Integrated Evaluations of Resource and Environment Carrying Capacity of the Huaihe River Ecological and Economic Belt in China
Abstract
:1. Introduction
2. Literature Background
2.1. Developing History of Environment Carrying Capacity
2.2. Evaluation of Resource and Environment Carrying Capacity
- Evaluation of Land Resources
- 2.
- Evaluation of Water Resources
- 3.
- Environmental Evaluation
- 4.
- Disaster Evaluation
3. Materials and Methods
3.1. Research Area
3.2. Fuzzy Analytical Hierarchy Process (FAHP) Method
- Step 1: Question Description
- Step 2: Establishment of the Hierarchical Structure
- Step 3: Establishment of Fuzzy Pairwise Comparison Matrix
- Step 4: Calculation of the fuzzy weights
- Step 5: Fuzzy consistency test
- Step 6: Fuzzy Solution
- Step 7: Connection of the hierarchies in series and the rank of the schemes
3.3. Determination of Evaluation Units
3.4. Establishment of the Index System
3.5. Data Source and Standardized Processing of the Indexes
4. Results and Discussions
4.1. Determination of the Index Weights
4.2. Resource Condition
4.3. Natural Environment
4.4. Analysis of Urbanization Development
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
City | Per Capita Cultivated Land (ha/Person) | Per Capita Water Resource (HUNDRED Million m3/Person) | Per Capita Construction Land (ha/per Ten Thousand Person) | Per Capita Forest Area (ha/per Ten Thousand Person) | Population Density (ha/per Ten Thousand Person) | Urbanization Rate (%) |
---|---|---|---|---|---|---|
Huai’an | 963.71 | 0.0740 | 280.68 | 40.08 | 2033.32 | 63.50 |
Yancheng | 1155.98 | 0.0721 | 21.09 | 17.02 | 2348.62 | 64.90 |
Suqian | 873.19 | 0.0528 | 18.22 | 37.66 | 1725.86 | 61.10 |
Xuzhou | 692.47 | 0.0538 | 28.89 | 28.10 | 1333.04 | 66.70 |
Lianyungang | 868.12 | 0.0326 | 400.00 | 32.33 | 1688.10 | 63.60 |
Yangzhou | 627.68 | 0.0543 | 35.83 | 11.14 | 1448.89 | 68.20 |
Taizhou | 635.74 | 0.0403 | 35.16 | 5.03 | 1248.25 | 66.80 |
Zaozhuang | 600.90 | 0.0252 | 36.10 | 96.79 | 1159.42 | 59.20 |
Ji’ning | 704.95 | 0.0124 | 21.90 | 69.80 | 1302.94 | 59.69 |
Linyi | 785.84 | 0.0430 | 18.75 | 178.81 | 1611.61 | 52.75 |
Heze | 941.62 | 0.010 | 16.74 | 63.54 | 1393.69 | 50.63 |
Bengbu | 1108.56 | 0.0592 | 62.59 | 416.87 | 1744.06 | 58.58 |
Huainan | 1083.78 | 0.0579 | 61.19 | 407.56 | 1705.08 | 65.04 |
Fuyang | 412.57 | 0.0303 | 18.28 | 8.51 | 669.94 | 44.62 |
Lu’an | 945.31 | 0.0755 | 90.70 | 422.18 | 2076.37 | 47.09 |
Bozhou | 992.84 | 0.1648 | 171.22 | 1368.04 | 2935.78 | 42.22 |
Suzhou | 1209.65 | 0.0528 | 28.49 | 290.53 | 1469.12 | 43.96 |
Huaibei | 2535.37 | 0.1312 | 86.34 | 1424.58 | 4311.45 | 65.88 |
Chuzhou | 406.17 | 0.0192 | 31.41 | 19.39 | 660.96 | 54.54 |
Xinyang | 1108.98 | 0.0973 | 281.16 | 273.37 | 2073.99 | 48.98 |
Zhumadian | 1205.90 | 0.0979 | 308.65 | 607.52 | 2684.40 | 44.63 |
Zhoukou | 1097.30 | 0.0785 | 235.97 | 186.45 | 1740.88 | 44.36 |
