GHG Balance of Agricultural Intensification & Bioenergy Production in the Orinoquia Region, Colombia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. General Approach
2.3. Agricultural Production in 2030
2.4. Agricultural Intensification (Food Crops and Cattle)
2.4.1. Food Crop Production
2.4.2. Beef Production
2.5. GHG Emission Associated with Agricultural Production
2.6. GHG Emission Associated with Energy Crops
2.7. GHG Emission Related to Land Use Change
2.8. Total GHG of Bioenergy Supply Chains
- For bioethanol, conversion plant includes cane transport, milling process, and ethanol plant [49].
- For biodiesel, conversion plant includes palm oil mill, physical refining (refined, blanched, and deodorized); transesterification; esterification of the free fatty acid (FFA); BD purification; glycerin purification (USP), and methanol recovery [22].
- For bioelectricity, conversion plant includes sawmill and pellet mill [50]. It was assumed a CHP (combined heat and power) system for bioelectricity production. For the calculation, the stationary combustion emissions factor of the IPCC, 2019 (volume 2, chapter 2) was used.
3. Results
3.1. Agricultural Intensification
3.2. GHG Emissions Associated with Agricultural Intensification
3.3. GHG Emissions Associated with Bioenergy Production
3.4. Regional GHG Balance of Agricultural Intensification & Bioenergy Production
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Parameters for Calculation of the Agricultural Land Demand
Per Capita Consumption a (kg/person/year) | SSR b (%) | Food losses b (%) | Contribution c Orinoquia to National Production (%) | Land Use in the Region (ha) 2018 c | ||
---|---|---|---|---|---|---|
2018 | 2030 | |||||
Population Colombia d | 48,258,494 | 55,678,083 | ||||
Rice | 42.2 | 42.2 | 90 | 28 | 50 | 176,391 |
Oil palm (CPO) | 33.3 | 35.0 | 106 | 19 | 40 | 178,227 |
Corn | 30.2 | 31.0 | 33 | 28 | 50 | 57,387 |
Plantain | 53.6 | 68.0 | 102 | 55 | 30 | 78,673 |
Soybean | 35.7 | 37.5 | 23 | 19 | 90 | 37,340 |
Cassava | 38.5 | 38.5 | 99 | 40 | 30 | 18,912 |
Beef | 18.9 | 24.0 | 105 | 22 | . | 6,239,309 |
Appendix B. Parameters for Calculation of GHG Emissions Associated to Agricultural Intensification
- Agricultural intensification levelsAgricultural production in the Orinoquia region requires sustainable intensification to reduce GHG emissions while increasing food production (food crops and beef). The efficient use of fertilizers, reduction of fossil fuel consumption, and reduce the impact of LUC are related as some of the better agricultural practices known for their potential to reduce GHG emissions. See input data for food crops in Table A2 and input data for cattle production in Table A4. The intensification levels are based on the study by 5nd listed below:
- (i)
- Conventional agricultural practices:
- -
- For crops: it refers to the traditional production in the foothill-highplain area, where the agricultural practices are not enough improved to increase crop yield (i.e., fertilizer is applied without including soil requirements; no soil correction is made). Soil improvements or soil correction means adapting the soil to establish or maintain a crop. In the Orinoquia region, the main limiting factor for soils is acidity, then lime or another product is added to improve chemical deficiencies [29,59,60]. Generally, corrective measures are applied before planting activities that is why prior soil analysis is essential to detect these problems and formulate appropriate corrective applications [31].
- -
- For beef production: this is the extensive cattle production system currently used in the foothill-highplain area, where cattle are fed only with natural grassland with low nutrient content. This grassland has not received fertilization.
- (ii)
- Intermediate intensification:
- -
- For crops: it allows increasing crop yields with the improvement of some agricultural practices (i.e., fertilizer is applied according to the soil requirements, but no soil correction is made; adequate soil conditioning is not done).
- -
- For beef production: it is an improved extensive production system. Cattle are fed with improved grasses (e.g., Brachiaria decumbens) and forage sorghum (fertilizer is used for improved grasses and forage sorghum). The forage sorghum is mainly used during dry season to complete the cattle feed.
- (iii)
- Sustainable intensification:
- -
- For crops: this pathway uses better agricultural practices to increase crop yield (i.e., fertilizer is applied according to the soil requirements; soil correction is made; grasses/legume are used; zero tillage is done).
- -
- For beef production: Animal increase in productivity is attained by the improvement of feed quality supplied since the animal feed is based on improved grasses (e.g., Brachiaria decumbens) and forage sorghum. The forage is used to supply the needs in during the dry season (fertilizer is used for improved grasses and forage sorghum). It is assumed that for this sustainable scenario the grazing system is silvopastoral or agrosilvopastoral.
- FertilizationThe use of nitrogen fertilizers causes GHG emissions [61]. Nitrogen fertilizer urea (N) releases nitrous oxide (N2O) and ammonia (NH3) during its application. About 25% of the urea applied to a crop volatilizes as NH3, of which about 1–2% is subsequently converted to N2O. The reduction of NH3 and N2O emissions depends on increasing the efficiency of nitrogen fertilizer use, which includes both the use of good agricultural practices and the use of slow-release nitrogen fertilizers [62]. Therefore, we assumed that to reduce emissions by application and volatilization of fertilizers, in the high scenario, more efficient sources of fertilizer are used. Below are the nutrient sources used by scenario:
- -
- Reference, low, and medium scenario: Urea, as N; DAP (diammonium phosphate), and KCl (potassium salt).
