Effects of the Combined Utilization of Ultrasonic/Hydrogen Peroxide on Excess Sludge Destruction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Excess Sludge Source
2.2. Ultrasonic/H2O2 Destruction Experiment
2.3. Analysis
2.3.1. Evaluation of the Destruction Effect of Sludge
2.3.2. Evaluation of Sludge Reduction
2.3.3. The Analysis of Other Indexes
2.3.4. Statistical Analysis
3. Results and Discussion
3.1. The Effect of Initial pH on Sludge Destruction
3.1.1. The Effect of Initial pH on the Release of N and P
3.1.2. Effect of Initial pH on the Release of Organic Matter
3.1.3. Effects of Initial pH on the Reduction of Sludge
3.2. The Effect of H2O2 Addition on Sludge Destruction
3.2.1. The Effect of H2O2 Addition on the Release of N and P
3.2.2. The Effect of H2O2 Addition on the Release of Organic Matter
3.2.3. The Effect of H2O2 Addition on Sludge Reduction
3.3. Effect of Initial Sludge Concentration on Sludge Destruction
3.3.1. Effect of Initial Sludge Concentration on the Release of N and P
3.3.2. Effect of Initial Sludge Concentration on Organic Matter Release
3.3.3. Effect of Initial Sludge Concentration on Sludge Reduction
3.4. Effects of Ultrasonic Duration Time on Sludge Destruction
3.4.1. Effects of Ultrasonic Duration Time on the Release of N and P
3.4.2. Effect of Ultrasonic Time on Organic Matter Release
3.4.3. Influence of Ultrasonic Time on Sludge Reduction
3.5. Economic Analysis
4. Conclusions
- (1)
- pH has an important impact on sludge destruction. Alkaline conditions can effectively promote the solubilization of internal substances in sludge, making the sludge structure loose, and make it easier for the oxidation of H2O2. In terms of sludge reduction, alkaline condition betters acid condition, while acid condition outcompetes neutral condition.
- (2)
- Excess H2O2 cannot further enhance the sludge lysis effect; on the contrary, it will play an inhibitory role on sludge destruction. H2O2 can be used as the scavenger of ·OH to eliminate the ·OH produced by ultrasound/H2O2, and the decomposed oxygen will hinder the cavitation effect of ultrasound.
- (3)
- When the initial pH is 11.0, the concentration of H2O2 is 0.5 mmol/L, the initial sludge concentration is 17 g /L, and the ultrasonic time is 15 min long, the ΔSCOD in the supernatant after the sludge destruction can reach 3662.78 ± 239.21 mg/L, the disintegration degree is as high as 28.61 ± 2.14%, the sludge reduction rate is 19.47 ± 0.82%, and the ΔMLSS is reduced by 3.31 ± 0.06 g/L. The release of TN, NH3-N, and TP were 282.30 ± 24.06 mg/L, 25.68 ± 2.09 mg/L, and 105.69 ± 7.84 mg/L, respectively.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Che, L.; Jin, W.; Zhou, X.; Cao, C.; Han, W.; Qin, C.; Tu, R.; Chen, Y.; Feng, X.; Wang, Q. Biological Reduction of Organic Matter in Buji River Sediment (Shenzhen, China) with Artificial Oxygenation. Water 2020, 12, 3592. [Google Scholar] [CrossRef]
- Han, W.; Mao, Y.; Wei, Y.; Shang, P.; Zhou, X. Bioremediation of Aquaculture Wastewater with Algal-Bacterial Biofilm Combined with the Production of Selenium Rich Biofertilizer. Water 2020, 12, 2071. [Google Scholar] [CrossRef]
- Ji, B.; Zhang, M.; Gu, J.; Ma, Y.; Liu, Y. A self-sustaining synergetic microalgal-bacterial granular sludge process towards energy-efficient and environmentally sustainable municipal wastewater treatment. Water Res. 2020, 179, 115884. [Google Scholar] [CrossRef]
- Cheng, J.; Lu, X.; Kato, H.; Zhao, Y.; Cheng, J. Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: Current advances, full-scale application and future perspectives. Renew. Sustain. Energy Rev. 2017, 69, 559–577. [Google Scholar]
- Egemen, E.; Corpening, J.; Nirmalakhandan, N. Evaluation of an ozonation system for reduced waste sludge generation. Water Sci. Technol. 2001, 44, 445–452. [Google Scholar] [CrossRef] [PubMed]