Luohe | 3222.52 | 0.1004 | 511.16 | 150.06 | 4479.78 | 53.97 |
Shangqiu | 260.50 | 0.0071 | 97.71 | 9.41 | 367.26 | 44.83 |
Pingdingshan | 1414.19 | 0.0356 | 245.36 | 146.39 | 2128.03 | 55.50 |
City | C1 | C2 | C3 | C4 | C5 | C6 |
---|---|---|---|---|---|---|
Huai’an | 0.30 | 0.45 | 0.55 | 0.03 | 0.18 | 0.93 |
Yancheng | 0.36 | 0.44 | 0.04 | 0.01 | 0.16 | 0.95 |
Suqian | 0.27 | 0.32 | 0.04 | 0.03 | 0.21 | 0.90 |
Xuzhou | 0.21 | 0.33 | 0.06 | 0.02 | 0.28 | 0.98 |
Lianyungang | 0.27 | 0.20 | 0.78 | 0.02 | 0.22 | 0.93 |
Yangzhou | 0.19 | 0.33 | 0.07 | 0.01 | 0.25 | 1.00 |
Taizhou | 0.20 | 0.24 | 0.07 | 0.00 | 0.29 | 0.98 |
Zaozhuang | 0.19 | 0.15 | 0.07 | 0.07 | 0.32 | 0.87 |
Ji’ning | 0.22 | 0.08 | 0.04 | 0.05 | 0.28 | 0.88 |
Linyi | 0.24 | 0.26 | 0.04 | 0.13 | 0.23 | 0.77 |
Heze | 0.29 | 0.09 | 0.03 | 0.04 | 0.26 | 0.74 |
Bengbu | 0.34 | 0.36 | 0.12 | 0.29 | 0.21 | 0.86 |
Huainan | 0.34 | 0.35 | 0.12 | 0.29 | 0.22 | 0.95 |
Fuyang | 0.13 | 0.18 | 0.04 | 0.01 | 0.55 | 0.65 |
Lu’an | 0.29 | 0.46 | 0.18 | 0.30 | 0.18 | 0.69 |
Bozhou | 0.31 | 1.00 | 0.33 | 0.96 | 0.13 | 0.62 |
Suzhou | 0.38 | 0.32 | 0.06 | 0.20 | 0.25 | 0.64 |
Huaibei | 0.79 | 0.80 | 0.17 | 1.00 | 0.09 | 0.97 |
Chuzhou | 0.13 | 0.12 | 0.06 | 0.01 | 0.56 | 0.80 |
Xinyang | 0.34 | 0.59 | 0.55 | 0.19 | 0.18 | 0.72 |
Zhumadian | 0.37 | 0.59 | 0.60 | 0.43 | 0.14 | 0.65 |
Zhoukou | 0.34 | 0.48 | 0.46 | 0.13 | 0.21 | 0.65 |
Luohe | 1.00 | 0.61 | 1.00 | 0.11 | 0.08 | 0.79 |
Shangqiu | 0.08 | 0.04 | 0.19 | 0.01 | 1.00 | 0.66 |
Pingdingshan | 0.44 | 0.22 | 0.48 | 0.10 | 0.17 | 0.81 |
Order | City | C1 | C2 | C3 | C4 | C5 | C6 | Overall Values |
---|---|---|---|---|---|---|---|---|
1 | Huaibei | 0.142 | 0.163 | 0.027 | 0.203 | 0.010 | 0.135 | 0.680 |
2 | Bozhou | 0.055 | 0.205 | 0.054 | 0.195 | 0.014 | 0.087 | 0.610 |
3 | Luohe | 0.180 | 0.125 | 0.160 | 0.021 | 0.009 | 0.111 | 0.606 |
4 | Zhumadian | 0.067 | 0.122 | 0.097 | 0.087 | 0.015 | 0.092 | 0.479 |
5 | Xinyang | 0.062 | 0.121 | 0.088 | 0.039 | 0.020 | 0.101 | 0.430 |
6 | Huai’an | 0.054 | 0.092 | 0.088 | 0.006 | 0.020 | 0.130 | 0.390 |
7 | Zhoukou | 0.061 | 0.097 | 0.074 | 0.027 | 0.024 | 0.091 | 0.374 |
8 | Lianyungang | 0.049 | 0.040 | 0.125 | 0.005 | 0.024 | 0.131 | 0.374 |
9 | Huainan | 0.061 | 0.072 | 0.019 | 0.058 | 0.024 | 0.134 | 0.367 |
10 | Bengbu | 0.062 | 0.074 | 0.020 | 0.059 | 0.024 | 0.120 | 0.358 |
11 | Pingdingshan | 0.079 | 0.044 | 0.077 | 0.021 | 0.019 | 0.114 | 0.354 |
12 | Lu’an | 0.053 | 0.094 | 0.028 | 0.060 | 0.020 | 0.097 | 0.352 |
13 | Yancheng | 0.065 | 0.090 | 0.007 | 0.002 | 0.018 | 0.133 | 0.314 |
14 | Suzhou | 0.068 | 0.066 | 0.009 | 0.041 | 0.028 | 0.090 | 0.302 |
15 | Xuzhou | 0.039 | 0.067 | 0.009 | 0.004 | 0.031 | 0.137 | 0.286 |
16 | Yangzhou | 0.035 | 0.067 | 0.011 | 0.002 | 0.028 | 0.140 | 0.284 |
17 | Suqian | 0.049 | 0.066 | 0.006 | 0.005 | 0.024 | 0.125 | 0.275 |
