 in June, July and August. The kc value was adjusted to the local conditions with 50% of soil cover by the trees, dry conditions with clean soil and light winds based on previous research [58,59] in the region and further development by Phytoconsulting. Phytoconsulting has developed an irrigation management software (named “Yobeen”) for citrus in the region that takes into account the season of the year and its climatic parameters, the variety, the rootstock, tree density and soil cover and crop load. It personalizes irrigation scheduling, and, via SMS messages, it provides the growers with daily information on crop water requirements.
2.3. Data Collection and Reporting
2.4. Statistical Analyses
3. Results and Discussion
3.1. Characterization of the Climate during the Clementine Production Cycle
- − Annual mean air temperature was 21.1 °C, with average minimum temperatures and average maximum temperatures of 13.5 °C and 28.6 °C, respectively. The climate was relatively mild in the winter and hot in the spring with minimum readings above 5 °C and maximum values ranged from 20 to 35 °C, coinciding with tree dormancy, bud-break, flowering and fruit set, and very hot in the summer with values reaching 40 to 46 °C during the months of June to August.
- − Daily average relative air humidity was mostly in the 40–70% range (with an annual mean of 60% for the maximum daily readings) and minimum daily values were frequently below 35% (with an annual mean of 33%).
- − Total rainfall during the crop cycle was 325 mm of which 130 fell in November–December 2016, coinciding with winter rest of the trees, 135 mm fell in the month of February 2017, coinciding with bud-break and 60 mm fell in August 2017, coinciding with fruit enlargement.
- − Daily VPD values were in the range of 0.5–1.5 kPa during mild temperature periods of winter and early spring and increased to maximum values in the range of 3–5 kPa from mid-June to mid-August.
- − In addition, ETo was in the 1–4 mm/d range during the winter-fall season and 4–9 mm/d in the spring-summer period, with maximum values recorded in the months of March coinciding with flowering, and May through August, coinciding with the physiological fruit drop and fruit enlargement (Figure 1).
3.2. Effect of Irrigation Strategy on Seasonal Pattern of Soil Volumetric Water Content
3.3. Effect of Irrigation Strategies on Fruit Drop, Fruit-Growth Pattern and Final Fruit Size
3.4. Effect of Deficit Irrigation on Fruit Yield
3.5. Effect of Deficit Irrigation Regimes on Water Supply, Water Saving and Water Use Efficiency
3.6. Effect of Deficit Irrigation Strategies on Fruit Juice Content and Quality
3.7. Effect of Irrigation Strategy on Soil Salinity
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schilling, J.; Freier, K.P.; Hertig, E.; Scheffran, J. Climate Change, Vulnerability and Adaptation in North. Africa with Focus on Morocco. Agric. Ecosyst. Environ. 2012, 156, 12–26. [Google Scholar] [CrossRef]
- Hssaisoune, M.; Bouchaou, L.; Sifeddine, A.; Bouimetarhan, I.; Chehbouni, A. Moroccan groundwater resources and evolution with global climate changes. Geosciences 2020, 10, 81. [Google Scholar] [CrossRef] [Green Version]
- Kadi, M.A.; Ziyad, A. Integrated Water Resources Management in Morocco. In Global Water Security; Springer: Singapore, 2018; pp. 143–163. [Google Scholar]
