Using Self-Organizing Map and Multivariate Statistical Methods for Groundwater Quality Assessment in the Urban Area of Linyi City, China
Abstract
:1. Introduction
2. Study Area
3. Materials and Methodology
3.1. Sample Collection and Analytical Methods
3.2. Data Screening and Pre-Processing
3.3. Self-Organizing Map
3.4. Multivariate Statistical and Graphical Methods
4. Results and Discussion
4.1. SOM and Statistical Results
4.2. Geochemical Characteristics of the Classified Four Clusters
4.3. Factors Governing Groundwater Geochemistry
4.4. Spatial Distributions of the Four Clusters and Principal Component Scores
5. Conclusions
- (1)
- The SOM component maps show qualitative relations among the nine parameters used in this study. The component planes of , , and as well as and have similar color gradients, indicating positive correlations among these three parameters. The distinct pattern of suggests week correlations with other parameters resulting from different sources.
- (2)
- Applying HCA to the weight vectors of the 48 SOM nodes results in the formation of four distinct clusters. PCA results along with hydrochemical analyses and graphical methods, including Piper and Gibbs diagrams, collectively affirm the statistical validity and geochemical coherence of the identified four clusters.
- (3)
- Water–rock interactions, particularly calcite dissolution, emerge as the predominant processes steering the chemical composition of groundwater. Additionally, the groundwater geochemistry in this area is influenced by municipal sewage.
- (4)
- The spatial distributions of the four clusters, coupled with the principal component scores, indicate that calcite dissolution exerts a significant influence on the groundwater in the northwestern region of the urban area of Linyi city. The anthropogenic activities exert a primary influence on groundwater in the central east and the organic matter content or elevated recharge from precipitation shapes the groundwater geochemistry, with a notable emphasis on pH, in the central north.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, F.; Wang, S.; Yeh, T.C.J.; Zhen, P.; Wang, L.; Shi, L. Using multivariate statistical techniques and geochemical modelling to identify factors controlling the evolution of groundwater chemistry in a typical transitional area between Taihang Mountains and North China Plain. Hydrol. Process. 2020, 34, 18. [Google Scholar] [CrossRef]
- Wu, C.; Fang, C.; Wu, X.; Zhu, G.; Zhang, Y. Hydrogeochemical characterization and quality assessment of groundwater using self-organizing maps in the Hangjinqi gasfield area, Ordos Basin, NW China. Geosci. Front. 2021, 12, 781–790. [Google Scholar] [CrossRef]
- Xiao, Y.; Gu, X.; Yin, S.; Pan, X.; Shao, J.; Cui, Y. Investigation of geochemical characteristics and controlling processes of groundwater in a typical long-term reclaimed water use area. Water 2017, 9, 800. [Google Scholar] [CrossRef]
- Xiao, Y.; Gu, X.; Yin, S.; Pan, X.; Shao, J.; Cui, Y. Hydrogeochemical characterization and quality assessment of groundwater in a long-term reclaimed water irrigation area, North China Plain. Water 2018, 10, 1209. [Google Scholar]
- Yang, J.; Ye, M.; Tang, Z.; Jiao, T.; Liu, H. Using cluster analysis for understanding spatial and temporal patterns and controlling factors of groundwater geochemistry in a regional aquifer. J. Hydrol. 2020, 583, 124594. [Google Scholar] [CrossRef]
- Liu, H.; Yang, J.; Ye, M.; James, S.C.; Xing, T. Using t-distributed Stochastic Neighbor Embedding (t-SNE) for cluster analysis and spatial zone delineation of groundwater geochemistry data. J. Hydrol. 2021, 597, 126146. [Google Scholar] [CrossRef]