18 | Taizhou | 0.036 | 0.050 | 0.011 | 0.001 | 0.033 | 0.137 | 0.267 |
19 | Linyi | 0.044 | 0.053 | 0.006 | 0.026 | 0.026 | 0.108 | 0.263 |
20 | Shangqiu | 0.015 | 0.009 | 0.031 | 0.001 | 0.112 | 0.092 | 0.259 |
21 | Zaozhuang | 0.034 | 0.031 | 0.011 | 0.014 | 0.036 | 0.122 | 0.247 |
22 | Chuzhou | 0.023 | 0.024 | 0.010 | 0.003 | 0.062 | 0.112 | 0.233 |
23 | Jining | 0.039 | 0.015 | 0.007 | 0.010 | 0.032 | 0.123 | 0.226 |
24 | Fuyang | 0.023 | 0.038 | 0.006 | 0.001 | 0.061 | 0.092 | 0.221 |
25 | Heze | 0.053 | 0.017 | 0.005 | 0.009 | 0.030 | 0.104 | 0.218 |
References
- Wang, Z. Land Spatial Development Based on Carrying Capacity, Land Development Potential, and Efficiency of Urban Agglomerations in China. Sustainability 2018, 10, 4701. [Google Scholar] [CrossRef] [Green Version]
- Gluch, P.; Månsson, S. Taking Lead for Sustainability: Environmental Managers as Institutional Entrepreneurs. Sustainability 2021, 13, 4022. [Google Scholar] [CrossRef]
- Li, R.-m.; Yin, Z.-q.; Wang, Y.; Li, X.-l.; Liu, Q.; Gao, M.-m. Geological resources and environmental carrying capacity evaluation review, theory, and practice in China. China Geol. 2018, 1, 556–565. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Y. Territory spatial planning and national governance system in China. Land Use Policy 2021, 102, 105288. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, C.; Mao, G.; Wang, M.; Hsu, W.-L. An Empirical Study on the Ecological Economy of the Huai River in China. Water 2020, 12, 2162. [Google Scholar] [CrossRef]
- Wang, C.; Long, R.; Mao, G.; Cao, L.; Hsu, W.-L. Spatiotemporal Sensitivity Characteristics of Water Resources in Huai River Ecological–Economic Belt, China. Sens. Mater. 2021, 33, 1473–1483. [Google Scholar] [CrossRef]
- Zhang, G.; Luo, S.; Jing, Z.; Wei, S.; Ma, Y. Evaluation and Forewarning Management of Regional Resources and Environment Carrying Capacity: A Case Study of Hefei City, Anhui Province, China. Sustainability 2020, 12, 1637. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Ren, Y.; Shen, L.; Liao, X.; Wei, X.; Wang, J. Analysis on the effectiveness of indicators for evaluating urban carrying capacity: A popularity-suitability perspective. J. Clean. Prod. 2020, 246, 119019. [Google Scholar] [CrossRef]
- Rees, W.E. Ecological footprints and appropriated carrying capacity: What urban economics leaves out. Environ. Urban. 1992, 4, 121–130. [Google Scholar] [CrossRef]
- Chapman, E.J.; Byron, C.J. The flexible application of carrying capacity in ecology. Glob. Ecol. Conserv. 2018, 13, e00365. [Google Scholar] [CrossRef]
- Sayre, N.F. The Genesis, History, and Limits of Carrying Capacity. Ann. Assoc. Am. Geogr. 2008, 98, 120–134. [Google Scholar] [CrossRef]
- Zimmerer, K.S. Human Geography and the “New Ecology”: The Prospect and Promise of Integration. Ann. Assoc. Am. Geogr. 1994, 84, 108–125. [Google Scholar] [CrossRef] [Green Version]
