Comparison of Changes in Soil Moisture Content Following Rainfall in Different Subtropical Plantations of the Yangtze River Delta Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Soil Moisture Measurements
2.3. Rainfall Measurements
2.4. Meteorological Measurements
2.5. Soil Moisture Content Change Rate
2.6. Statistical Analyses
3. Results
3.1. Rainfall
3.2. Soil Moisture Content
3.3. Environmental Factors Following Rainfall Events
3.4. Soil Temperature and Moisture Content after Rainfall Events
3.5. ACR (Absolute Change Rate Value) of Soil Moisture Content Following Rainfall Events
3.6. Relationships Between the ACR of Soil Moisture Content and Environmental Factors Following Rainfall Events
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Zhi, D.; Jue, H.; Qianhui, X.; Qiang, F.; Peng, H.; Rui, L. Analysis on characteristics and development countermeasures of olantation reesources in China. Cent. South. For. Inventory Plan. 2020, 39, 5–10. [Google Scholar]
- Bindlish, R.; Jackson, T.J.; Wood, E.; Gao, H.; Starks, P.; Bosch, D.; Lakshmi, V. Soil moisture estimates from TRMM Microwave Imager observations over the Southern United States. Remote Sens. Environ. 2003, 85, 507–515. [Google Scholar] [CrossRef]
- Schneider, K.; Huisman, J.A.; Breuer, L.; Zhao, Y.; Frede, H.G. Temporal stability of soil moisture in various semi-arid steppe ecosystems and its application in remote sensing. J. Hydrol. 2008, 359, 16–29. [Google Scholar] [CrossRef]
- Puri, S.; Stephen, H.; Ahmad, S. Relating TRMM precipitation radar land surface backscatter response to soil moisture in the Southern United States. J. Hydrol. 2011, 402, 115–125. [Google Scholar] [CrossRef]
- Zhi-Bin, H.; Zhao, W. Variability of soil moisture of shifting sandy land and its dependence on precipitation in semi-arid region. J. Desert Res. 2002, 22, 359–362. [Google Scholar] [CrossRef]
- Bergkamp, G. A hierarchical view of the interactions of runoff and infiltration with vegetation and microtopography in semiarid shrublands. Catena 1998, 33, 201–220. [Google Scholar] [CrossRef]
- Svetlitchnyi, A.A.; Plotnitskiy, S.V.; Stepovaya, O.Y. Spatial distribution of soil moisture content within catchments and its modelling on the basis of topographic data. J. Hydrol. 2003, 277, 50–60. [Google Scholar] [CrossRef]
- Fu, B.; Chen, L.; Ma, K.; Zhou, H.; Wang, J. The relationships between land use and soil conditions in the hilly area of the loess plateau in northern Shaanxi, China. Catena 2000, 39, 69–78. [Google Scholar] [CrossRef]
- Shu-xia, Y.; Tong-hui, Z.; Chuan-cheng, Z.; Xin-ping, L. Spatio-temporal Variability of Soil Moisture in Different Dunes of Horqin Sandy Land. J. Soil Water Conserv. 2012, 26, 251–258. [Google Scholar] [CrossRef]
- Reynolds, J.F.; Kemp, P.R.; Ogle, K.; Fernández, R.J. Modifying the ‘pulse-reserve’ paradigm for deserts of North America: Precipitation pulses, soil water, and plant responses. Oecologia 2004, 141, 194–210. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Getie, M.A.; Legesse, S.A.; Mekonnen, M.; Aschalew, A. Environment. Soil Properties and Crop Productivity Strategies as a Potential Climate Variability Adaptation Options in Adefwuha Watershed, Ethiopia. Earth Syst. Environ. 2020, 4, 359–368. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Terol, E.; Mora, G.; Giménez-Morera, A.; Cerdà, A. Vicia sativa Roth. Can Reduce Soil and Water Losses in Recently Planted Vineyards (Vitis vinifera L.). Earth Syst. Environ. 2020, 4, 827–842. [Google Scholar] [CrossRef]