- Marieme, S.E.; Abdelaziz, H.; Morjani, Z.E.A.E.; Redouane, C.-A.; Rashyd, Z.; Abdessadek, N.; Mouna, M.; Lhoussaine, B.; Elhassane, B. Assessment of global change impacts on groundwater resources in souss-massa basin. In Water Resources in Arid Areas: The Way Forward; Springer: Berlin/Heidelberg, Germany, 2017; pp. 115–140. [Google Scholar]
- Bouchaou, L.; Tagma, T.; Boutaleb, S.; Hssaisoune, M.; El Morjani, Z.E.A. Climate change and its impacts on groundwater resources in Morocco: The case of the Souss-Massa Basin. In Climate Change Effects on Groundwater Resources. A Global Synthesis of Findings and Recommandations; Treidel, H., Martin-Bordes, J.L., Gurdak, J.J., Eds.; UNESCO, International Hydrological Programme: Paris, France, 2011; pp. 129–143. [Google Scholar]
- N’da, A.B.; Bouchaou, L.; Reichert, B.; Hanich, L.; Ait Brahim, Y.; Chehbouni, A.; Beraaouz, E.H.; Michelot, J.L. Isotopic signatures for the assessment of snow water resources in the Moroccan High Atlas Mountains: Contribution to surface and groundwater recharge. Environ. Earth Sci. 2016, 75, 755. [Google Scholar] [CrossRef]
- Hssaisoune, M.; Bouchaou, L.; N’da, B.; Malki, M.; Abahous, H.; Fryar, A.E. Isotopes to Assess Sustainability of Overexploited Groundwater in the Souss–Massa System (Morocco). Isot. Environ. Health Stud. 2017, 53, 298–312. [Google Scholar] [CrossRef] [PubMed]
- Abahous, H.; Ronchail, J.; Sifeddine, A.; Kenny, L.; Bouchaou, L. Trend and change point analyses of annual precipitation in the Souss-Massa Region in Morocco during 1932–2010. Theor. Appl. Climatol. 2018, 134, 1153–1163. [Google Scholar] [CrossRef]
- Bouchaou, L.; Michelot, J.L.; Vengosh, A.; Hsissou, Y.; Qurtobi, M.; Gaye, C.B.; Bullen, T.D.; Zuppi, G.M. Application of multiple isotopic and geochemical tracers for investigation of recharge, salinization, and residence time ofwater in the Souss-Massa aquifer, southwest of Morocco. J. Hydrol. 2008, 352, 267–287. [Google Scholar] [CrossRef]
- Tagma, T.; Hsissou, Y.; Bouchaou, L.; Bouragba, L.; Boutaleb, S. Groundwater nitrate pollution in Souss-Massa Basin (south-west Morocco). Afr. J. Environ. Sci. Technol. 2009, 3, 301–309. [Google Scholar]
- Malki, M.; Bouchaou, L.; Hirich, A.; Ait Brahim, Y.; Choukr-Allah, R. Impact of agricultural practices on groundwater quality in intensive irrigated area of Chtouka-Massa, Morocco. Sci. Total Environ. 2017, 574, 760–770. [Google Scholar] [CrossRef]
- Maroc Citrus. Statistiques. Available online: http://www.maroc-citrus.com/statistiques-2/ (accessed on 9 April 2020).
- Elame, F.; Doukkali, R. Modélisation économique des ressources en eau dans le bassin du Souss-Massa. Rev. Marocaine Sci. Agron. Vét. 2018, 6, 124–131. [Google Scholar]
- Word Bank. Moroccan Farmers save Water on Irrigation and Increase Agricultural Production. Available online: https://www.worldbank.org/en/results/2019/10/16/moroccan-farmers-save-water-on-irrigation-and-increase-agricultural-production (accessed on 16 October 2019).
- Bouchaou, L.; Choukr-Allah, R.; Hirich, A.; Seif-Ennasr, M.; Malki, M.; Abahous, H.; Bouaakaz, B.; Nghira, A. Climate change and water valuation in Souss-Massa region: Management and adaptive measures. Eur. Water 2017, 60, 203–209. [Google Scholar]
- Assouli, O.; El Bilali, H.; Abouabdillah, A.; Harbouze, R.; El Jaouhari, N.; Chaoui, M.; Bouabid, R. Transition from surface to drip irrigation in Morocco: Analysis through the multi-level perspective. Agrofor Int. J. 2018, 3, 142–151. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage; paper 56; Fao: Rome, Italy, 1998. [Google Scholar]