- Price, D. Carrying capacity reconsidered. Popul. Environ. 1999, 21, 5–26. [Google Scholar] [CrossRef]
- Farsund, A.A.; Daugbjerg, C.; Langhelle, O. Food security and trade: Reconciling discourses in the Food and Agriculture Organization and the World Trade Organization. Food Secur. 2015, 7, 383–391. [Google Scholar] [CrossRef]
- Yu, D.; Mao, H.; Gao, Q. Study on regional carrying capacity: Theory, method and example—take the Bohai-Rim area as example. Geogr. Res. 2003, 22, 201–210. (In Chinese). Available online: http://www.dlyj.ac.cn/CN/lexeme/showArticleByLexeme.do?articleID=9186 (accessed on 23 July 2021).
- Lv, Y.; Fu, W.; Li, T.; Liu, Y. Progress and prospects of research on integrated carrying capacity of regional resources and environment. Prog. Geogr. 2018, 31, 130–136. (In Chinese) [Google Scholar] [CrossRef] [Green Version]
- Devuyst, D.; Hens, L.; De Lannoy, W.; de Lannoy, W. How green is the city?: Sustainability Assessment and the Management of Urban Environments; Columbia University Press: New York, NY, USA, 2001. [Google Scholar]
- Johnson, S.; Wang, G.; Howard, H.; Anderson, A.B. Identification of superfluous roads in terms of sustainable military land carrying capacity and environment. J. Terramech. 2011, 48, 97–104. [Google Scholar] [CrossRef]
- Mondino, E.B.; Fabrizio, E.; Chiabrando, R. A GIS Tool for the Land Carrying Capacity of Large Solar Plants. Energy Procedia 2014, 48, 1576–1585. [Google Scholar] [CrossRef] [Green Version]
- Richter, B.D.; Mathews, R.; Harrison, D.L.; Wigington, R. Ecologically sustainable water management: Managing river flows for ecological integrity. Ecol. Appl. 2003, 13, 206–224. [Google Scholar] [CrossRef]
- Bernhardt, E.; Bunn, S.; Hart, D.D.; Malmqvist, B.; Muotka, T.; Naiman, R.J.; Pringle, C.; Reuss, M.; Wilgen, B.v. Perspective: The challenge of ecologically sustainable water management. Water Policy 2006, 8, 475–479. [Google Scholar] [CrossRef] [Green Version]
- Byron, C.; Link, J.; Costa-Pierce, B.; Bengtson, D. Modeling ecological carrying capacity of shellfish aquaculture in highly flushed temperate lagoons. Aquaculture 2011, 314, 87–99. [Google Scholar] [CrossRef]
- David, G.S.; Carvalho, E.D.; Lemos, D.; Silveira, A.N.; Dall’Aglio-Sobrinho, M. Ecological carrying capacity for intensive tilapia (Oreochromis niloticus) cage aquaculture in a large hydroelectrical reservoir in Southeastern Brazil. Aquacult. Eng. 2015, 66, 30–40. [Google Scholar] [CrossRef]
- Liu, R.Z.; Borthwick, A.G.L. Measurement and assessment of carrying capacity of the environment in Ningbo, China. J. Environ. Manag. 2011, 92, 2047–2053. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Zang, C.; Zhang, J. Economic and resource and environmental carrying capacity trade-off analysis in the Haihe River basin in China. J. Clean. Prod. 2020, 270, 122271. [Google Scholar] [CrossRef]