- Brocca, L.; Tullo, T.; Melone, F.; Moramarco, T.; Morbidelli, R. Catchment scale soil moisture spatial—temporal variability. J. Hydrol. 2012, 422, 63–75. [Google Scholar] [CrossRef]
- Owe, M.; Jones, E.B.; Schmugge, T.J. Soil Moisture Variation Patterns Observed in Hand County, South Dakota. Jawra J. Am. Water Resour. Assoc. 2010, 18, 949–954. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Gao, J.; Teng, Y.; Feng, C.; Tian, M. Temporal Variations in Soil Moisture for Three Typical Vegetation Types in Inner Mongolia, Northern China. PLoS ONE 2015, 10, e0118964. [Google Scholar] [CrossRef] [Green Version]
- Bin, W.; Pengtao, Y.; Shunli, W.; Yanhui, W.; Xuelong, Z. Effects of moss layers on the spatial variation in soil moisture in a Picea crassifolia forest on the north-facing slope of the Qilian Mountains. Acta Ecol. Sin. 2017, 37. [Google Scholar]
- Yong, L.; Chen, J.; Lin, L.; Wang, S. Spatial and temporal variability of soil moisture in hilly red soil region based on land use and microtopography. Trans. Chin. Soc. Agric. Eng. 2009, 25, 36–41. [Google Scholar]
- Chen, X.F.; Xi, C.; Ju, W.M.; Ren, L.L.; Liang, C.Y. Comparison of the Temporal Heterogeneity of Soil Moisture of Different Ecosystems at Red Soil Hillside Fields. Adv. Mater. Res. 2012, 455, 1361–1365. [Google Scholar] [CrossRef]
- Constantinidou, K.; Hadjinicolaou, P.; Zittis, G.; Lelieveld, J. Performance of Land Surface Schemes in the WRF Model for Climate Simulations over the MENA-CORDEX Domain. Earth Syst. Environ. 2020, 4, 647–665. [Google Scholar] [CrossRef]
- Wang, S.; Fu, B.; Gao, G.; Liu, Y.; Zhou, J. Responses of soil moisture in different land cover types to rainfall events in a re-vegetation catchment area of the Loess Plateau, China. Catena 2013, 101, 122–128. [Google Scholar] [CrossRef]
- Famiglietti, J.S.; Rudnicki, J.W.; Rodell, M. Variability in surface moisture content along a hillslope transect: Rattlesnake Hill, Texas. J. Hydrol. 1998, 210, 259–281. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Liu, J.; Xu, X.; Tian, Y.; Li, Y.; Gao, Q. The response of soil moisture content to rainfall events in semi-arid area of Inner Mongolia. Procedia Environ. Sci. 2010, 2, 1970–1978. [Google Scholar] [CrossRef] [Green Version]
- Heisler-White, J.L.; Knapp, A.K.; Kelly, E.F. Increasing precipitation event size increases aboveground net primary productivity in a semi-arid grassland. Oecologia 2008, 158, 129–140. [Google Scholar] [CrossRef]
- Shouqin, Z.; Weihua, Z.; Jiake, L.; Chaofu, W. Temporal variation of soil water and its influencing factors in hilly area of Chongqing, China. Int. J. Agric. Biol. Eng. 2014, 7, 47–59. [Google Scholar]
- Ivanov, V.Y.; Fatichi, S.; Jenerette, G.D.; Espeleta, J.F.; Troch, P.A.; Huxman, T.E. Hysteresis of soil moisture spatial heterogeneity and the “homogenizing” effect of vegetation. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef]
- Western, A.W.; Blöschl, G. On the spatial scaling of soil moisture. J. Hydrol. 1999, 217, 203–224. [Google Scholar] [CrossRef]