- -
- High scenario: Controlled release nitrogen fertilizer, as N; TSP (triple super phosphate), and KCl (potassium salt).
- Emission factors (EF)
Scenarios a | Food Crop | Nutrient (kg ha−1) | Diesel Usage (liters t−1) d | ||
---|---|---|---|---|---|
N b | P2O5 | K2O | |||
Reference | Rice Corn Oil palm c Plantain Soybean Cassava | 110 121 78 47 200 56 | 36 50 24 6 46 14 | 157 126 163 65 99 53 | 25.10 2.73 4.92 8.33 16.20 1.96 |
Low | Rice Corn Oil palm Plantain Soybean Cassava | 140 165 108 72 253 75 | 46 69 33 10 58 18 | 200 172 224 100 126 71 | 24.26 2.64 4.76 8.05 15.66 1.89 |
Medium | Rice Corn Oil palm Plantain Soybean Cassava | 123 143 92 65 240 81 | 40 59 28 9 55 19 | 175 148 190 90 119 75 | 23.45 2.55 4.60 7.78 15.14 1.83 |
High | Rice Corn Oil palm Plantain Soybean Cassava | 138 165 104 90 243 89 | 45 69 32 12 56 21 | 196 172 214 125 121 83 | 22.67 2.46 4.44 7.52 14.63 1.77 |
• Fertilizers production emission factors: | Unit | EF |
---|---|---|
Urea as N (0.46% N) a | kg CO2eq/kg Fertilizer | 3.38 |
Ammonium sulphate (SAM) as N (0.21% N) a | 2.79 | |
Diammonium phosphate (DAP) as P2O5 a | 1.61 | |
Potassium chloride as K2O a | 0.53 | |
Triple super phosphate (TSP) b | 0.34 | |
Controlled release nitrogen fertilizer as N (0.46% N) c | 2.79 | |
• Field N2O emission factors d | ||
FSN (annual amount of synthetic N-fertilizer applied) | kg N ha−1 | correspond to values listed in the column for N-nutrient |
FracGASF (fraction of synthetic fertilizer N that volatilizes as NH3 and NOX) | kg N volatilized (kg of N applied)−1 | 0.11 |
FracLEACH (fraction of all N added to/mineralized in managed soils in regions where leaching/runoff occurs that is lost through leaching and runoff | kg N (kg of N additions)−1 | 0.24 |
EF1 | kg N2O–N (kg N)−1 | 0.01 |
EF4 | kg N2O–N (kg NH3–N + NOX–N volatilized)−1 | 0.01 |
EF5 | kg N2O–N (kg N leaching/runoff)−1 | 0.011 |
• Fossil fuel emission factors e | ||
Diesel production | kg CO2/kg diesel | 0.569 |
Burning diesel | kg CO2/kg diesel | 3.188 |
kg CH4/kg diesel | 0.00045 | |
kg N2O/kg diesel | 0.00008 |
- Beef productionIn this study, we differentiate three categories of cattle based on the IPCC, 2019 classification: growing cattle, other mature cattle, and mature double-purpose cattle. It is assumed that the composition of the herd remains constant over time and is the same for all scenarios. The description of each category is as follows,
- -
- Growing cattle: it includes calves pre-weaning, growing/fattening cattle. It is estimated 18% of animals in the herd correspond to this category [57].
- -
- Other mature cattle: it includes male used to produce meat, breeding, and draft purposes. It is estimated 28% of animals in the herd correspond to this category [57].
- -
- Mature double-purpose cattle: it includes the cows used to produce the cattle for beef, also produce milk for raising the growing cattle and other purposes. It is estimated 54% of animals in the herd correspond to this category [57].