- Liao, S.; Wu, Y.; Wong, S.W.; Shen, L. Provincial perspective analysis on the coordination between urbanization growth and resource environment carrying capacity (RECC) in China. Sci. Total Environ. 2020, 730, 138964. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Sun, T.; Yang, Y.; Yan, H. The Progress of Resources and Environment Carrying Capacity: From Single-factor Carrying Capacity Research to Comprehensive Research. J. Resour. Ecol. 2018, 9, 125–134. [Google Scholar] [CrossRef]
- Kaur, H.; Garg, P. Urban sustainability assessment tools: A review. J. Clean. Prod. 2019, 210, 146–158. [Google Scholar] [CrossRef]
- Ye, W.; Xu, X.; Wang, H.; Wang, H.; Yang, H.; Yang, Z. Quantitative assessment of resources and environmental carrying capacity in the northwest temperate continental climate ecotope of China. Environ. Earth Sci. 2016, 75, 868. [Google Scholar] [CrossRef]
- Irankhahi, M.; Jozi, S.A.; Farshchi, P.; Shariat, S.M.; Liaghati, H. Combination of GISFM and TOPSIS to evaluation of Urban Environment Carrying Capacity (Case study: Shemiran City, Iran). Int. J. Environ. Sci. Technol. 2017, 14, 1317–1332. [Google Scholar] [CrossRef]
- Zhu, X.; Li, Y.; Zhang, P.; Wei, Y.; Zheng, X.; Xie, L. Temporal–spatial characteristics of urban land use efficiency of China’s 35mega cities based on DEA: Decomposing technology and scale efficiency. Land Use Policy 2019, 88, 104083. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Z.; Liu, J.; Chai, J.; Wei, C. Selection of targeted poverty alleviation policies from the perspective of land resources-environmental carrying capacity. J. Rural Stud. 2019. [Google Scholar] [CrossRef]
- Xie, X.; Li, X.; He, W. A Land Space Development Zoning Method Based on Resource–Environmental Carrying Capacity: A Case Study of Henan, China. Int. J. Environ. Res. Public Health 2020, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Attwa, M.; El Bastawesy, M.; Ragab, D.; Othman, A.; Assaggaf, H.M.; Abotalib, A.Z. Toward an Integrated and Sustainable Water Resources Management in Structurally-Controlled Watersheds in Desert Environments Using Geophysical and Remote Sensing Methods. Sustainability 2021, 13, 4004. [Google Scholar] [CrossRef]
- Ren, Q.; Li, H. Spatiotemporal Effects and Driving Factors of Water Pollutants Discharge in Beijing–Tianjin–Hebei Region. Water 2021, 13, 1174. [Google Scholar] [CrossRef]
- Widodo, B.; Lupyanto, R.; Sulistiono, B.; Harjito, D.A.; Hamidin, J.; Hapsari, E.; Yasin, M.; Ellinda, C. Analysis of Environmental Carrying Capacity for the Development of Sustainable Settlement in Yogyakarta Urban Area. Procedia Environ. Sci. 2015, 28, 519–527. [Google Scholar] [CrossRef] [Green Version]
- Vogt, W.; Baruch, B.M.; Freeman, S.I. Road to Survival; W. Sloane Associates: New York, NY, USA, 1948; Available online: https://detopia.de/1940/1948-Vogt-William-Die-Erde-raecht-sich-Road-to-Survival.pdf (accessed on 23 July 2021).
