Spatio-Temporal Evolution and Influencing Factors of Open Economy Development in the Yangtze River Delta Area
Abstract
:1. Introduction
2. Development Mechanism of Open Economy
2.1. The Definition of Open Economy
2.2. Development Mechanism of Open Economy
2.2.1. The Mechanism of Action of the New Development Pattern of “Double Circulation” on the Development of Open Economy
2.2.2. The Mechanism of Action of Scientific and Technological Innovation on the Development of Open Economy
2.2.3. The Mechanism of Action of Investment Attraction on the Development of Open Economy
3. Materials and Methods
3.1. Selection of Study Area
3.2. Research Methods
3.2.1. Measurement of Open Economy Development Level
3.2.2. Methods of Spatial-Temporal Variance Analysis
3.2.3. Method of Influencing Factors Analysis
3.3. The Construction of the Indicator System and Selection of Variables
3.3.1. Indicator System Construction
- (1)
- The foundation of open economy
- (2)
- The scale of open economy
- (3)
- The quality and efficiency of open economy
- (4)
- The potential of open economy
3.3.2. Variables Selection
- (1)
- Explained variable
- (2)
- Explanatory variables
3.3.3. Data Source and Statistical Description
4. Result Analysis
4.1. The Temporal Evolution of the Development Level of the Open Economy
4.2. The Spatial Evolution of the Development Level of the Open Economy
4.3. Evolution of Spatial Correlation Pattern
4.4. Analysis of Influencing Factors
4.4.1. Model Selection
4.4.2. Analysis of Model Results
4.4.3. Robustness Test
5. Discussion
5.1. It Is Necessary to Promote Regional Coordinated Development with the New Development Pattern of Domestic and International “Double Cycles”
5.2. Government Services Provide Essential Support for the Development of the Open Economy
5.3. An Innovation-Driven Engine also Needs to Be Built for the High-Level Development of the Open Economy
6. Conclusions and Deficiencies
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gapsalamov, A.R.; Vasilev, V.L.; Bochkareva, T.N.; Akhmetshin, E.M. Current global development trends and their impact on the educational and economic systems. Ling. Cul. Rev. 2021, 5, 591–606. [Google Scholar] [CrossRef]
- Cerqueira, P.; Serranito, F.; Turcu, C. Policy Challenges for Open Economies. Open. Econ. Rev. 2021, 32, 823–827. [Google Scholar] [CrossRef]
- Tan, L.; Wu, X.; Guo, J.; Santibanez-Gonzalez, E.D. Assessing the Impacts of COVID-19 on the Industrial Sectors and Economy of China. Risk. Anal. 2022, 42, 21–39. [Google Scholar] [CrossRef] [PubMed]
- Le, C. Research on the Environmental Effects and Green Development Path of South Korean Foreign Trade. J. Korea Trade. 2020, 24, 93–106. [Google Scholar] [CrossRef]
- Portyakov, V. Foreign Economic Relations of the People’s Republic of China. Pro. Dal Vos. 2019, 5, 87–100. [Google Scholar] [CrossRef]
- Geerken, T.; Schmidt, J.; Boonen, K.; Christic, M.; Merciai, S. Assessment of the potential of a circular economy in open economies–Case of Belgium. J. Clean. Prod. 2019, 227, 683–699. [Google Scholar] [CrossRef]
- Güvercin, D. Boundaries on Turkish export-oriented industrialization. J. Econ. Struct. 2020, 9, 1–15. [Google Scholar] [CrossRef]
- Fares, F.M.; Zack, G.; Martínez, R.G. Sectoral Price and Quantity Indexes of Argentine Foreign Trade. Lect. Econ. 2020, 93, 297–328. [Google Scholar] [CrossRef]
- Hye, Q.M.A. Long term effect of trade openness on economic growth in case of Pakistan. Qual. Quant. 2012, 46, 1137–1149. [Google Scholar] [CrossRef]
- Gallego, N.; Zofío, J.L. Trade openness, transport networks and the spatial location of economic activity. Netw. Spat. Econ. 2018, 18, 205–236. [Google Scholar] [CrossRef]
- Li, J.; Wan, G.; Wang, J. Introduction to open economy and globalization. J. Asia. Pac. Econ. 2022, 27, 397–399. [Google Scholar] [CrossRef]
- Dalaseng, V.; Niu, X.Y.; Srithilat, K. Cross-Country Investigation of the Impact of Trade Openness and FDI on Economic Growth: A Case of Developing Countries. Int. J. Sci. Bus. 2022, 9, 49–73. [Google Scholar] [CrossRef]