Input Data | Unit | Scenarios 2030 | |||
---|---|---|---|---|---|
Reference | Low p | Medium q | High q | ||
Animal density a | AU ha−1 | 0.6 | 1.0 | 1.5 | 2.0 |
Animal population b | heads of cattle | 9,331,160 | 9,064,783 | 8,317,333 | 7,110,636 |
Subcategories of cattle c | |||||
Growing cattle | heads | 1,662,006 | 1,614,561 | 1,481,430 | 1,266,501 |
Other mature cattle (beef) | heads | 2,638,502 | 2,563,181 | 2,351,830 | 2,010,621 |
Mature double-purpose cattle | heads | 5,030,652 | 4,887,042 | 4,484,074 | 3,833,515 |
Beef extraction factor d | % | 52.5 | 52.5 | 53.0 | 53.0 |
Extraction rate e | % | 17.5 | 17.5 | 18.2 | 20.0 |
TAM (typical animal weight) a | |||||
Growing cattle | kg animal−1 | 144 | 144 | 200 | 220 |
Other mature cattle | kg animal−1 | 350 | 380 | 425 | 485 |
Mature double-purpose cattle | kg animal−1 | 380 | 383 | 388 | 399 |
Total daily dry matter intake (DMI)f | |||||
Growing cattle | kg day−1 animal−1 | 4.7 | 4.7 | 6.2 | 6.5 |
Other mature cattle | 8.6 | 9.0 | 9.7 | 10.5 | |
Mature double-purpose cattle | 8.8 | 8.8 | 8.9 | 9.1 | |
Data for feed intake estimates | |||||
Estimated dietary net energy concentration of the feed (Nemf) g | MJ kg−1 dry matter−1 | 4.5 | 4.5 | 6.0 | 7.0 |
Gross energy intake (GE) h | |||||
Growing cattle | MJ kg−1 dry matter | 86.4 | 86.4 | 114.0 | 119.8 |
Other mature cattle | 159.3 | 166.9 | 178.3 | 193.5 | |
Mature double-purpose cattle | 162.1 | 162.9 | 164.3 | 167.3 | |
Methane (CH4) emissions from enteric fermentation | |||||
CH4 conversion factor (Ym) i | % | 7 | 7 | 6.3 | 6.3 |
Methane (CH4) emissions from manure management | |||||
Volatile Solid excretion rate j (VST,P) | kg vs. (1000 kg animal mass)−1 day−1 | 8.6 | 8.6 | 8.5 | 8.1 |
Fraction of total annual vs. for each livestock species/category T that is managed in manure management system S in the country, for productivity system P, animal waste management systems (AWMS) k | Dimensionless | 0.92 | 0.92 | 0.92 | 0.92 |
Emission factor for direct CH4 (EF) l | g CH4 kg VS−1 | 0.6 | 0.6 | 0.6 | 0.6 |
N2O emissions from manure management | |||||
Nitrogen excretion rate (Nrate) m | kg N (1000 kg animal mass)−1 day−1 | 0.29 | 0.29 | 0.31 | 0.36 |
Annual N excretion (Nex) n | |||||
Growing cattle | kg N animal−1 yr−1 | 15.24 | 15.24 | 22.63 | 28.91 |
Other mature cattle | 37.05 | 40.22 | 48.09 | 63.73 | |
Mature double-purpose cattle | 40.22 | 40.54 | 43.90 | 52.43 | |
EF3 to estimate direct N2O emissions from managed soils o | kg N2O-N (kg N)−1 | 0.006 | 0.006 | 0.006 | 0.006 |
- (a)
- Emissions from feed production (CO2, N2O)
Scenario | Nutrient (kg ha−1) a | Diesel Usage b (liters t−1) | ||
---|---|---|---|---|
N | P2O5 | K2O | ||
Medium | 90 | 83 | 23 | 5.43 |
High | 97 | 89 | 24 | 5.25 |
- (b)
- Methane emissions from enteric fermentation
- (c)
- Methane emissions from manure management
- (c)
- Direct N2O emissions from manure management
- Land-use changes (LUC)
Characteristics | Orinoquia Region | |||||
---|---|---|---|---|---|---|
Entire region area a | 25.4 Mha | |||||
Available agricultural area b | 15.5 Mha | |||||
Regional landscape | Flooded plain | Foothill | High plain | |||
5.0 Mha | 2.8 Mha | 9.7 Mha | ||||
Land suitability c within the agricultural frontier | Crops | Cattle | Crops | Cattle | Crops | Cattle |
+ | +++ | ++ | ++ | +++ | ++ |
Appendix C. Parameters for Calculation of GHG Emissions Associated to Energy Crops
Input Data | Scenarios by 2030 | |||
---|---|---|---|---|
Medium | High | |||
Crop yield (t ha−1 yr−1) (wet basis) | Sugarcane a | 84.3 | 85.4 | |
Oil palm b | 16.6 | 18.4 | ||
Acacia c | 16.5 | 19.3 | ||
Fertilization d (kg ha−1) | Sugarcane | N | 48 | 49 |
P | 114 | 116 | ||
K | 116 | 118 | ||
Oil palm | N | 92 | 104 | |
P | 28 | 32 | ||
K | 190 | 214 | ||
Acacia | N | 109 | 127 | |
P | 99 | 116 | ||
K | 52 | 61 | ||
Diesel consumption e (l t−1) | Sugarcane | 3.38 | 3.27 | |
Oil palm | 4.60 | 4.44 | ||
Acacia | 3.84 | 3.71 |
Appendix D. Parameters for Calculation of GHG Emissions Associated to Bioenergy Products
- -
- For bioethanol, conversion plant includes cane transport, milling process, and ethanol plant [49].
- -
- For biodiesel, conversion plant includes palm oil mill, physical refining (refined, blanched, and deodorized); transesterification; esterification of the free fatty acid (FFA); BD purification; glycerin purification (USP), and methanol recovery [22].
- -
- For bioelectricity, conversion plant includes sawmill and pellet mill [50].