- Ding, A.; Zhao, Y.; Ngo, H.H.; Bai, L.; Li, G.; Liang, H.; Ren, N.; Nan, J. Metabolic uncoupler, 3,3′,4′,5-tetrachlorosalicylanilide addition for sludge reduction and fouling control in a gravity-driven membrane bioreactor. Front. Environ. Sci. Eng. 2020, 14, 1–12. [Google Scholar] [CrossRef]
- Rahmani, A.R.; Mousavi-Tashar, A.; Masoumi, Z.; Azarian, G. Integrated advanced oxidation process, sono-Fenton treatment, for mineralization and volume reduction of activated sludge. Ecotoxicol. Environ. Saf. 2019, 168, 120–126. [Google Scholar] [CrossRef]
- Feng, X.-C.; Guo, W.; Yang, S.-S.; Zheng, H.-S.; Du, J.-S.; Wu, Q.-L.; Ren, N.-Q. Possible causes of excess sludge reduction adding metabolic uncoupler, 3,3′,4′,5-tetrachlorosalicylanilide (TCS), in sequence batch reactors. Bioresour. Technol. 2014, 173, 96–103. [Google Scholar] [CrossRef]
- Song, U.; Lee, E.J. Environmental and economical assessment of sewage sludge compost application on soil and plants in a landfill. Resour. Conserv. Recycl. 2010, 54, 1109–1116. [Google Scholar] [CrossRef]
- Sanger, M.J.; Werther, J.; Ogada, T. NOx and N2O emission characteristics from fluidised bed combustion of semi-dried municipal sewage sludge. Fuel 2001, 80, 167–177. [Google Scholar] [CrossRef]
- Chiavola, A.; D’Amato, E.; Boni, M.R. Effects of low-dosage ozone pre-treatment on the anaerobic digestion of secondary and mixed sludge. Environ. Sci. Pollut. Res. 2019, 26, 35957–35967. [Google Scholar] [CrossRef] [PubMed]
- Tokumura, M.; Katoh, H.; Katoh, T.; Znad, H.; Kawase, Y. Solubilization of excess sludge in activated sludge process using the solar photo-Fenton reaction. J. Hazard. Mater. 2009, 162, 1390–1396. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Jiang, Z.; Ying, Z.; Ye, Y.; Chen, W.; Wang, B.; Dou, B. Migration and Transformation of Phosphorus during Hydrothermal Carbonization of Sewage Sludge: Focusing on the Role of pH and Calcium Additive and the Transformation Mechanism. ACS Sustain. Chem. Eng. 2020, 8, 7806–7814. [Google Scholar] [CrossRef]
- Garg, A.; Stensel, H.D.; Bucher, B.; Sukapanpotharam, P.; Winkler, M.K. Effect of waste activated sludge pretreatment methods to mitigate Gordonia foaming potential in anaerobic digestion. Water Environ. J. 2020, 0, 1–9. [Google Scholar] [CrossRef]
- Riau, V.; De La Rubia, M.A.; Pérez, M. Upgrading the temperature-phased anaerobic digestion of waste activated sludge by ultrasonic pretreatment. Chem. Eng. J. 2015, 259, 672–681. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, Q.; Liu, J.; Yan, H.; Wei, Y. Pilot-scale study of sludge pretreatment by microwave and sludge reduction based on lysis–cryptic growth. Bioresour. Technol. 2015, 190, 140–147. [Google Scholar] [CrossRef]
- Tian, Y.; Zuo, W.; Ren, Z.; Chen, D. Estimation of a novel method to produce bio-oil from sewage sludge by microwave pyrolysis with the consideration of efficiency and safety. Bioresour. Technol. 2011, 102, 2053–2061. [Google Scholar] [CrossRef]
- Baier, U.; Schmidheiny, P. Enhanced anaerobic degradation of mechanically disintegrated sludge. Water Sci. Technol. 1997, 36, 137–143. [Google Scholar] [CrossRef]
- Tyagi, V.K.; Lo, S.-L.; Appels, L.; Dewil, R. Ultrasonic Treatment of Waste Sludge: A Review on Mechanisms and Applications. Crit. Rev. Environ. Sci. Technol. 2014, 44, 1220–1288. [Google Scholar] [CrossRef]
- Siddique, N.I.; Munaim, M.S.A.; Wahid, Z.B.A. The combined effect of ultrasonic and microwave pre-treatment on bio-methane generation from co-digestion of petrochemical wastewater. J. Clean. Prod. 2017, 145, 303–309. [Google Scholar] [CrossRef] [Green Version]