- Western, A.W.; Grayson, R.B.; Blöschl, G.; Willgoose, G.R.; McMahon, T.A. Observed spatial organization of soil moisture and its relation to terrain indices. Water Resour. Res. 1999, 35, 797–810. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Y.; Fu, B.; Wang, J.; Chen, L. Soil moisture variation in relation to topography and land use in a hillslope catchment of the Loess Plateau, China. J. Hydrol. 2001, 240, 243–263. [Google Scholar] [CrossRef]
- Qiu, Y.; Fu, B.; Wang, J.; Chen, L. Spatial variability of soil moisture content and its relation to environmental indices in a semi-arid gully catchment of the Loess Plateau, China. J. Arid Environ. 2001, 49, 723–750. [Google Scholar] [CrossRef] [Green Version]
- Moore, I.D.; Burch, G.J.; Mackenzie, D.H. Topographic Effects on the Distribution of Surface Soil Water and the Location of Ephemeral Gullies. Trans. ASAE 1988, 31, 1098–1107. [Google Scholar] [CrossRef]
- Troeh, F.R. Landform Parameters Correlated to Soil Drainage. Soil Sci. Soc. Am. J. 1964, 28, 808–812. [Google Scholar] [CrossRef]
- Morris, R.C.; Fraley Jr, L. Soil permeability as a function of vegetation type and soil water content. Health Phys. 1994, 66, 691. [Google Scholar] [CrossRef]
- Lan, Z.L.; Pan, X.L.; Zhao, Y.; Si, B.C.; Wang, Y.K.; Jiao, R.; Zhang, J.G. Effects of land use types on deep soil water content in the loess hilly area of the north Shaanxi Province, China. J. Appl. Ecol. 2017, 28, 847–855. [Google Scholar]
- Chen, L.; Huang, Z.; Gong, J.; Fu, B.; Huang, Y. The effect of land cover/vegetation on soil water dynamic in the hilly area of the loess plateau, China. Catena 2007, 70, 200–208. [Google Scholar] [CrossRef]
- Flores-Mangual, M.L.; Lowery, B.; Bockheim, J.G.; Pagliari, P.H.; Scharenbroch, B. Hydrophobicity of Sparta Sand under Different Vegetation Types in the Lower Wisconsin River Valley. Soil Sci. Soc. Am. J. 2013, 77, 1506–1516. [Google Scholar] [CrossRef]
- Cho, E.; Choi, M. Regional scale spatio-temporal variability of soil moisture and its relationship with meteorological factors over the Korean peninsula. J. Hydrol. 2014, 516, 317–329. [Google Scholar] [CrossRef]
- Lakshmi, V.; Jackson, T.J.; Zehrfuhs, D. Soil moisture-temperature relationships: Results from two field experiments. Hydrol. Process. 2003, 17, 3041–3057. [Google Scholar] [CrossRef]
- Giraldo, M.A.; Bosch, D.; Madden, M.; Usery, L.; Finn, M. Ground and surface temperature variability for remote sensing of soil moisture in a heterogeneous landscape. J. Hydrol. 2009, 368, 214–223. [Google Scholar] [CrossRef] [Green Version]
- Salve, R.; Sudderth, E.A.; Clair, S.S.B.; Torn, M.S. Effect of grassland vegetation type on the responses of hydrological processes to seasonal precipitation patterns. J. Hydrol. 2011, 410, 51–61. [Google Scholar] [CrossRef]
- Yao, S.X.; Zhao, C.C.; Zhang, T.H.; Liu, X.P. Response of the soil water content of mobile dunes to precipitation patterns in Inner Mongolia, northern China. J. Arid Environ. 2013, 97, 92–98. [Google Scholar] [CrossRef] [Green Version]
- Hawke, R.M.; Price, A.G.; Bryan, R.B. The effect of initial soil water content and rainfall intensity on near-surface soil hydrologic conductivity: A laboratory investigation. Catena 2006, 65, 237–246. [Google Scholar] [CrossRef]
- Liu, X.; He, Y.; Zhang, T.; Zhao, X.; Li, Y.; Zhang, L.; Wei, S.; Yun, J.; Yue, X. The response of infiltration depth, evaporation, and soil water replenishment to rainfall in mobile dunes in the Horqin Sandy Land, Northern China. Environ. Earth Sci. 2015, 73, 8699–8708. [Google Scholar] [CrossRef]