Emissions | Unit | Bioethanol | Biodiesel | Electricity | |||
M | H | M | H | M | H | ||
Cultivation emissions a | kg CO2eq t−1biofuel | −39.0 | −143.0 | −3089.0 | −3207.4 | ||
kg CO2eq MJ−1electricity | −0.071 | −0.084 | |||||
Conversion plant | kg CO2eq t−1biofuel | 6.4 b | 145.5 c | 0.0114 g | |||
Combustion | g CO2eq MJ−1biofuel | 0.3 d | 0.3 d | ||||
g CO2eq MJ−1electricity | 1.9 e | ||||||
Fossil fuel comparator f | g CO2eq MJ−1biofuel | 94 | 94 | ||||
g CO2eq MJ−1electricity | 183 | ||||||
Total emissions | g CO2eq MJ−1biofuel | −2.1 | −6.0 | −79.3 | −82.5 | ||
g CO2eq MJ−1electricity | −68.9 | −82.1 |
References
- OECD-FAO. OECD-FAO Agricultural Outlook 2019–2028. Special Focus: Latin America; OECD: Paris, France, 2019. [Google Scholar]
- European Parliament. Directive (EU) 2018/2001 of the European Parliament and of the Council on the promotion of the use of energy from renewable sources. Off. J. Eur. Union 2018, 82–209. [Google Scholar]
- European Commission. Commission Delegated Regulation (EU) 2019/807 of 13 March 2019 no. April 2009; European Union: Brussels, Belgium, 2019; pp. 1–7. [Google Scholar]
- de Souza, N.R.D.; Fracarolli, J.A.; Junqueira, T.L.; Chagas, M.F.; Cardoso, T.F.; Watanabe, M.D.; Cavalett, O.; Venzke Filho, S.P.; Dale, B.E.; Bonomi, A.; et al. Sugarcane ethanol and beef cattle integration in Brazil. Biomass Bioenergy 2019, 120, 448–457. [Google Scholar] [CrossRef]
- Gerssen-Gondelach, S.J.; Wicke, B.; Faaij, A.P.C. GHG emissions and other environmental impacts of indirect land use change mitigation. GCB Bioenergy 2016, 9, 725–742. [Google Scholar] [CrossRef] [Green Version]
- Jimenez, C.; Faaij, A.P.C. Palm Oil Biodiesel in Colombia, an Exploratory Study on Its Potential and Future Scenarios. Master’s Thesis, Utrecht University, Utrecht, The Netherlands, 2012. [Google Scholar]
- DNP and Enersinc. Energy Supply Situation in Colombia; Departamento Nacional de Planeación, DPN Colombia: Bogotá, Colombia, 2017; p. 165. [Google Scholar]
- CIAT; CRECE. Productividad de la Tierra y Rendimiento del Sector Agropecuario Medido a Través de los Indicadores de Crecimiento Verde en el Marco de la Misión de Crecimiento Verde en Colombia. Informe 1: Análisis General de Sistemas Produc-Tivos Claves y Sus Indicadore; Departamento Nacional de Planeación, DPN Colombia: Cali, Colombia, 2018; pp. 1–74. [Google Scholar]
- DNP. Política de Crecimiento Verde (Documento CONPES 3934); DNP: Bogotá, Colombia, 2018. [Google Scholar]
- Rodríguez Borray, G.; Bautista Cubillos, R. Comps. Adopción e Impacto de los Sistemas Agropecuarios Introducidos en la Alti-Llanura Plana del Meta; Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA): Mosquera, Colombia, 2019. [Google Scholar]
- MADR. Resolución No 0261 de 2018—Frontera Agrícola; Ministerio de Agricultura y Desarrollo Rural de Colombia: Bogota, Colombia, 2018; p. 152. [Google Scholar]
- UPRA. Metodología Para la Identificación General de la Frontera Agrícola en Colombia; UPRA: Bogotá, Colombia, 2018. [Google Scholar]
- CIAT; CORMACARENA. Plan Regional Integral de Cambio Climático Para la Orinoquía; Publication No. 438; Centro Internacional de Agricultura Tropical (CIAT): Cali, Colombia, 2017. [Google Scholar]
- FAO. Tackling Climate Change through Livestock—A Global Assessment of Emissions and Mitigation Opportunities; FAO: Roma, Italy, 2013. [Google Scholar]
- Fedegan. Ganadería Colombiana—Hoja de Ruta 2018–2022; Fedegan: Bogotá, Colombia, 2018. [Google Scholar]
- Lerner, A.M.; Zuluaga, A.F.; Chará, J.; Etter, A.; Searchinger, T. Sustainable Cattle Ranching in Practice: Moving from Theory to Planning in Colombia’s Livestock Sector. Environ. Manag. 2017, 60, 1–8. [Google Scholar] [CrossRef]
- Younis, A.; Trujillo, Y.; Benders, R.; Faaij, A. Regionalized Cost Supply Potential of Bioenergy Crops and Residues in Colombia: A Hybrid Statistical Balance and Land Suitability Allocation Scenario Analysis; University of Groningen: Groningen, The Netherlands, 2020. [Google Scholar]
- Castanheira, É.G.; Acevedo, H.; Freire, F. Greenhouse gas intensity of palm oil produced in Colombia addressing alter-native land use change and fertilization scenarios. Appl. Energy 2014, 114, 958–967. [Google Scholar] [CrossRef]
- Quezada, J.C.; Etter, A.; Ghazoul, J.; Buttler, A.; Guillaume, T. Carbon neutral expansion of oil palm plantations in the Neotropics. Sci. Adv. 2019, 5, eaaw4418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva-Parra, A. Modelación de los stocks de carbono del suelo y las emisiones de dióxido de carbono (GEI) en sistemas pro-ductivos de la Altillanura Plana. Orinoquia 2018, 22, 158–171. [Google Scholar] [CrossRef]
- Peñuela, L.; Ardila, A.; Rincón, S.; Cammaert, C. Ganadería y Conservación en la Sabana Inundable de la Orinoquía Co-lombiana: Modelo sui Generis Climáticamente Inteligente. Proyecto: Planeación Climáticamente Inteligente en Sabanas, a Través de la Incidencia Política, Ordenamiento y Buenas Prácticas SuLu; WWF Colombia—Fundación Horizonte Verde: Cumaral, Colombia, 2019. [Google Scholar]
- Ramirez-Contreras, N.E.; Munar-Florez, D.A.; Garcia-Nuñez, J.A.; Mosquera-Montoya, M.; Faaij, A.P. The GHG emissions and economic performance of the Colombian palm oil sector; current status and long-term perspectives. J. Clean. Prod. 2020, 258, 120757. [Google Scholar] [CrossRef]
- DANE. Tercer Censo Nacional Agropecuario: Hay Campo Para Todos—Tomo 2; DANE: Bogotá, Colombia, 2016. [Google Scholar]
- Agronet. Estadisticas Agropecuarias. Ministerio de Agricultura y Desarrollo Sostenible Colombia. 2019. Available online: https://www.agronet.gov.co/estadistica/Paginas/home.aspx (accessed on 3 June 2019).