- Guo, X.-R.; Mao, X.-Q. Review of land carrying capacity calculating methods chin. Adv. Earth Sci. 2000, 15, 705–711. (In Chinese). Available online: http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2000.06.0705 (accessed on 23 July 2021).
- Song, X.-m.; Kong, F.-z.; Zhan, C.-s. Assessment of Water Resources Carrying Capacity in Tianjin City of China. Water Resour. Manag. 2011, 25, 857–873. [Google Scholar] [CrossRef]
- Yang, Z.; Song, J.; Cheng, D.; Xia, J.; Li, Q.; Ahamad, M.I. Comprehensive evaluation and scenario simulation for the water resources carrying capacity in Xi’an city, China. J. Environ. Manag. 2019, 230, 221–233. [Google Scholar] [CrossRef] [PubMed]
- Yoon, K.P.; Hwang, C.-L. Multiple Attribute Decision Making: An Introduction; Sage Publications: Thousand Oaks, CA, USA, 1995. [Google Scholar]
- Song, M.; Xie, Q. Evaluation of Urban Competitiveness of the Huaihe River Eco-Economic Belt Based on Dynamic Factor Analysis. Comput. Econ. 2021, 58, 615–639. [Google Scholar] [CrossRef]
- Dai, C.; Qin, X.S.; Lu, W.T.; Huang, Y. Assessing adaptation measures on agricultural water productivity under climate change: A case study of Huai River Basin, China. Sci. Total Environ. 2020, 721, 137777. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Qin, F.; Chang, Z.; Bao, S. Regional Ecological Risk Assessment in the Huai River Watershed during 2010–2015. Sustainability 2017, 9, 2231. [Google Scholar] [CrossRef] [Green Version]
- Ruan, J.; He, G. Comprehensive evaluation of water resources security of the Huaihe Eco-economic Belt. Water Supply 2021. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 2008, 1, 83–98. Available online: https://www.inderscienceonline.com/doi/abs/10.1504/IJSSci.2008.01759 (accessed on 23 July 2021). [CrossRef] [Green Version]
- Deng, H. Multicriteria analysis with fuzzy pairwise comparison. Int. J. Approx. Reason. 1999, 21, 215–231. [Google Scholar] [CrossRef] [Green Version]
- Mikhailov, L.; Tsvetinov, P. Evaluation of services using a fuzzy analytic hierarchy process. Appl. Soft Comput. 2004, 5, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Vinogradova-Zinkevič, I.; Podvezko, V.; Zavadskas, E.K. Comparative Assessment of the Stability of AHP and FAHP Methods. Symmetry 2021, 13, 479. [Google Scholar] [CrossRef]
- Saaty, T.L. How to make a decision: The analytic hierarchy process. Eur. J. Oper. Res. 1990, 48, 9–26. [Google Scholar] [CrossRef]
- Hsu, W.-L.; Tsai, F.-M.; Shiau, Y.-C. Planning and assessment system for light rail transit construction in Taiwan. Microsyst. Technol. 2021, 27, 1051–1060. [Google Scholar] [CrossRef]
- Buckley, J.J. Fuzzy hierarchical analysis. Fuzzy Sets Syst. 1985, 17, 233–247. [Google Scholar] [CrossRef]
- Smirnova, O.; Kazanskaya, L.; Koplík, J.; Tan, H.; Gu, X. Concrete Based on Clinker-Free Cement: Selecting the Functional Unit for Environmental Assessment. Sustainability 2021, 13, 135. [Google Scholar] [CrossRef]
- Chen, F.-H.; Liu, H.-R. Evaluation of Sustainable Development in Six Transformation Fields of the Central Taiwan Science Park. Sustainability 2021, 13, 4336. [Google Scholar] [CrossRef]
- Dalkey, N. An experimental study of group opinion: The Delphi method. Futures 1969, 1, 408–426. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environment, P. National Environmental Protection Standards of the People’s Republic of China-Technical Criterion for Ecosystem Status Evaluation (HJ 192–2015); Ministry of Ecology and Environment, PRC: Beijing, China, 2015. Available online: https://www.mee.gov.cn (accessed on 23 July 2021).