- Liu, H.; Yang, J.; Ye, M.; Tang, Z.; Dong, J.; Xing, T. Using one-way clustering and co-clustering methods to reveal spatio-temporal patterns and controlling factors of groundwater geochemistry. J. Hydrol. 2021, 603, 127085. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, M.; Li, X.; Qi, J.; Zhao, R. Hydrochemical characteristics and multivariate statistical analysis of natural water system: A case study in Kangding county, southwestern China. Water 2018, 10, 80. [Google Scholar] [CrossRef]
- Ruiz-Pico, N.; Cuenca, L.P.; Agila, R.S.; Criollo, D.M.; Leiva-Piedra, J.; Salazar-Campos, J.J.A.G. Hydrochemical characterization of groundwater in the Loja Basin (Ecuador). Appl. Geochem. 2019, 104, 1–9. [Google Scholar] [CrossRef]
- Fang, Y.; Zheng, T.; Zheng, X.; Peng, H.; Wang, H.; Xin, J.; Zhang, B. Assessment of the hydrodynamics role for groundwater quality using an integration of GIS, water quality index and multivariate statistical techniques. J. Environ. Manag. 2020, 273, 111185. [Google Scholar] [CrossRef]
- Yu, L.; Zheng, T.; Zheng, X.; Hao, Y.; Yuan, R. Nitrate source apportionment in groundwater using Bayesian isotope mixing model based on nitrogen isotope fractionation. Sci. Total Environ. 2020, 718, 137242. [Google Scholar] [CrossRef] [PubMed]
- Gan, Y.; Zhao, K.; Deng, Y.; Liang, X.; Ma, T.; Wang, Y. Groundwater flow and hydrogeochemical evolution in the Jianghan Plain, central China. Hydrogeol. J. 2018, 26, 1609–1623. [Google Scholar] [CrossRef]
- Sanford, R.F.; Pierson, C.T.; Crovelli, R.A. An objective replacement method for censored geochemical data. Math. Geol. 1993, 25, 59–80. [Google Scholar] [CrossRef]
- Leong, W.C.; Bahadori, A.; Zhang, J.; Ahmad, Z. Prediction of water quality index (WQI) using support vector machine (SVM) and least square-support vector machine (LS-SVM). Int. J. River Basin Manag. 2019, 19, 149–156. [Google Scholar] [CrossRef]
- Iticescu, C.; Georgescu, L.P.; Murariu, G.; Topa, C.; Arseni, M. Lowerdanube water quality quantified through WQI and multivariate analysis. Water 2019, 11, 1305. [Google Scholar] [CrossRef]
- Yaseen, Z.M.; Ramal, M.M.; Diop, L.; Jaafar, O.; Demir, V.; Kisi, O. Hybrid adaptive neuro-fuzzu models for water quality index estimation. Water Resour. Manag. 2018, 32, 2227–2245. [Google Scholar] [CrossRef]
- Khalil, B.; Ouarda, T.B.M.J.; St-Hilaire, A. Estimation of water quality characteristics at ungauged sites using artificial neural networks and canonical correlation analysis. J. Hydrol. 2011, 405, 277–287. [Google Scholar] [CrossRef]
- Nourani, V.; Elkiran, G.; Abdullahi, J. Multi-station artificial intelligence based ensemble modeling of reference evapotranspiration using pan evaporation measurements—ScienceDirect. J. Hydrol. 2019, 577, 123958. [Google Scholar] [CrossRef]
- Najah, A.; El-Shafie, A.; Karim, O.A.; El-Shafie, A.H. Performance of ANFIS versus MLP-NN dissolved oxygen prediction models in water quality monitoring. Environ. Sci. Pollut. Res. 2014, 21, 1658–1670. [Google Scholar] [CrossRef]
- Ahmed, A.N.; Othman, F.B.; Afan, H.A.; Ibrahim, R.K.; Elshafie, A. Machine learning methods for better water quality prediction. J. Hydrol. 2019, 578, 124084. [Google Scholar] [CrossRef]
- Abobakr Yahya, A.S.; Ahmed, A.N.; Binti Othman, F.; Ibrahim, R.K.; Afan, H.A.; El-Shafie, A.; Fai, C.M.; Hossain, M.S.; Ehteram, M.; Elshafie, A. Water quality prediction model based Support Vector Machine model for ungauged river catchment under dual scenarios. Water 2020, 11, 1231. [Google Scholar] [CrossRef]
- Abba, S.I.; Pham, Q.B.; Saini, G.; Linh, N.T.T.; Ahmed, A.N.; Mohajane, M.; Khaledian, M.; Abdulkadir, R.A.; Bach, Q.-V. Implementation of data intelligence models coupled with ensemble machine learning for prediction of water quality index. Environ. Sci. Pollut. Res. 2020, 27, 41524–41539. [Google Scholar] [CrossRef] [PubMed]