- MADR. Anuario Estadístico del Sector Agropecuario 2017; Ministerio de Agricultura y Desarrollo Rural de Colombia: Bogotá, Colombia, 2018; p. 519. [Google Scholar]
- Ramírez-Restrepo, C.A.; Vera, R.R.; Rao, I.M. Dynamics of animal performance, and estimation of carbon footprint of two breeding herds grazing native neotropical savannas in eastern Colombia. Agric. Ecosyst. Environ. 2019, 281, 35–46. [Google Scholar] [CrossRef]
- Rincón, S.A.; Suárez, C.F.; Romero-Ruiz, M.H.; Flantua, S.G.A.; Sarmiento, A.; Hernández, N.; Palacios Lozano, M.T.; Naranjo, L.G.; Usma, S. Identifying Highly Biodiverse Savannas Based on the European Union Renewable Energy Directive (Su-Lu Map). Conceptual Background and Technical Guidance; WWF Colombia: Bogotá, Colombia, 2014; p. 104. [Google Scholar]
- UPRA. Zonificacion de Aptitud Agropecuaria Para Colombia. Sistema para la Planificación Rural Agropecuaria (SIPRA). 2018. Available online: https://sipra.upra.gov.co/ (accessed on 1 January 2019).
- Rincón Castillo, A.; Jaramillo, C.A. Establecimiento, Manejo y Utilizacion de Recursos Forrajeros en Sistemas Ganaderos de Suelos Ácidos; Corporación Colombiana de Investigación Agropecuaria (CORPOICA): Villavicencio, Colombia, 2010; p. 252. [Google Scholar]
- MADR. Estrategia Colombia Siembra; Ministerio de Agricultura y Desarrollo Rural de Colombia: Bogotá, Colombia, 2016; pp. 1–55. [Google Scholar]
- UPRA. Analisis Situacional de Cadena Productiva del Arroz en Colombia; Unidad de Planeación Rural Agropecuaria (UPRA): Bogotá, Colombia, 2019; p. 124. [Google Scholar]
- Brinkman, M.L.J.; van der Hilst, F.; Faaij, A.P.C.; Wicke, B. Low-ILUC-risk rapeseed biodiesel: Potential and indirect GHG emission effects in Eastern Romania. Biofuels 2021, 12, 171–186. [Google Scholar] [CrossRef] [Green Version]
- Chará, J.; Reyes, E.; Peri, P.; Otte, J.; Arce, E.; Schneider, F. Silvopastoral Systems and Their Contribution to Improved Resource Use and Sustainable Development Goals: Evidence from Latin America; FAO, CIPAV and Agri Benchmark: Cali, Colombia, 2019. [Google Scholar]
- DANE. Ganadería Bovina Para la Producción de Carne en Colombia, Bajo las Buenas Prácticas Ganaderas (BPG); Boletin Mensual 44: Bogotá, Colombia, 2016; pp. 1–88. [Google Scholar]
- Etter, A.; Zuluaga, A.F. Areas Aptas Para la Actividad Ganadera en Colombia: Análisis Espacial de los Impactos Ambien-Tales y Niveles de Productividad de la Ganadería. In Biodiversidad 2017. Estado y Tendencias de la Biodiversidad Continental de Colombia; Instituto de Investigación de Recursos Biológicos Alexander von Humboldt: Bogotá, Colombia, 2017. [Google Scholar]
- Tapasco, J.; Lecoq, J.F.; Ruden, A.; Rivas, J.S.; Ortiz, J. The Livestock Sector in Colombia: Toward a Program to Facilitate Large-Scale Adoption of Mitigation and Adaptation Practices. Front. Sustain. Food Syst. 2019, 3, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Rincón, Á.; Baquero, J.; Florez, H. Manejo de la Nutrición Mineral en Sistemas Ganaderos de los Llanos Orientales de Colombia; Corporación Colombiana de Investigación Agropecuaria (Agrosavia): Villavicencio, Colombia, 2012. [Google Scholar]
- CIAT. Agroecología y Biodiversidad de las Sabanas en los Llanos Orientales de Colombia; Publication No. 322; CIAT: Cali, Colombia, 2001. [Google Scholar]
- Fedegan. Plan Estrategico de la Ganaderia Colombiana 2019; Fedegan: Bogotá, Colombia, 2006; p. 286. [Google Scholar]
- Fedegan. Número de Vacas por Hectárea se Duplica en Fincas Tecnificadas. Fedegan Noticias. 2020. Available online: https://www.fedegan.org.co/noticias/numero-de-vacas-por-hectarea-se-duplica-en-fincas-tecnificadas (accessed on 4 June 2020).