- Tiercelin, J.-R. Traité D’irrigation; Technique et Documentation Lavoisier: Paris, France, 1998. [Google Scholar]
- Snyder, R.L. Climate change impacts on water use in horticulture. Horticulturae 2017, 3, 27. [Google Scholar] [CrossRef]
- Vahrmeijer, T.J.; Taylor, N.J. Citrus water use. In Citrus Health Benefits and Production Technology; Sajid, M., Amanullah, M., Eds.; IntechOpen Limited: London, UK, 2018; pp. 400–491. [Google Scholar] [CrossRef] [Green Version]
- Agusti, M.F. Citricultura, 2nd ed.; Mundiprensa: Madrid, Spain, 2000. [Google Scholar]
- Bain, J.M. Morphological, anatomical, and physiological changes in the developing fruit of the Valencia orange, Citrus sinensis (L) Osbeck. Aust. J. Bot. 1958, 6, 1–23. [Google Scholar] [CrossRef]
- Davies, F.S.; Albrigo, L.G. Crop Production Science in Horticulture 2: Citrus; CAB International: Wallingford, UK, 1994. [Google Scholar]
- Abobatta, W.F. Potential impacts of global climate change on citrus cultivation. MOJ Ecol. Environ. Sci. 2019, 4, 308–312. [Google Scholar]
- Velez, J.E.; Intrigliolo, D.S.; Castel, J.R. Scheduling deficit irrigation of citrus trees with maximum daily trunk shrinkage. Agric. Water Manag. 2007, 90, 197–204. [Google Scholar] [CrossRef]
- García–Tejero, I.; Romero-Vicente, R.; Jimenez-Bocanegra, J.A.; Martınez-Garcıa, G.; Duran-Zuazo, V.H.; Muriel-Fernandez, J.L. Response of citrus trees to deficit irrigation during different phenological periods in relation to yield, fruit quality, and water productivity. Agric. Water Manag. 2010, 97, 689–699. [Google Scholar] [CrossRef]
- Abrisqueta, I.; Ayars, J.E. Effect of alternative irrigation strategies on yield and quality of Fiesta raisin grapes grown in California. Water 2018, 10, 583. [Google Scholar] [CrossRef] [Green Version]
- Behboudian, M.H.; Mills, T.M. Water management and water relations of horticultural crops using water stress to control vegetative growth and productivity of temperate fruit trees. Int. J. Hortic. Sci. Technol. 1997, 13, 59–63. [Google Scholar]
- González-Altozano, P.; Castel, J.R. Regulated deficit irrigation in ‘Clementina de Nules’ citrus trees. I. Yield and fruit quality effects. J. Hortic. Sci. Biotechnol. 1999, 74, 706–713. [Google Scholar] [CrossRef]
- Nagaz, K.; El Mokh, F.; Ben Hassen, N.; Masmoudi, M.M.; Ben Mechlia, N.; Baba Sy, M.O.; Belkheiri, O.; Ghiglieri, G. Impact of deficit irrigation on yield and fruit quality of orange Trees (Citrus sinensis, l. Osbeck, cv. Meski maltaise) in southern Tunisia. Irrig. Drain. 2020, 69 (Suppl. 1), 186–193. [Google Scholar] [CrossRef] [Green Version]
- Goldhamer, D.A. Regulated deficit irrigation in trees and vines. National Research Council. In Agricultural Water Management, Proceedings of a Workshop in Tunisia; The National Academies Press: Washington, DC, USA, 2007; pp. 71–80. [Google Scholar] [CrossRef]
- Chalmers, D.J.; Mitchell, P.D.; van Heek, L. Control of peach tree growth and productivity by regulated water supply, tree density and summer pruning. J. Am. Soc. Hortic. Sci. 1981, 106, 307–312. [Google Scholar]
- Sepaskhah, A.R.; Ahmadi, S.H. A review on partial root-zone drying irrigation. Int. J. Plant Prod. 2010, 4, 241–258. [Google Scholar]
- Ginestar, C.; Castel, J.R. Responses of young clementine citrus trees to water stress during different phenological periods. J. Hortic. Sci. 1996, 71, 551–559. [Google Scholar] [CrossRef]