- Li, X.R.; Ma, F.Y.; Xiao, H.L.; Wang, X.P.; Kim, K.C. Long-term effects of revegetation on soil water content of sand dunes in arid region of Northern China. J. Arid Environ. 2004, 57, 1–16. [Google Scholar] [CrossRef]
- Yang, Q.-H.; Chen, L.-H.; Zhang, F.; Zhang, C. Responses of soil moisture variations to rainfall and vegetation. Beijing Linye Daxue Xuebao/J. Beijing For. Univ. 2008, 30, 88–94. [Google Scholar]
- Borhan, M.S.; Parsons, L.R. Monitoring of Soil Water Content in a Citrus Grove Using Capacitance ECH2O Probes; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2004. [Google Scholar]
- Liu, X.; Zhang, B.; Zhuang, J.Y.; Han, C.; Zhai, L.; Zhao, W.R.; Zhang, J.C. The Relationship between Sap Flow Density and Environmental Factors in the Yangtze River Delta Region of China. Forests 2017, 8, 74. [Google Scholar] [CrossRef]
- Abdi, H. Coefficient of Variation. In The Encyclopedia of Statistics in Behavioral Science; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2011; Volume 94, p. 94. [Google Scholar]
- Hu, W.; Shao, M.; Reichardt, K. Using a New Criterion to Identify Sites for Mean Soil Water Storage Evaluation. Soil Sci. Soc. Am. J. 2010, 74, 762–773. [Google Scholar] [CrossRef]
- Fu, Q.; Wang, X.; Wang, Z.; Li, T.; Hou, R.; Osman, A. Analysis of the effects of different snow cover mulches on spatio-Temporal variations of farmland soil moisture. Appl. Eng. Agric. 2015, 31, 919–928. [Google Scholar] [CrossRef]
- Wang, G.; Sun, W.; Xue, B.; Kiem, A. Stratification response of soil water content during rainfall events under different rainfall patterns. Hydrol. Process. 2018, 32, 3128–3139. [Google Scholar]
- Chen, Q.; Wu, W.; Blanckaert, K.; Ma, J.; Huang, G. Optimization of water quality monitoring network in a large river by combining measurements, a numerical model and matter-element analyses. J. Environ. Manag. 2012, 110, 116–124. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Z.; Liu, J.; Savenije, H.H.G. A simple approach to assess water scarcity integrating water quantity and quality. Ecol. Indic. 2013, 34, 441–449. [Google Scholar] [CrossRef]
- Chen, M.; Willgoose, G.R.; Saco, P.M. Spatial prediction of temporal soil moisture dynamics using HYDRUS-1D. Hydrol. Process. 2014, 28, 171–185. [Google Scholar] [CrossRef]
- Kocárek, M.; Kodesova, R. Influence of temperature on soil water content measured by ECH2O-TE sensors. Int. Agrophys. 2012, 26, 259–269. [Google Scholar] [CrossRef]
- Illston, B.G.; Basara, J.B.; Crawford, K.C. Seasonal to interannual variations of soil moisture measured in Oklahoma. Int. J. Climatol.: J. R. Meteorol. Soc. 2004, 24, 1883–1896. [Google Scholar] [CrossRef]
- Zhao, W.; Cui, Z.; Zhou, C. Spatiotemporal variability of soil-water content at different depths in fields mulched with gravel for different planting years. J. Hydrol. 2020, 590, 125253. [Google Scholar] [CrossRef]
- Li, X.Y. Gravel-sand mulch for soil and water conservation in the semiarid loess region of northwest China. Catena 2003, 52, 105–127. [Google Scholar] [CrossRef]
- Penna, D.; Brocca, L.; Borga, M.; Dalla Fontana, G. Soil moisture temporal stability at different depths on two alpine hillslopes during wet and dry periods. J. Hydrol. 2013, 477, 55–71. [Google Scholar] [CrossRef]