- DANE. Encuesta Nacional de Arroz Mecanizado (ENAM), DANE. 2019. Available online: http://www.dane.gov.co/index.php/estadisticas-por-tema/agropecuario/encuesta-de-arroz-mecanizado (accessed on 14 July 2019).
- Fedegan. Manejo de Praderas y Division de Potreros; Proyecto Ganadería Colombiana Sostenible: Bogotá, Colombia, 2018; p. 16. [Google Scholar]
- IPCC. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Calvo Buendia, E., Tanabe, K., Kranjc, A., Baasansuren, J., Fukuda, M., Ngarize, S., Osako, A., Pyrozhenko, Y., Shermanau, P., Federici, S., Eds.; IPCC: Geneve, Switzerland, 2019. [Google Scholar]
- Pérez-López, O.; Afanador-Téllez, G. Comportamiento agronómico y nutricional de genotipos de Brachiaria spp. mane-jados con fertilización nitrogenada, solos y aociados con Pueraria phaseoloides, en condiciones de altillanura Colombiana. Rev. Med. Vet. Zoot 2017, 64, 52–77. [Google Scholar] [CrossRef] [Green Version]
- Henson, I.E.; Ruiz, R.; Romero, H.M. The greenhouse gas balance of the oil palm industry in Colombia: A preliminary analysis. I. Carbon sequestration and carbon offsets. Agron. Colomb. 2012, 30, 359–369. [Google Scholar]
- Kerdan, I.G.; Giarola, S.; Jalil-Vega, F.; Hawkes, A. Carbon Sequestration Potential from Large-Scale Reforestation and Sugarcane Expansion on Abandoned Agricultural Lands in Brazil. Polytechnica 2019, 2, 9–25. [Google Scholar] [CrossRef] [Green Version]
- Lisboa, C.C.; Butterbach-Bahl, K.; Mauder, M.; Kiese, R. Bioethanol production from sugarcane and emissions of green-house gases—Known and unknowns. GCB Bioenergy 2011, 3, 277–292. [Google Scholar] [CrossRef]
- Matsumura, N.; Nakama, E.; Sukandi, T.; Imanuddin, R. Carbon Stock Estimates for Acacia Mangium Forests in Malaysia and Indonesia: Potential for Implementation of Afforestation and Reforestation CDM Projects; JICA Carbon Fixing Forest Management in Indonesia: Jakarta, Indonesia, 2007; Volume 7, pp. 15–24. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Romanelli, T.L.; Ray, C.; Hoekstra, A.Y.; Liska, A.J.; Neale, C.M. Water, Energy, and Carbon Footprints of Bioethanol from the U.S. and Brazil. Environ. Sci. Technol. 2018, 52, 14508–14518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Röder, M.; Whittaker, C.; Thornley, P. How certain are greenhouse gas reductions from bioenergy? Life cycle assessment and uncertainty analysis of wood pellet-to-electricity supply chains from forest residues. Biomass Bioenergy 2015, 79, 50–63. [Google Scholar] [CrossRef]
- Peter, A.S.; Alias, M.P.; Iype, M.P.; Jolly, J.; Sankar, V.; Babu, K.J.; Baby, D.K. Optimization of biodiesel production by transesterification of palm oil and evaluation of biodiesel quality. Mater. Today Proc. 2021. [Google Scholar] [CrossRef]
- Lavelle, P.; Rodríguez, N.; Arguello, O.; Bernal, J.; Botero, C.; Chaparro, P.; Gómez, Y.; Gutiérrez, A.; Hurtado, M.D.P.; Loaiza, S.; et al. Soil ecosystem services and land use in the rapidly changing Orinoco River Basin of Colombia. Agric. Ecosyst. Environ. 2014, 185, 106–117. [Google Scholar] [CrossRef]
- Escribano, M.; Elghannam, A.; Mesias, F.J. Dairy sheep farms in semi-arid rangelands: A carbon footprint dilemma between intensification and land-based grazing. Land Use Policy 2020, 95, 104600. [Google Scholar] [CrossRef]
- Rincón Castillo, A.; Flórez Díaz, H.; Técnico, M. Sistemas Integrados: Agrícola-Gandero-Forestal Para el Desarrollo de la Orinoquía Colombiana; Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA): Villavicencio, Colombia, 2013. [Google Scholar]
- Ramirez-Contreras, N. Environmental Impacts and Economic Performance of Agricultural Intensification and Bioenergy Production in the Orinoquia Region; University of Groningen: Groningen, The Netherlands, 2021. [Google Scholar]
- Fedearroz. Consumo de Arroz en Colombia. Estaditicas Arroceras. 2019. Available online: www.fedearroz.com.co (accessed on 5 September 2019).
- Fedegan. Cifras de Referencia del Sector Ganadero Colombiano. Federacion Colombiana de Ganaderos. 2019. Available online: https://www.fedegan.org.co/estadisticas/general (accessed on 4 June 2019).