- Liu, Y. Foreign Trade Export Forecast Based on Fuzzy Neural Network. Complexity 2021, 2021, 1–10. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, L. How does trade openness impact carbon intensity? J. Clean. Pro. 2021, 295, 126370. [Google Scholar] [CrossRef]
- Lai, H. Uneven Opening of China’s Society, Economy, and Politics: Pro-growth authoritarian governance and protests in China. J. Contem. Chin. 2010, 19, 819–835. [Google Scholar] [CrossRef]
- Harrison, A. Openness and growth: A time-series, cross-country analysis for developing countries. J. Dev. Econ. 1996, 48, 419–447. [Google Scholar] [CrossRef] [Green Version]
- Samuelson, P.A. Theoretical notes on trade problems. Rev. Econ. Stat. 1964, 46, 145–154. [Google Scholar] [CrossRef]
- De Lombaerde, P.A. On the dynamic measurement of economic openness. J. Policy. Model. 2009, 31, 731–736. [Google Scholar] [CrossRef]
- Adolfson, M.; Lindé, J.; Villani, M. Forecasting performance of an open economy DSGE model. Economet. Rev. 2007, 26, 289–328. [Google Scholar] [CrossRef]
- Ou, J.F.; Xu, C.J.; Liu, Y.Q. The measurement of high-quality development level from five development concepts:empirical analysis of 21 prefecture -level cities in Guangdong province. Econ. Geogr. 2020, 40, 77–86. [Google Scholar] [CrossRef]
- Zhang, J. Development level measurement and spatial pattern analysis of China’s open economy. Stat. Decis. 2021, 37, 100–104. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, Y.Y.; Fang, Z. Research on regional heterogeneity of China’s green open economic development. Asia. Econ. Rev. 2021, 3, 115–121. [Google Scholar] [CrossRef]
- Han, Z.A.; Zhu, Z.; Zhao, S.; Dai, W. Research on nonlinear forecast and influencing factors of foreign trade export based on support vector neural network. Neural. Comput. Appl. 2022, 34, 2611–2622. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, F. The Influence of E-Commerce on the Foreign Trade of Shanghai Free Trade Zone. J. Ind. Dis. Bus. 2020, 11, 21–29. [Google Scholar] [CrossRef]
- Mena, C.; Karatzas, A.; Hansen, C. International trade resilience and the Covid-19 pandemic. J. Bus. Res. 2022, 138, 77–91. [Google Scholar] [CrossRef]
- Stefanoni, J.T. Welfare Cost of Model Uncertainty in a Small Open Economy. Entropy 2020, 22, 1221. [Google Scholar] [CrossRef]
- Mamba, E.; Balaki, A. Effects of trade policies on external trade performances of ECOWAS countries (1996–2017). Econ. Transit. I. Chang. 2022, 30, 535–566. [Google Scholar] [CrossRef]
- Changhong, P.; Bin, L. The Economics of China’s Opening Up: Developing an Economic Theory That Explains China’s Achievement. Soc. Sci. Chin. 2021, 42, 53–76. [Google Scholar] [CrossRef]
- Li, Z.; Shao, S.; Shi, X.; Sun, Y.; Zhang, X. Structural transformation of manufacturing, natural resource dependence, and carbon emissions reduction: Evidence of a threshold effect from China. J. Clean. Pro. 2019, 206, 920–927. [Google Scholar] [CrossRef]
- Wang, F.Y.; Wang, R.; He, Z.L. Exploring the impact of "double cycle" and industrial upgrading on sustainable high-quality economic development: Application of spatial and mediation models. Sustainability 2022, 14, 2432. [Google Scholar] [CrossRef]
- Che, L.; Xu, J.; Chen, H.; Sun, D.; Wang, B.; Zheng, Y.; Yang, X.; Peng, Z. Evaluation of the Spatial Effect of Network Resilience in the Yangtze River Delta: An Integrated Framework for Regional Collaboration and Governance under Disruption. Land 2022, 11, 1359. [Google Scholar] [CrossRef]
- Wildasin, D.E. Open-economy public finance. Natl. Tax. J. 2021, 74, 467–490. [Google Scholar] [CrossRef]
- Copeland, B.R.; Taylor, M.S. Free trade and global warming: A trade theory view of the Kyoto protocol. J. Environ. Econ. Manag. 2005, 49, 205–234. [Google Scholar] [CrossRef] [Green Version]
- Obstfeld, M.; Rogoff, K. New directions for stochastic open economy models. J. Int. Econ. 2000, 50, 117–153. [Google Scholar] [CrossRef] [Green Version]