- Singha, S.; Pasupuleti, S.; Singha, S.S.; Singh, R.; Kumar, S. Prediction of groundwater quality using efficient machine learning technique. Chemosphere 2021, 276, 130265. [Google Scholar] [CrossRef] [PubMed]
- Haggerty, R.; Sun, J.; Yu, H.; Li, Y. Application of machine learning in groundwater quality modeling—A comprehensive review. Water Res. 2023, 233, 119745. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Ye, X.; Du, X. Predictive modeling and analysis of key drivers of groundwater nitrate pollution based on machine learning. J. Hydrol. 2023, 624, 129934. [Google Scholar] [CrossRef]
- Chen, S.; Tang, Z.; Wang, J.; Wu, J.; Yang, C.; Kang, W.; Huang, X. Multivariate analysis and geochemical signatures of shallow groundwater in the main urban area of Chongqing, southwestern China. Water 2020, 12, 2833. [Google Scholar] [CrossRef]
- Castro, R.P.; Ávila, J.P.; Ye, M.; Sansores, A.C. Groundwater Quality: Analysis of Its Temporal and Spatial Variability in a Karst Aquifer. Groundwater 2017, 56, 62–72. [Google Scholar] [CrossRef]
- Xiao, L.; Wang, K.; Teng, Y.; Zhang, J. Component plane presentation integrated self-organizing map for microarray data analysis. FEBS Lett. 2003, 538, 117–124. [Google Scholar]
- Nguyen, T.T.; Kawamura, A.; Tong, T.N.; Nakagawa, N.; Amaguchi, H.; Gilbuena, R. Clustering spatio–seasonal hydrogeochemical data using self-organizing maps for groundwater quality assessment in the Red River Delta, Vietnam. J. Hydrol. 2015, 522, 661–673. [Google Scholar] [CrossRef]
- Wu, X.; Zheng, Y.; Zhang, J.; Wu, B.; Wang, S.; Tian, Y.; Li, J.; Meng, X. Investigating hydrochemical groundwater processes in an inland agricultural area with limited data: A clustering approach. Water 2017, 9, 723. [Google Scholar] [CrossRef]
- Feng, R.; Yuan, R. Groundwater quality assessment based on the t-SNE method in the north coal field of Shanxi [in Chinese]. Acta Sci. Circumstantiae 2017, 34, 2540–2546. [Google Scholar]
- Horrocks, T.; Holden, E.J.; Wedge, D.; Wijns, C.; Fiorentini, M. Geochemical characterization of rock hydration processes using t-SNE. Comput. Geosci. 2018, 124, 46–57. [Google Scholar] [CrossRef]
- Zhang, Y. Analysis on the development and utilization of groundwater resources in Linyi region (in Chinese). Groundwater 2016, 38, 72–90. [Google Scholar]
- Xin, H.; Hou, Y.S.; Hu, X.N.; Zhi, C.S.; Liu, S.; Wu, G.W.; Chang, Y.X.; Wang, Q.B. Optimization of groundwater monitoring network and evaluation of karst collapse susceptibility in karst development areas of Linyi city (in Chinese). J. Univ. Jinan (Sci. Technol.) 2023, 37, 1–7. [Google Scholar]
- Wu, X.; Wang, L.; An, J.; Wang, Y.; Song, H.; Wu, Y.; Liu, Q. Relationship between soil organic carbon, soil nutrients, and land use in Linyi city (east China). Sustainability 2022, 14, 13585. [Google Scholar] [CrossRef]
- Yin, H.; Zhang, C.; Zhou, X.; Chen, T.; Dong, F.; Cheng, W.; Tang, R.; Xu, G.; Jiao, P. Research on the genetic mechanism of high-temperature groundwater in the geothermal anomalous area of gold deposit-Application to the copper mine area of Yinan gold mine. ACS Omega 2022, 7, 43231–43241. [Google Scholar] [CrossRef]
- Qi, J.; Li, J. Assessment of shallow groundwater pollution and corrosion in the central urban area of Linyi. J. Qingdao Univ. Technol. 2017, 38, 99–105. (In Chinese) [Google Scholar]
- Ghesquière, O.; Walter, J.; Chesnaux, R.; Rouleau, A. Scenarios of groundwater chemical evolution in a region of the Canadian Shield based on multivariate statistical analysis. J. Hydrol. Reg. Stud. 2015, 4, 246–266. [Google Scholar] [CrossRef]