- Packyam, G.S.; Kavitha, S.; Kumar, S.A.; Kaliappan, S.; Yeom, I.T.; Banu, J.R. Effect of sonically induced deflocculation on the efficiency of ozone mediated partial sludge disintegration for improved production of biogas. Ultrason. Sonochem. 2015, 26, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Zheng, M.; Dong, Q.; Liu, Y.; Wang, C. Evaluating the excess sludge reduction in activated sludge system with ultrasonic treatment. Water Sci. Technol. 2018, 77, 2341–2347. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Wan, T.; Zhang, G.; Yang, J. Ultrasonic reduction of excess sludge from activated sludge system: Energy efficiency improvement via operation optimization. Ultrason. Sonochem. 2011, 18, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, C.A.; Zhu, T.; Lv, Q.; Che, D. Simultaneous removal of SO2 and NOx with (OH)-O-center dot from the catalytic decomposition of H2O2 over Fe-Mo mixed oxides. J. Hazard. Mater. 2021, 404, 123936. [Google Scholar] [CrossRef] [PubMed]
- Nepa, C. Water and Wastewater Monitoring Methods, 4th ed.; Chinese Environmental Science Publishing House: Beijing, China, 2012. [Google Scholar]
- Wang, J.; Wang, X.; Guo, P.; Yu, J. Degradation of reactive brilliant red K-2BP in aqueous solution using swirling jet-induced cavitation combined with H2O2. Ultrason. Sonochem. 2011, 18, 494–500. [Google Scholar] [CrossRef]
- Zeronian, S.H.; Inglesby, M.K. Bleaching of cellulose by hydrogen peroxide. Cellulose 1995, 2, 265–272. [Google Scholar] [CrossRef]
- Fang, J.M.; Sun, R.C.; Tomkinson, J. Isolation and characterization of hemicelluloses and cellulose from rye straw by alkaline peroxide extraction. Cellulose 2000, 7, 87–107. [Google Scholar] [CrossRef]
- Hartmann, J.; Bartels, P.; Mau, U.; Witter, M.; Tümpling, W.; Hofmann, J.; Nietzschmann, E. Degradation of the drug diclofenac in water by sonolysis in presence of catalysts. Chemosphere 2008, 70, 453–461. [Google Scholar] [CrossRef]
- Katafias, A.; Lipińska, M.; Strutyński, K. Alkaline hydrogen peroxide as a degradation agent of methylene blue—kinetic and mechanistic studies. React. Kinet. Mech. Catal. 2010, 101, 251–266. [Google Scholar] [CrossRef]
- Mancuso, G.; Langone, M.; Andreottola, G.; Bruni, L. Effects of hydrodynamic cavitation, low-level thermal and low-level alkaline pre-treatments on sludge solubilisation. Ultrason. Sonochem. 2019, 59, 104750. [Google Scholar] [CrossRef]
- Bao, H.; Yang, H.; Zhang, H.; Liu, Y.; Su, H.; Shen, M. Improving methane productivity of waste activated sludge by ultrasound and alkali pretreatment in microbial electrolysis cell and anaerobic digestion coupled system. Environ. Res. 2020, 180, 108863. [Google Scholar] [CrossRef]
- Li, L.; Chen, P.; Gloyna, E.F. Generalized kinetic model for wet oxidation of organic compounds. AIChE J. 1991, 37, 1687–1697. [Google Scholar] [CrossRef]
- Lu, X.; Zhao, J.; Wang, Q.; Wang, D.; Xu, H.; Ma, J.; Qiu, W.; Hu, T. Sonolytic degradation of bisphenol S: Effect of dissolved oxygen and peroxydisulfate, oxidation products and acute toxicity. Water Res. 2019, 165, 114969. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Yang, Y.; Liu, P.; Tan, W. The influence of air content in water on ultrasonic cavitation field. Ultrason. Sonochem. 2014, 21, 566–571. [Google Scholar] [CrossRef] [PubMed]
- Nikfar, E.; Dehghani, M.H.; Mahvi, A.; Rastkari, N.; Asif, M.; Tyagi, I.; Agarwal, S.; Gupta, V.K. Removal of Bisphenol A from aqueous solutions using ultrasonic waves and hydrogen peroxide. J. Mol. Liq. 2016, 213, 332–338. [Google Scholar] [CrossRef]
- Wei, H.; Tang, Y.; Shoeib, T.; Li, A.; Yang, H. Evaluating the effects of the preoxidation of H2O2, NaClO, and KMnO4 and reflocculation on the dewaterability of sewage sludge. Chemosphere 2019, 234, 942–952. [Google Scholar] [CrossRef]
- Zhang, K.; Gao, N.; Deng, Y.; Lin, T.F.; Ma, Y.; Li, L.; Sui, M. Degradation of bisphenol-A using ultrasonic irradiation assisted by low-concentration hydrogen peroxide. J. Environ. Sci. 2011, 23, 31–36. [Google Scholar] [CrossRef]
- Manmi, K.; Wang, Q. Acoustic microbubble dynamics with viscous effects. Ultrason. Sonochem. 2017, 36, 427–436. [Google Scholar] [CrossRef]