- Ballester, C.; Castel, J.; Introgliolo, D.S.; Castel, J.R. Response of Clementina de Nules citrus trees to summer deficit irrigation. Yield components and fruit composition. Agric. Water Manag. 2011, 98, 1027–1032. [Google Scholar] [CrossRef]
- Garcia-Tejero, I.; Duran-Zuazo, V.H.; Jimenez-Bocanegra, J.A.; Muriel-Fernandez, J.L. Improved water use efficiency by deficit irrigation programmes: Implications for saving water in citrus orchards. Sci. Hortic. 2011, 128, 274–282. [Google Scholar] [CrossRef]
- Garcia-Sanchez, J.G.; Perez, R.P.; Botia, P.; Martinez, V. Regulated deficit irrigation in Clemenules mandarin trees grafted on Cleopatra mandarin and Carrizo citrange. Proc. Int. Soc. Citric. 2004, 2, 566–570. [Google Scholar]
- Saeed, H.; Grove, I.G.; Kettlewell, P.S.; Hall, N.W. Potential of partial root zone drying as an alternative irrigation technique for potatoes (Solanum tuberosum). Ann. Appl. Bot. 2008, 152, 71–80. [Google Scholar] [CrossRef]
- Kang, S.; Liang, Z.; Pan, Y.; Shi, P.; Zhang, J. Alternate furrow irrigation for maize production in an arid area. Agric. Water Manag. 2000, 45, 267–274. [Google Scholar] [CrossRef]
- Antolin, M.C.; Ayari, M.; Sanchez-Dias, M. Effects of partial rootzone drying on yield, ripening and berry ABA in potted Tempranillo grapevines with split roots. Austrian J. Grape Wine Res. 2006, 12, 13–20. [Google Scholar] [CrossRef]
- Kirda, C.; Cetin, M.; Dasgan, Y.; Topcu, S.; Kaman, H.; Ekici, B.; Derici, M.R.; Ozguven, A.I. Yield response of greenhouse grown tomato to partial root drying and conventional deficit irrigation. Agric. Water Manag. 2004, 69, 191–201. [Google Scholar] [CrossRef]
- Melgar, J.C.; Dunlop, J.M.; Syvertsen, J.P. Growth and physiological responses of the citrus rootstock Swingle citrumelo seedlings to partial rootzone drying and deficit irrigation. J. Agric. Sci. 2010, 148, 593–602. [Google Scholar] [CrossRef] [Green Version]
- Romero-Conde, A.; Kusakabe, A.; Melgar, J.C. Physiological responses of citrus to partial rootzone drying irrigation. Sci. Hortic. 2014, 169, 234–238. [Google Scholar] [CrossRef]
- Hutton, R.J.; Loveys, B.R. A partial root zone drying irrigation strategy for citrus-Effects on water use efficiency and fruit characteristics. Agric. Water Manag. 2011, 98, 1485–1496. [Google Scholar] [CrossRef]
- Consoli, S.; Stagno, F.; Roccuzzo, G.; Cirelli, G.L.; Intrigliolo, F. Sustainable management of limited water resources in a young orange orchard. Agric. Water Manag. 2014, 132, 60–68. [Google Scholar] [CrossRef]
- Consoli, S.; Stagno, F.; Vanella, D.; Boaga, J.; Cassiani, G.; Roccuzzo, G. Partial rootzone drying irrigation in orangeorchards: Effects on water use and crop production characteristics. Eur. J. Agron. 2017, 82, 190–202. [Google Scholar] [CrossRef]
- Romero, P.; Dodd, I.C.; Martinez-Cutillas, A. Contrasting physiological effects of partial root zone drying in field-grown grapevine (Vitis vinifera L. cv. Monastrell) according to soil water availability. J. Exp. Bot. 2012, 63, 4071–4083. [Google Scholar] [CrossRef] [Green Version]
- Maas, E.V. Salinity and citriculture. Tree Physiol. 1993, 12, 195–216. [Google Scholar] [CrossRef]
- Sanchez, C.A.; Silvertooth, J.C. Managing saline and sodic soils for producing horticultural crops. HortTechnology 1996, 6, 99–107. [Google Scholar] [CrossRef] [Green Version]
- Levy, Y.; Syvertsen, J. Irrigation water quality and salinity effects in citrus trees. Hortic. Rev. 2004, 30, 37–82. [Google Scholar]