- DANE. Proyecciones de Poblacion, Por Área. Departamento Administrativo Nacional de Estadística; DANE: Bogotá, Colombia, 2019. [Google Scholar]
- Amézquita, E.; Rao, I.M.; Rivera, M.; Corrales, I.I.; Bernal, J.H. Sistemas Agropastoriles: Un Enfoque Integrado Para el Manejo Sostenible de Oxisoles de los Llanos Orientales de Colombia; Centro Internacional de Agricultura Tropical (CIAT); Ministerio de Agricultura y Desarrollo Rural (MADR) de Colombia; Corporación Colombiana de Investigación Agropecuaria (Corpoica): Cali, Colombia, 2013; p. 223. [Google Scholar]
- Fedearroz. Dinámica del Sector Arrocero de los Llanos Orientales de Colombia, 1999—2011, 1st ed.; Fedearroz: Bogotá, Colombia, 2011. [Google Scholar]
- Woodbury, P.; Wightman, J. Nitrogen Fertilizer Management & Greenhouse Gas Mitigation Opportunities; Cornell University: New York, NY, USA, 2017; p. 10. [Google Scholar]
- Wang, H.; Sarah, K.; Klaus, D. Use of urease and nitrification inhibitors to reduce gaseous nitrogen emissions from ferti-lizers containing ammonium nitrate and urea. Glob. Ecol. Conserv. 2020, 22, e00933. [Google Scholar] [CrossRef]
- IPNI. Archivo agronómico No. 3. Requerimientos Nutricionales de los Cultivos; IPNI: Canada, 2002; pp. 3–6. [Google Scholar]
- Alam, M.K.; Bell, R.W.; Biswas, W.K. Increases in soil sequestered carbon under conservation agriculture cropping de-crease the estimated greenhouse gas emissions of wetland rice using life cycle assessment. J. Clean. Prod. 2019, 224, 72–87. [Google Scholar] [CrossRef]
- Yang, Q.; Chen, G. Greenhouse gas emissions of corn–ethanol production in China. Ecol. Model. 2013, 252, 176–184. [Google Scholar] [CrossRef]
- Jekayinfa, S.; Ola, F.; Afolayan, S.; Ogunwale, R. On-farm energy analysis of plantain production in Nigeria. Energy Sustain. Dev. 2012, 16, 339–343. [Google Scholar] [CrossRef]
- Castanheira, E.G.; Grisoli, R.; Coelho, S.; Da Silva, G.A.; Freire, F. Life-cycle assessment of soybean-based biodiesel in Europe: Comparing grain, oil and biodiesel import from Brazil. J. Clean. Prod. 2015, 102, 188–201. [Google Scholar] [CrossRef]
- Jiao, J.; Li, J.; Bai, Y. Uncertainty analysis in the life cycle assessment of cassava ethanol in China. J. Clean. Prod. 2019, 206, 438–451. [Google Scholar] [CrossRef]
- Coblentz, W.K.; Phillips, J.M. 11—Grain Sorghum for Forage. In Grain Sorghum Production Handbook; University of Arkansas Sys-tem/Division of Agriculture: Little Rock, AR, USA, 2004; pp. 63–68. [Google Scholar]
- Maraseni, T.; Chen, G.; Banhazi, T.; Bundschuh, J.; Yusaf, T. An Assessment of Direct on-Farm Energy Use for High Value Grain Crops Grown under Different Farming Practices in Australia. Energies 2015, 8, 13033–13046. [Google Scholar] [CrossRef] [Green Version]
- Fedepalma. Anuario Estadístico 2019. Principales Cifras de la Agroindustria de la Palma de Aceite en Colombia; Fedepalma: Bogotá, Colombia, 2019. [Google Scholar]
- MADR. Resolución 0189 de 2019—Lineamientos de Política Para Plantaciones Forestales con Fines Comerciales. Colombia: Ministerio de Agricultura y Desarrollo Rural de Colombia; MADR: Bogotá, Colombia, 2019; p. 225. [Google Scholar]
- Caguasango, S. Predicción de Rendimientos Para Plantaciones de Acacia Mangium Willd. en la Altillanura Plana a Partir de Variables Biofísicas; Univesidad Nacional de Colombia: Bogotá, Colombia, 2017. [Google Scholar]
- Reyes, M.G.; Carmona, G.S.L.; Fernández, M.E. Aspectos fisiológicos y de aprovechamiento de Acacia mangium Willd. Una revisión. Rev. Colomb. Cienc. Hortic. 2018, 12, 244–253. [Google Scholar] [CrossRef]
- Martinez, O. Disponibilidad de Madera de Plantaciones Forestales Con Fines Comerciales en Colombia: Análisi de Prospectiva 2015–2047; Modelo del Sector Forestal Colombiano; UPRA—Unidad de Planificación Rural Agropecuaria de Colombia: Bogotá, Colombia, 2018; p. 222. [Google Scholar]