- Al Ramahi, M.; Keszthelyi-Szabó, G.; Beszédes, S. Improving biogas production performance of dairy activated sludge via ultrasound disruption prior to microwave disintegration. Water Sci. Technol. 2020, 81, 1231–1241. [Google Scholar] [CrossRef]
- Kavitha, S.; Banu, J.R.; Kumar, G.; Kaliappan, S.; Yeom, I.T. Profitable ultrasonic assisted microwave disintegration of sludge biomass: Modelling of biomethanation and energy parameter analysis. Bioresour. Technol. 2018, 254, 203–213. [Google Scholar] [CrossRef]
- Zhang, A.; Wang, J.; Li, Y. Performance of calcium peroxide for removal of endocrine-disrupting compounds in waste activated sludge and promotion of sludge solubilization. Water Res. 2015, 71, 125–139. [Google Scholar] [CrossRef]
- Shaddel, S.; Grini, T.; Ucar, S.; Azrague, K.; Andreassen, J.-P.; Østerhus, S.W. Struvite crystallization by using raw seawater: Improving economics and environmental footprint while maintaining phosphorus recovery and product quality. Water Res. 2020, 173, 115572. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Ma, S.; Zhang, X.; Ren, H. Characteristics of dissolved organic nitrogen in effluent from a biological nitrogen removal process using sludge alkaline fermentation liquid as an external carbon source. Water Res. 2020, 176, 115741. [Google Scholar] [CrossRef] [PubMed]
- Longo, S.; Katsou, E.; Frison, N.; Frison, N.; Renzi, D.; Fatone, F. Recovery of volatile fatty acids from fermentation of sewage sludge in municipal wastewater treatment plants. Bioresour. Technol. 2015, 175, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Z.; Zheng, H.; Shang, J.; Jiang, J.; Zhong, Z.; Zhao, R.; Hu, Y. State-of-the art review of adding extra carbon sources to denitrification of wastewater treatment-in Chinese. J. Civ. Environ. Eng. 2020, 2, 34–36. [Google Scholar]
- Hao, X.; Chen, Q.; Li, J. Ultimate Approach to Handle Excess Sludge: Incineration and Drying. China Water Wastewater. 2019, 35, 35–42. [Google Scholar]
Properties | Range |
---|---|
pH | 6.5–6.9 |
Water content (%) | 97.5–98 |
MLSS (g/L) | 16.5–20.2 |
MLVSS (g/L) | 8.64–9.74 |
MLVSS/MLSS | 0.45–0.50 |
Process | Item | Material Consumption | Market Average Price | Estimated Costs |
---|---|---|---|---|
I: Ultrasonic/H2O2 pretreatment | NaOH | 0.8 kg/m3 | $510/ton | $24.00/ton DS |
H2O2 (30%) | 0.5 mol/m3 | $186/ton | $0.62/ton DS | |
Ultrasound | 0.20 kW/L | $0.08/kWh | $235.28/ton DS | |
Total | $259.90/ton DS | |||
II: Conventional drying and incineration | Total | $389/ton DS [47] | $311.20/ton DS | |
III: By-products recovery | MgCl2 | 22.91 kg/ton DS | $541/ton | $12.39/ton DS |
COD | 215.44 kg/ton DS | $421/ton COD | $−90.70/ton DS * | |
MgNH4PO4·6H2O | 44.22 kg/ton DS | $3325/ton | $−147.03/ton DS * | |
Total | $−237.73/ton DS * | |||
I + II + III | Total | $345.76/ton DS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, D.; Zhou, X.; Jin, W.; Han, W.; Chi, H.; Ding, W.; Huang, Y.; He, Z.; Gao, S.; Wang, Q. Effects of the Combined Utilization of Ultrasonic/Hydrogen Peroxide on Excess Sludge Destruction. Water 2021, 13, 266. https://doi.org/10.3390/w13030266
Yuan D, Zhou X, Jin W, Han W, Chi H, Ding W, Huang Y, He Z, Gao S, Wang Q. Effects of the Combined Utilization of Ultrasonic/Hydrogen Peroxide on Excess Sludge Destruction. Water. 2021; 13(3):266. https://doi.org/10.3390/w13030266
Chicago/Turabian StyleYuan, Dehao, Xu Zhou, Wenbiao Jin, Wei Han, Huizhong Chi, Wanqing Ding, Yan Huang, Zhongqi He, Shuhong Gao, and Qilin Wang. 2021. "Effects of the Combined Utilization of Ultrasonic/Hydrogen Peroxide on Excess Sludge Destruction" Water 13, no. 3: 266. https://doi.org/10.3390/w13030266
APA StyleYuan, D., Zhou, X., Jin, W., Han, W., Chi, H., Ding, W., Huang, Y., He, Z., Gao, S., & Wang, Q. (2021). Effects of the Combined Utilization of Ultrasonic/Hydrogen Peroxide on Excess Sludge Destruction. Water, 13(3), 266. https://doi.org/10.3390/w13030266