- Melgar, J.C.; Mohamed, Y.; Serrano, N.; Serrano, N.; Garcia-Galavis, P.A.; Navarro, C.; Parra, M.A.; Belloch, M.; Fernandez-Escobar, R. Long term responses of olive tree to salinity. Agric. Water Manag. 2009, 96, 1105–1113. [Google Scholar] [CrossRef]
- Aragüésa, R.; Medinaa, E.T.; Zribia, W.; Claveríaa, I.; Álvaro-Fuentes, J.; Faci, J. Soil salinization as a threat to the sustainability of deficit irrigation under present and expected climate change scenarios. Irrig. Sci. 2014, 33, 67–79. [Google Scholar] [CrossRef] [Green Version]
- Beniken, L.; Omari, F.E.; Dahan, R.; Van Damme, P.; Benkirane, R.; Benyahia, H. Evaluation de l’effet du stress hydrique et du porte-greffe sur la clémentine Citrus reticulata Swingle var. Sidi Aissa. J. Appl. Biosci. 2013, 71, 5692–5704. [Google Scholar] [CrossRef] [Green Version]
- El-Otmani, M.; Bagayogo, S.; El-Fadl, A.; Benismail, M.C. Effect of regulated deficit irrigation on vegetative growth, fruiting, stomatal conductance and water use efficiency in ‘Nules’ Clementine under arid conditions of the Souss Valley of Morocco. Acta Hortic. 2015, 1065, 1757–1766. [Google Scholar] [CrossRef]
- Barry, G.H.; Casle, W.S.; Davies, F.S. Rootstocks and plant water relations affect sugar accumulation of citrus fruit via osmotic adjustment. J. Am. Soc. Hortic. Sci. 2004, 129, 881–889. [Google Scholar] [CrossRef]
- El Guilli, M.; Belmehdi, I.; Zemzami, M. Citrus rootstocks in Morocco: Present situation and future prospects. Acta Hortic. 2015, 1065, 313–318. [Google Scholar] [CrossRef]
- Citrus Academy. 4. Orchard establishment. In Citrus Planting Management Learner Guide, 1st ed.; Citrus Academy: Hillcrest, Republic of South Africa, 2017; p. 8. [Google Scholar]
- El-Fadl, A.; El-Otmani, M.; Benismail, M.C.; Abouatallah, A.; El-Jaouhari, N. Optimizing irrigation water supply in a young citrus orchard. Proc. Int. Soc. Citric. 2010, 1, 795–804. [Google Scholar]
- Zayani, A. Effet de L’irrigation à Déficit Régulé sur un Verger D’agrumes dans la Region du Souss. Travail de Fin d’Etudes Pour L’obtention du Diplôme D’ingenieur Agronome (MS Equivalent); Institut Agronomique et Vétérinaire Hassan II: Complexe Horticole d’Agadir, Ait Melloul, Morocco, 2010; p. 135. [Google Scholar]
- Rhoades, J.D. Soluble salts. In Methods of Soil Analysis; Agronomy Monograph No 9; Part 2; Page, A.L., Ed.; American Society of Agronomy, Inc.: Madison, WI, USA, 1982; pp. 167–179. [Google Scholar]
- Tukey, J. Comparing Individual Means in the Analysis of Variance. Biometrics 1949, 5, 99. [Google Scholar] [CrossRef]
- Sato, K. Influence of drought and high temperature on citrus. In Abiotic Stress Biology in Horticultural Plants; Kanayama, Y., Kochetov, A., Eds.; Springer: Tokoyo, Japan, 2015; pp. 77–86. Available online: https://books.google.co.ma/books?id=zGkzBgAAQBAJ&printsec=frontcover&hl=fr#v=onepage&q&f=false (accessed on 9 April 2020).
- Hussain, A.; Aliwe, S. Production of Washington Navel Orange in a Desert Climate. Ph.D. Thesis, University of Arizona, Tucson, AZ, USA, 1984. [Google Scholar]
- Kriedemann, P.E. Some photosynthetic characteristics of citrus leaves. Aust. J. Biol. Sci. 1968, 21, 895–905. [Google Scholar] [CrossRef]
- DuToit, G. The Effect of Partial Root Zone Drying on the Partitioning of Dry Matter, Carbon, Nitrogen and Inorganic Ions in Grapevines. Ph.D. Thesis, University of Adelaide, Adelaide, Australia, 2005. [Google Scholar]