- Abagale, F.K.; Tetteh, G.A. SOIL WATER CONTENT PROFILING USING EnviroSMART IN NORTHERN GHANA. Acad. J. 2011, 2, 2141–2391. [Google Scholar]
- Hu, W.; Shao, M.A.; Wang, Q.J.; Reichardt, K. Soil water content temporal-spatial variability of the surface layer of a Loess Plateau hillside in China. Sci. Agric. 2008, 65, 277–289. [Google Scholar] [CrossRef]
- Bahrawi, J.A.; Elhag, M. Consideration of seasonal variations on water radiometric indices estimation of soil moisture content in arid environment in Saudi Arabia. Desalination Water Treat. 2020, 176, 201–212. [Google Scholar] [CrossRef]
- Yu, Y.; Wei, W.; Chen, L.D.; Jia, F.Y.; Yang, L.; Zhang, H.D.; Feng, T.J. Responses of vertical soil moisture to rainfall pulses and land uses in a typical loess hilly area, China. Solid Earth 2015, 6, 595–608. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Pan, W.; Wul, J.; Yang, Y. Assessment of the impact of soil moisture on spring surface air temperature over the low-latitude highlands of China. Int. J. Climatol. 2020, 40, 6629–6645. [Google Scholar] [CrossRef]
- Yaseef, N.R.; Yakir, D.; Rotenberg, E.; Schiller, G.; Cohen, S. Ecohydrology of a semi-arid forest: Partitioning among water balance components and its implications for predicted precipitation changes. Ecohydrol.: Ecosyst. Land Water Process Interact. Ecohydrogeomorphol. 2010; 3, 143–154. [Google Scholar]
- Ben-Hur, M.; Lado, M. Effect of soil wetting conditions on seal formation, runoff, and soil loss in arid and semiarid soils—A review. Soil Res. 2008, 46, 191–202. [Google Scholar] [CrossRef]
- García-Orenes, F.; Roldán, A.; Mataix-Solera, J.; Cerdà, A.; Campoy, M.; Arcenegui, V.; Caravaca, F. Soil structural stability and erosion rates influenced by agricultural management practices in a semi-arid Mediterranean agro-ecosystem. Soil Use Manag. 2012, 28, 571–579. [Google Scholar] [CrossRef]
- Ziadat, F.M.; Taimeh, A.Y. Effect of rainfall intensity, slope, land use and antecedent soil moisture on soil erosion in an arid environment. Land Degrad. Dev. 2013, 24, 582–590. [Google Scholar] [CrossRef]
- Thomey, M.L.; Collins, S.L.; Vargas, R.; Johnson, J.E.; Brown, R.F.; Natvig, D.O.; Friggens, M.T. Effect of precipitation variability on net primary production and soil respiration in a Chihuahuan Desert grassland. Glob. Chang. Biol. 2011, 17, 1505–1515. [Google Scholar] [CrossRef]
- Wei, Y.; Guo, K.; Chen, J. Effect of precipitation pattern on recruitment of soil water in Kubuqi desert, northwestern China. J. Plant. Ecol. 2008, 32, 1346–1355. [Google Scholar]
- Huxman, T.E.; Snyder, K.A.; Tissue, D.; Leffler, A.J.; Schwinning, S. Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia 2004, 141, 254–268. [Google Scholar] [CrossRef]
- Jia, J.; Yu, X.; Li, Y. Response of forestland soil water content to heavy rainfall on Beijing Mountain, northern China. J. For. Res. 2016, 27, 541–550. [Google Scholar] [CrossRef]
- Darvishan, A.K.; Banasik, K.; Sadeghi, S.H.; Gholami, L.; Hejduk, L. Effects of Rain Intensity and Initial Soil Moisture on Hydrological Responses in Laboratory Conditions. Int. Agrophys. 2015, 29, 165–173. [Google Scholar] [CrossRef]
- Han, L.; Tingwu, L.; Jun, Z. Effects ofinitial soil watercontent and rainfall intensity on Loess infiltrationcapacity. Sci. Soil Water Conserv. 2009, 7, 1–6. [Google Scholar]