- Appelo, C.A.J.; Postma, D. Geochemistry, Groundwater and Pollution, 2nd ed.; Taylor and Francis: London, UK, 2005. [Google Scholar]
- Qian, Y.; Migliaccio, K.W.; Wan, Y.; Li, Y. Surface water quality evaluation using multivariate methods and a new water quality index in the Indian River Lagoon, Florida. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef]
- Kohonen. Self-Organizing Maps, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Gibson, P.B.; Perkins-Kirkpatrick, S.E.; Uotila, P.; Pepler, A.S.; Alexander, L.V. On the use of self-organizing maps for studying climate extremes. J. Geophys. Res. Atmos. 2017, 122, 3891–3903. [Google Scholar] [CrossRef]
- Garcia, H.L.; Gonzalez, I.M. Self-organizing map and clustering for wastewater treatment monitoring. Eng. Appl. Artif. Intell. 2004, 17, 215–225. [Google Scholar] [CrossRef]
- Ward, J.H., Jr. Hierarchical Grouping to Optimize an Objective Function. Publ. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Kaiser, H.F. The Application of Electronic Computers to Factor Analysis. Educ. Psychol. Meas. 1960, 20, 141–151. [Google Scholar] [CrossRef]
- Yang, J.; Liu, H.; Tang, Z.; Peeters, L.; Ye, M. Visualization of aqueous geochemical data using Python and WQChartPy. Groundwater 2022, 60, 555–564. [Google Scholar] [CrossRef]
- Gibbs, R.J. Mechanisms Controlling World Water Chemistry. Science 1970, 170, 1088–1090. [Google Scholar] [CrossRef] [PubMed]
- Arienzo, M.; Christen, E.W.; Quayle, W.; Kumar, A. A review of the fate of potassium in the soil–plant system after land application of wastewaters. J. Hazard. Mater. 2008, 164, 415–422. [Google Scholar] [CrossRef] [PubMed]
pH | ||||||||
---|---|---|---|---|---|---|---|---|
0.09 | ||||||||
−0.12 | 0.56 | |||||||
−0.45 | −0.07 | 0.32 | ||||||
−0.16 | 0.27 | 0.53 | 0.55 | |||||
−0.26 | 0.23 | 0.62 | 0.53 | 0.63 | ||||
−0.24 | 0.40 | 0.51 | 0.65 | 0.53 | 0.40 | |||
−0.32 | −0.08 | 0.31 | 0.63 | 0.43 | 0.22 | 0.29 | ||
−0.09 | −0.05 | 0.08 | 0.27 | 0.20 | 0.12 | 0.07 | 0.18 |
Maximum | Minimum | Average | Median | Standard Deviation | |
---|---|---|---|---|---|
pH | 7.96 | 6.82 | 7.35 | 7.28 | 0.26 |
85.31 | 0.20 | 5.14 | 2.27 | 11.66 | |
188.41 | 15.00 | 60.95 | 51.80 | 32.32 | |
485.89 | 26.08 | 145.97 | 133.52 | 74.93 | |
104.70 | 9.47 | 32.90 | 30.55 | 16.02 | |
777.18 | 22.51 | 98.75 | 82.95 | 85.64 | |
1253.90 | 22.05 | 152.91 | 110.10 | 156.96 | |
590.48 | 79.96 | 340.57 | 345.06 | 95.42 | |
194.44 | 0.89 | 42.41 | 26.30 | 46.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Li, H.; Yang, J.; Ma, M.; Shang, J.; Tang, Z.; Liu, G. Using Self-Organizing Map and Multivariate Statistical Methods for Groundwater Quality Assessment in the Urban Area of Linyi City, China. Water 2023, 15, 3463. https://doi.org/10.3390/w15193463
Liu S, Li H, Yang J, Ma M, Shang J, Tang Z, Liu G. Using Self-Organizing Map and Multivariate Statistical Methods for Groundwater Quality Assessment in the Urban Area of Linyi City, China. Water. 2023; 15(19):3463. https://doi.org/10.3390/w15193463
Chicago/Turabian StyleLiu, Shiqiang, Haibo Li, Jing Yang, Mingqiang Ma, Jiale Shang, Zhonghua Tang, and Geng Liu. 2023. "Using Self-Organizing Map and Multivariate Statistical Methods for Groundwater Quality Assessment in the Urban Area of Linyi City, China" Water 15, no. 19: 3463. https://doi.org/10.3390/w15193463
APA StyleLiu, S., Li, H., Yang, J., Ma, M., Shang, J., Tang, Z., & Liu, G. (2023). Using Self-Organizing Map and Multivariate Statistical Methods for Groundwater Quality Assessment in the Urban Area of Linyi City, China. Water, 15(19), 3463. https://doi.org/10.3390/w15193463