- Kang, S.; Zhang, J. Controlled alternate partial root-zone irrigation: Its physiological consequences and impact on water use efficiency. J. Exp. Bot. 2004, 55, 2437–2446. [Google Scholar] [CrossRef]
- Romero, P.; Pérez-Pérez, J.G.; del Amor, F.M.; Martinez-Cutillas, A.; Dodd, I.C.; Botia, P. Partial root zone drying exerts diffrent physiological responses on field-grown grapevine (Vitis vinifera cv. Monastrell) in comparison to regulated deficit irrigation. Funct. Plant Biol. 2014, 41, 1087–1106. [Google Scholar] [CrossRef]
- Dry, P.R.; Loveys, B.R.; During, H. Partial drying of the root zone of grape. I. Transient changes in shoot growth and gas exchange. Vitis 2000, 39, 3–7. [Google Scholar]
- Hsiao, T.C. Plant response to water stress. Ann. Rev. Plant Physiol. 1973, 24, 519–570. [Google Scholar] [CrossRef]
- González-Altozano, P.; Castel, J.R. Regulated deficit irrigation in ‘Clementina de Nules’ citrus trees. II. Vegetative growth. J. Hortic. Sci. Biotechnol. 2000, 75, 388–392. [Google Scholar] [CrossRef]
- Garcia-Tejero, I.F.; Duran-Zuazo, V.H.; Arriaga, J.; Muriel-Fernandez, J.L. Relationships between trunk- and fruit-diameter growths under deficit-irrigation programmes in orange trees. Sci. Hortic. 2012, 133, 64–71. [Google Scholar] [CrossRef]
- Ballester, C.; Castel, J.; Castel, J.R.; Intrigliolo, D.S. Long-term response of ‘Clementina de Nules’ citrus trees to summer regulated deficit irrigation. Agric. Water Manag. 2014, 138, 78–84. [Google Scholar] [CrossRef]
- Alahian, F. Effet de Différentes Stratégies de L’irrigation Déficitaire sur deux Variétés Précoces de Clémentinier dans le Souss. Travail de Fin d’Etude Présenté pour l’Obtention du Diplôme d’Ingénieur d’Etat en Agronomie, Option: Horticulture (MS Equivalent); Institut Agronomique et Vétérinaire Hassan II: Complexe Horticole d’Agadir, Ait Melloul, Morocco, 2018. [Google Scholar]
- United Nations. UNECE Standard FFV-14 Concerning the Marketing and Commercial Quality Control of Citrus Fruits; United Nations: New York, NY, USA; Geneva, Switzerland, 2017. [Google Scholar]
- Mossad, A.; Farina, V.; Lo Bianco, R. Fruit yield and quality of ‘Valencia’ orange trees under long-term partial rootzone drying. Agronomy 2020, 10, 164. [Google Scholar] [CrossRef] [Green Version]
- Stoll, M.; Loveys, B.; Dry, P. Hormonal changes induced by partial rootzone drying of irrigated grapevine. J. Exp. Bot. 2000, 51, 1627–1634. [Google Scholar] [CrossRef] [Green Version]
Irrigation Strategy | Specifications |
---|---|
Cntl | Grower’s strategy: supply of 100% ETc |
RDI-1 | supply of 75% ETc from 6 July to 2 October 2017 |
PRD-3/4 | irrigation with alternating between the two root system halves at 3- to 4-day intervals from 6 July to 2 October 2017 (supply of 50% ETc) |
PRD-7 | irrigation with alternating between the two root system halves at 7-day interval from 6 July to 2 October 2017 (supply of 50% ETc) |
RDI-2 | irrigation with supply of 100% ETc during fruit growth stage (6 July to 10 September 2017) and 50% ETc during fruit maturation (from 11 September to 2 October 2017) |
Irrigation Strategy | ‘Sidi Aissa’ | ‘Orogrande’ | ||||||
---|---|---|---|---|---|---|---|---|
Fruit Drop (%) | Fruit Number Per Tree | Fruit Diameter (mm) | Fruit Weight (g fruit−1) | Fruit Drop (%) | Fruit Number Per Tree | Fruit Diameter (mm) | Fruit Weight (g Fruit−1) | |
Cntl | 10.9 a | 334 a | 48.5 a | 55.4 a | 8.8 a | 356 a | 57.0 a | 66.4 a |