- Harmel, R.D.; Richardson, C.W.; King, K.W.; Allen, P.M. Runoff and soil loss relationships for the Texas Blackland Prairies ecoregion. J. Hydrol. 2006, 331, 471–483. [Google Scholar] [CrossRef]
- Srivastava, A.; Saco, P.M.; Rodriguez, J.F.; Kumari, N.; Chun, K.P.; Yetemen, O. The role of landscape morphology on soil moisture variability in semi-arid ecosystems. Hydrol. Process. 2020, 35. [Google Scholar] [CrossRef]
- Yang, Y.; Jiang, Y.; Zhang, W.; Li, X. Spatial Distribution of Soil Water Content and Its Influential Factors in Transition Zone Along the Treeline of Luya Mountain, Shanxi Province. J. Ecol. Rural Environ. 2012, 28, 120–127. [Google Scholar]
- Yoshioka, M.; Takakura, S.; Ishizawa, T.; Sakai, N. Temporal changes of soil temperature with soil water content in an embankment slope during controlled artificial rainfall experiments. J. Appl. Geophys. 2015, 114, 134–145. [Google Scholar] [CrossRef]
- Mestas-Valero, R.; Miras-Avalos, J.; Paz-González, A. Assessment of the soil water content temporal variations in an agricultural area of Galicia (NW Spain). In EGU General Assembly Conference Abstracts; European Geosciences Union: Munich, Germany, 2010; Volume 12, p. 3635. [Google Scholar]
- Drake, P.L.; Franks, P.J. Water resource partitioning, stem xylem hydraulic properties, and plant water use strategies in a seasonally dry riparian tropical rainforest. Oecologia 2003, 137, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Hupet, F.; Vanclooster, M. Intraseasonal dynamics of soil moisture variability within a small agricultural maize cropped field. J. Hydrol. 2002, 261, 86–101. [Google Scholar] [CrossRef]
- Querejeta, J.I.; Estrada-Medina, H.; Allen, M.F.; Jiménez-Osornio, J.J. Water source partitioning among trees growing on shallow karst soils in a seasonally dry tropical climate. Oecologia 2007, 152, 26–36. [Google Scholar] [CrossRef]
Rainfall | The Percentage of Amounts | The Percentage of Events |
---|---|---|
≤2 mm | 5.46% | 42.98% |
2–10 mm | 30.69% | 38.60% |
10–15 mm | 14.05% | 7.89% |
15–20 mm | 0.57% | 4.39% |
20–50 mm | 14.93% | 3.51% |
>50 mm | 24.30% | 2.63% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Tang, Y.; Cheng, X.; Jia, Z.; Li, C.; Ma, S.; Zhai, L.; Zhang, B.; Zhang, J. Comparison of Changes in Soil Moisture Content Following Rainfall in Different Subtropical Plantations of the Yangtze River Delta Region. Water 2021, 13, 914. https://doi.org/10.3390/w13070914
Liu X, Tang Y, Cheng X, Jia Z, Li C, Ma S, Zhai L, Zhang B, Zhang J. Comparison of Changes in Soil Moisture Content Following Rainfall in Different Subtropical Plantations of the Yangtze River Delta Region. Water. 2021; 13(7):914. https://doi.org/10.3390/w13070914
Chicago/Turabian StyleLiu, Xin, Yingzhou Tang, Xuefei Cheng, Zhaohui Jia, Chong Li, Shilin Ma, Lu Zhai, Bo Zhang, and Jinchi Zhang. 2021. "Comparison of Changes in Soil Moisture Content Following Rainfall in Different Subtropical Plantations of the Yangtze River Delta Region" Water 13, no. 7: 914. https://doi.org/10.3390/w13070914
APA StyleLiu, X., Tang, Y., Cheng, X., Jia, Z., Li, C., Ma, S., Zhai, L., Zhang, B., & Zhang, J. (2021). Comparison of Changes in Soil Moisture Content Following Rainfall in Different Subtropical Plantations of the Yangtze River Delta Region. Water, 13(7), 914. https://doi.org/10.3390/w13070914