- Hegde, M.; Palanisamy, K.; Yi, J.S. Acacia mangium Willd—A Fast Growing Tree for Tropical Plantation. J. For. Environ. Sci. 2013, 29, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Fedepalma. Sispa: Sistema de Informacion Estadística del Sector Palmero de Colombia; Sispa: Bogotá, Colombia, 2019. [Google Scholar]
- Mendham, D.S.; White, D.A. A review of nutrient, water and organic matter dynamics of tropical acacias on mineral soils for improved management in Southeast Asia. Aust. For. 2019, 82, 45–56. [Google Scholar] [CrossRef] [Green Version]
- Tsiropoulos, I.; Faaij, A.P.C.; Seabra, J.E.A.; Lundquist, L.; Schenker, U.; Briois, J.-F.; Patel, M.K. Life cycle assessment of sugarcane ethanol production in India in comparison to Brazil. Int. J. Life Cycle Assess. 2014, 19, 1049–1067. [Google Scholar] [CrossRef]
- Cerutti, A.K.; Calvo, A.; Bruun, S. Comparison of the environmental performance of light mechanization and animal traction using a modular LCA approach. J. Clean. Prod. 2014, 64, 396–403. [Google Scholar] [CrossRef] [Green Version]
Characteristics | Scenarios 2030 | Data Sources | ||||
---|---|---|---|---|---|---|
Reference | Low | Medium | High | |||
Yield food crops (t ha−1 yr−1) a | Rice | 4.97 | 5.06 | 5.26 | 5.96 | [24,27,41] |
Corn | 5.50 | 6.00 | 6.00 | 7.00 | ||
Oilpalm (crude palm oil) | 2.41 | 2.62 | 2.96 | 3.30 | ||
Plantain | 13.00 | 16.00 | 18.00 | 22.45 | ||
Soybean | 2.50 | 2.53 | 2.80 | 3.00 | ||
Cassava | 14.00 | 15.00 | 18.00 | 20.74 | ||
Livestockproductivity (AU ha−1) b | Cattle | 0.6 | 1.0 | 1.5 | 2.0 | [15,39] |
Land Use Type | Total Carbon Stock (t C ha−1) |
---|---|
Cropland | 33 |
Shrubland | 126 |
Degraded pastures for cattle production | 50 |
Managed pastures for cattle production (medium/high scenario) | 86/105 |
Oil palm (low/medium/high scenario) a | 113/121/129 |
Sugarcane (medium/high scenario) b | 62/65 |
Acacia (medium/high scenario) c | 85/90 |
Medium Scenario | High Scenario | ||
---|---|---|---|
Sugarcane | Mt sugarcane yr-1 | 52 | 201 |
Bioethanol | PJ yr-1 | 96 | 368 |
Oil Palm | Mt FFB yr-1 | 10 | 44 |
Biodiesel | PJ yr-1 | 82 | 349 |
Acacia | Mt wood yr-1 | 10 | 46 |
Bioelectricity | PJ yr-1 | 36 | 162 |
Medium Scenario | High Scenario | |||
---|---|---|---|---|
Sugarcane | Cultivation stage | g CO2eq MJ−1 biofuel | 11.7 | 10.9 |
Industrial stage | g CO2eq MJ−1 biofuel | 0.2 | 0.2 | |
Oil Palm | Cultivation stage | g CO2eq MJ−1 biofuel | 14.6 | 12.0 |
Industrial stage | g CO2eq MJ−1 biofuel | 3.9 | 3.9 | |
Acacia | Cultivation stage | g CO2eq MJ−1 bioelectricity | 27.6 | 23.9 |
Industrial stage | g CO2eq MJ−1 bioelectricity | 0.0007 | 0.0007 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramírez-Contreras, N.E.; Munar-Florez, D.; Hilst, F.v.d.; Espinosa, J.C.; Ocampo-Duran, Á.; Ruíz-Delgado, J.; Molina-López, D.L.; Wicke, B.; Garcia-Nunez, J.A.; Faaij, A.P.C. GHG Balance of Agricultural Intensification & Bioenergy Production in the Orinoquia Region, Colombia. Land 2021, 10, 289. https://doi.org/10.3390/land10030289
Ramírez-Contreras NE, Munar-Florez D, Hilst Fvd, Espinosa JC, Ocampo-Duran Á, Ruíz-Delgado J, Molina-López DL, Wicke B, Garcia-Nunez JA, Faaij APC. GHG Balance of Agricultural Intensification & Bioenergy Production in the Orinoquia Region, Colombia. Land. 2021; 10(3):289. https://doi.org/10.3390/land10030289
Chicago/Turabian StyleRamírez-Contreras, Nidia Elizabeth, David Munar-Florez, Floor van der Hilst, Juan Carlos Espinosa, Álvaro Ocampo-Duran, Jonathan Ruíz-Delgado, Diego L. Molina-López, Birka Wicke, Jesús Alberto Garcia-Nunez, and André P.C. Faaij. 2021. "GHG Balance of Agricultural Intensification & Bioenergy Production in the Orinoquia Region, Colombia" Land 10, no. 3: 289. https://doi.org/10.3390/land10030289
APA StyleRamírez-Contreras, N. E., Munar-Florez, D., Hilst, F. v. d., Espinosa, J. C., Ocampo-Duran, Á., Ruíz-Delgado, J., Molina-López, D. L., Wicke, B., Garcia-Nunez, J. A., & Faaij, A. P. C. (2021). GHG Balance of Agricultural Intensification & Bioenergy Production in the Orinoquia Region, Colombia. Land, 10(3), 289. https://doi.org/10.3390/land10030289