- Marull, J.; Pino, J.; Mallarach, J.M.; Cordobilla, M.J. A Land Suitability Index for Strategic Environmental Assessment in metropolitan areas. Landsc. Urban Plann. 2007, 81, 200–212. [Google Scholar] [CrossRef]
- Zhou, Y.; Sharma, A.; Masud, M.; Gaba, G.S.; Dhiman, G.; Ghafoor, K.Z.; AlZain, M.A. Urban Rain Flood Ecosystem Design Planning and Feasibility Study for the Enrichment of Smart Cities. Sustainability 2021, 13, 5205. [Google Scholar] [CrossRef]
- Ling, T.-Y.; Hung, W.-K.; Lin, C.-T.; Lu, M. Dealing with Green Gentrification and Vertical Green-Related Urban Well-Being: A Contextual-Based Design Framework. Sustainability 2020, 12, 10020. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, R.-r. Evaluation of Resource and Environment Carrying Capacity-Taking Si County of Anhui Province as an Example. J. Huaiyin Inst. Technol. 2019, 28, 56–60. Available online: http://www.cnki.com.cn/Article/CJFDTotal-JSHY201901012.htm (accessed on 23 July 2021).
- Statistical Communiqué of the People’s Republic of China on the 2020 National Economic and Social Development. Available online: http://www.stats.gov.cn/ (accessed on 5 April 2021).
- Shen, L.; Shu, T.; Liao, X.; Yang, N.; Ren, Y.; Zhu, M.; Cheng, G.; Wang, J. A new method to evaluate urban resources environment carrying capacity from the load-and-carrier perspective. Resour. Conserv. Recycl. 2020, 154, 104616. [Google Scholar] [CrossRef]
- Green Cities Declaration. Available online: https://www.fundacionciudad.org.ar/pdf/SanFranciscoAccords2005.pdf (accessed on 5 April 2021).
- Retzlaff, R.C. Green Building Assessment Systems: A Framework and Comparison for Planners. J. Am. Plan. Assoc. 2008, 74, 505–519. [Google Scholar] [CrossRef]
- CEEQUAL–Sustainability Assessment and Awards for Civil Engineering, Infrastructure, Landscaping and the Public Realm. Available online: https://www.ceequal.com/ (accessed on 18 October 2021).
- Jenks, G.F. The Data Model Concept in Statistical Mapping. Int. Yearb. Cartogr. 1967, 7, 186–190. Available online: https://ci.nii.ac.jp/naid/10021899676/ (accessed on 23 July 2021).
- ArcGIS. Available online: https://www.esri.com/en-us/arcgis/about-arcgis/overview?rsource=%2Fsoftware%2Farcgis (accessed on 23 July 2021).
- McMaster, R. In Memoriam: George F. Jenks (1916–1996). Cartogr. Geogr. Inf. Syst. 1997, 24, 56–59. [Google Scholar] [CrossRef]
- De Smith, M.J.; Goodchild, M.F.; Longley, P. Geospatial Analysis: A Comprehensive Guide to Principles, Techniques and Software Tools; Troubador Publishing Ltd.: Leicester, UK, 2007. [Google Scholar]
- McMaster, R.; McMaster, S. A History of Twentieth-Century American Academic Cartography. Cartogr. Geogr. Inf. Sci. 2002, 29, 305–321. [Google Scholar] [CrossRef]
Fuzzy Number | Meaning |
---|---|
= (1, 1, 1) | Equally important |
= (1, 2, 3) | Between equally important and slightly more important |
= (2, 3, 4) | Slightly more important |
= (3, 4, 5) | Between slightly more important and rather important |
= (4, 5, 6) | Rather important |
= (5, 6, 7) | Between rather important and quite important |
= (6, 7, 8) | Quite important |
= (7, 8, 9) | Between quite important and extremely important |
= (8, 9, 10) | Extremely important |
Level | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
0.00 | 0.00 | 0.58 | 0.90 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 |
Objective Layer | Dimension Layer | Index Layer | Detailed Calculated Method | Label |
---|---|---|---|---|