RDI-1 | 11.9 a | 318 b | 43.5 b | 53. 6 ab | 9.8 a | 335 a | 53.5 b | 64.3 b |
PRD-3/4 | 14.5 b | 295 b | 42.0 c | 52.6 b | 9.3 a | 320 a | 52.0 c | 61.4 c |
PRD-7 | 14.8 b | 279 b | 41.8 c | 51.4 b | 10.0 a | 325 a | 51.7 c | 60.7 c |
RDI-2 | NA | 348 a | 47.8 a | 55.7 a | NA | 344 a | 56.7 a | 65.4 ab |
Relationship | Cultivar | Regression Equation | Regression Coefficient r | Coefficient of Determination R2 (%) |
---|---|---|---|---|
Between water supply (x) and fruit weight (y) | ‘Sidi Aissa’ | y = 1.87x + 43.42 | 0.92 | 84 |
‘Orogrande’ | y = 2.75x + 48.49 | 0.98 | 97 | |
Between water supply (x) and fruit yield (y) | ‘Sidi Aissa’ | y = 1.76x + 4.45 | 0.92 | 84 |
‘Orogrande’ | y = 1.59x + 8.97 | 0.99 | 99 |
Irrigation Strategy | Water Quantities Applied (m3 Cycle−1) | ‘SidiAissa’ | ‘Orogrande’ | ||
---|---|---|---|---|---|
Yield (Tons ha−1) | WUE (kg m−3) | Yield (Tons ha−1) | WUE (kg m−3) | ||
Cntl | 6675 | 15.45 a | 2.31 | 19.68 a | 2.94 |
RDI-1 | 5641 | 14.23 b | 2.52 | 17.94 a | 3.18 |
PRD-3/4 | 4621 | 12. 23 c | 2.74 | 16.37 b | 3.54 |
PRD-7 | 4621 | 12. 67 c | 2.64 | 16.42 b | 3.55 |
RDI-2 | 6046 | 16.17 a | 2.67 | 18.75 a | 3.10 |
Relationship | Cultivar | Regression Equation | Correlation Coefficient r | Coefficient of Determination R2 (%) |
---|---|---|---|---|
Between yield (y) and individual fruit weight (x) | ‘Sidi Aissa’ | y = 0.878x−33.033 | 0.94 | 88 |
‘Orogrande’ | y = 0.573x−18.624 | 0.98 | 97 | |
Between yield (y) and fruit count per tree (x) | ‘Sidi Aissa’ | y = 0.060x−4.841 | 0.99 | 98 |
‘Orogrande’ | y = 0.099x−15.337 | 0.99 | 98 |
Variety | Quadratic Relationship | Linear Relationship | ||
---|---|---|---|---|
Equation | R2 | Equation | R2 | |
‘Orogrande’ | 0.99 | y = −0.30x + 4.92 | 0.98 | |
‘Sidi Aissa’ | 0.70 | y = −0.15x + 3.38 | 0.60 |
Irrigation Strategy | Variety | |
---|---|---|
’Sidi Aissa’ | ‘Orogrande’ | |
Cntl | 51.7 a | 49.7 a |
RDI-1 | 48.8 ab | 49.4 a |
PRD-3/4 | 46.3 b | 45.9 b |
PRD-7 | 46.3 b | 46.8 b |
RDI-2 | 49.3 ab | 48.8a |
Irrigation Strategy | ’Sidi Aissa’ | ‘Orogrande’ | ||||
---|---|---|---|---|---|---|
TSS | TA | TSS/TA | TSS | TA | TSS/TA | |
Cntl | 10.48 c | 1.36 a | 7.68 c | 11.36 b | 1.16 a | 9.83 c |
RDI-1 | 10.76 ab | 1.27 b | 8.50 ab | 11.56 ab | 1.12 bc | 10.28 ab |
PRD-3/4 | 10.91 ab | 1.23 b | 8.84 a | 11.71 a | 1.12 bc | 10.37 a |
PRD-7 | 10.98 a | 1.25 b | 8.80 ab | 11.70 a | 1.11 c | 10.53 a |
RDI-2 | 10.69 bc | 1.29 b | 8.29 b | 11.46 b | 1.14 ab | 10.02 bc |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Otmani, M.; Chouaibi, A.; Azrof, C.; Bouchaou, L.; Choukr-Allah, R. Response of Clementine Mandarin to Water-Saving Strategies under Water Scarcity Conditions. Water 2020, 12, 2439. https://doi.org/10.3390/w12092439
El-Otmani M, Chouaibi A, Azrof C, Bouchaou L, Choukr-Allah R. Response of Clementine Mandarin to Water-Saving Strategies under Water Scarcity Conditions. Water. 2020; 12(9):2439. https://doi.org/10.3390/w12092439
Chicago/Turabian StyleEl-Otmani, Mohamed, Anouar Chouaibi, Charif Azrof, Lhoussaine Bouchaou, and Redouane Choukr-Allah. 2020. "Response of Clementine Mandarin to Water-Saving Strategies under Water Scarcity Conditions" Water 12, no. 9: 2439. https://doi.org/10.3390/w12092439
APA StyleEl-Otmani, M., Chouaibi, A., Azrof, C., Bouchaou, L., & Choukr-Allah, R. (2020). Response of Clementine Mandarin to Water-Saving Strategies under Water Scarcity Conditions. Water, 12(9), 2439. https://doi.org/10.3390/w12092439