Resource and environment carrying capacity | Resource abundance | Per capita cultivated land | Ratio of the total area of cultivated land to total population in the region (ha/person) | C1 |
Per capita water resource | Ratio of the usable water amount to the regional total population (hundred million m3/person) | C2 | ||
Per capita construction land | Ratio of the total area of construction land to the total population in the region (ha/person) | C3 | ||
Environment capacity | Per capita forest area | Ratio of the total area of forest land to the total population in the region (ha/person) | C4 | |
Population density | Ratio of the total population to the total area in the region (person/km2) | C5 | ||
Urbanization rate | Ratio of regional urban population to total population in the region (%) | C6 |
Object Layer | Dimension Layer | Weights (Dimension) | Index Layer | Weights (Index Layer) | ||
---|---|---|---|---|---|---|
AHP | FAHP | AHP | FAHP | |||
Resource and environment carrying capacity of the Huaihe River Eco-economic Belt | Resource abundance | 0.579 | 0.545 | Per capita cultivated land | 0.205 | 0.180 |
Per capita water resource | 0.211 | 0.205 | ||||
Per capita construction land | 0.163 | 0.160 | ||||
Environment capacity | 0.421 | 0.455 | Per capita forest area | 0.203 | 0.203 | |
Population density | 0.104 | 0.112 | ||||
Urbanization rate | 0.114 | 0.140 |
Order | Administrative Unit | Overall Values of Resource and Environment Carrying Capacity | Grades |
---|---|---|---|
1 | Huaibei | 0.680 | High |
2 | Bozhou | 0.610 | High |
3 | Luohe | 0.606 | High |
4 | Zhumadian | 0.479 | Medium |
5 | Xinyang | 0.430 | Medium |
6 | Huai’an | 0.390 | Medium |
7 | Zhoukou | 0.374 | Medium |
8 | Lianyungang | 0.374 | Medium |
9 | Huainan | 0.367 | Medium |
10 | Bengbu | 0.358 | Medium |
11 | Pingdingshan | 0.354 | Medium |
12 | Lu’an | 0.352 | Medium |
13 | Yancheng | 0.314 | Medium |
14 | Suzhou | 0.302 | Medium-to-low |
15 | Xuzhou | 0.286 | Medium-to-low |
16 | Yangzhou | 0.284 | Medium-to-low |
17 | Suqian | 0.275 | Medium-to-low |
18 | Taizhou | 0.267 | Medium-to-low |
19 | Linyi | 0.263 | Medium-to-low |
20 | Shangqiu | 0.259 | Medium-to-low |
21 | Zaozhuang | 0.247 | Low |
22 | Chuzhou | 0.233 | Low |
23 | Jining | 0.226 | Low |
24 | Fuyang | 0.221 | Low |
25 | Heze | 0.218 | Low |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, W.-L.; Shen, X.; Xu, H.; Zhang, C.; Liu, H.-L.; Shiau, Y.-C. Integrated Evaluations of Resource and Environment Carrying Capacity of the Huaihe River Ecological and Economic Belt in China. Land 2021, 10, 1168. https://doi.org/10.3390/land10111168
Hsu W-L, Shen X, Xu H, Zhang C, Liu H-L, Shiau Y-C. Integrated Evaluations of Resource and Environment Carrying Capacity of the Huaihe River Ecological and Economic Belt in China. Land. 2021; 10(11):1168. https://doi.org/10.3390/land10111168
Chicago/Turabian StyleHsu, Wei-Ling, Xijuan Shen, Haiying Xu, Chunmei Zhang, Hsin-Lung Liu, and Yan-Chyuan Shiau. 2021. "Integrated Evaluations of Resource and Environment Carrying Capacity of the Huaihe River Ecological and Economic Belt in China" Land 10, no. 11: 1168. https://doi.org/10.3390/land10111168
APA StyleHsu, W. -L., Shen, X., Xu, H., Zhang, C., Liu, H. -L., & Shiau, Y. -C. (2021). Integrated Evaluations of Resource and Environment Carrying Capacity of the Huaihe River Ecological and Economic Belt in China. Land, 10(11), 1168. https://doi.org/10.3390/land10111168