- Xia, W.; Apergis, N.; Bashir, M.F.; Ghosh, S.; Doğan, B.; Shahzad, U. Investigating the role of globalization, and energy consumption for environmental externalities: Empirical evidence from developed and developing economies. Renew. Energ. 2022, 183, 219–228. [Google Scholar] [CrossRef]
- Jin, F.; Chen, Z. Evolution of transportation in China since reform and opening up: Patterns and principles. J. Geogr. Sci. 2019, 29, 1731–1757. [Google Scholar] [CrossRef] [Green Version]
- Carnevali, E. A new, simple SFC open economy framework. Rev. Polit. Econ. 2022, 34, 504–533. [Google Scholar] [CrossRef]
- Yu, G.; Zhou, X. The influence and countermeasures of digital economy on cultivating new driving force of high-quality economic development in Henan Province under the background of" double circulation". Ann. Oper. Res. 2021, 10479, 1–22. [Google Scholar] [CrossRef]
- Jahanger, A. Influence of FDI characteristics on high-quality development of China’s economy. Environ. Sci. Pollut. Res. 2021, 28, 18977–18988. [Google Scholar] [CrossRef]
- Li, Z.; Luo, Z.; Wang, Y.; Fan, G.; Zhang, J. Suitability evaluation system for the shallow geothermal energy implementation in region by Entropy Weight Method and TOPSIS method. Renew. Energ. 2022, 184, 564–576. [Google Scholar] [CrossRef]
- Li, Z.; Cai, S.; Lei, X.; Wang, L. Diagnosis of Basin Eco-Hydrological Variation Based on Index Sensitivity of Similar Years: A Case Study in the Hanjiang River Basin. Water 2022, 14, 1931. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, N.; Li, N.; Song, Z.R.; Li, W.D. A gini coefficient-based impartial and open dispatching model. Energies 2020, 13, 3146. [Google Scholar] [CrossRef]
- Wang, H.; Ye, H.; Liu, L.; Li, J.X. Evaluation and Obstacle Analysis of Emergency Response Capability in China. Int. J. Environ. Res. Public. Health. 2022, 19, 10200. [Google Scholar] [CrossRef] [PubMed]
- Moran, P.A. Notes on continuous stochastic phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Baltagi, B.H.; Li, D. Prediction in the panel data model with spatial correlation: The case of liquor. Spat. Econ. Anal. 2006, 1, 175–185. [Google Scholar] [CrossRef] [Green Version]
- Hao, Y.; Gai, Z.; Yan, G.; Wu, H.; Irfan, M. The spatial spillover effect and nonlinear relationship analysis between environmental decentralization, government corruption and air pollution: Evidence from China. Sci. Total. Environ. 2020, 763, 144183. [Google Scholar] [CrossRef]
- Xue, Z.; Li, N.; Mu, H. Convergence analysis of regional marginal abatement cost of carbon dioxide in China based on spatial panel data models. Environ. Sci. Pollut. Res. 2021, 28, 38929–38946. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, F.; Yang, M. Measuring the performance of international trade using a DEA-based approach with trade imbalances consideration. Ann. Oper. Res. 2021, 220, 1–22. [Google Scholar] [CrossRef]
- Xu, Y.; Dong, B.; Chen, Z. Can foreign trade and technological innovation affect green development: Evidence from countries along the Belt and Road. Econ. Chang. Restruct. 2022, 55, 1063–1090. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, S. Research on the Evolution of High-Quality Development of China’s Provincial Foreign Trade. Sci. Prog.-Neth. 2022, 2022, 3102157. [Google Scholar] [CrossRef]
- Wang, J.; Yang, M. Measurement and Comparison of Economic Efficiency of Major Coastal Ports in China. J. Coastal Res. 2020, 115, 687–691. [Google Scholar] [CrossRef]
- Han, Y.; Li, N.; Mu, H.; Guo, R.; Yao, R.; Shao, Z. Convergence study of water pollution emission intensity in China: Evidence from spatial effects. Environ. Sci. Pollut. Res. 2022, 29, 50790–50803. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, S.; Long, X.; Salman, M.; Dauda, L. Effect of urbanization and international trade on CO2 emissions across 65 belt and road initiative countries. Energy 2020, 196, 117102. [Google Scholar] [CrossRef]
- Zhao, P.J.; Zeng, L.E.; Lu, H.Y.; Zhou, Y.; Hu, H.Y.; Wei, X.Y. Green economic efficiency and its influencing factors in China from 2008 to 2017: Based on the super-SBM model with undesirable outputs and spatial Dubin model. Sci. Total. Environ. 2020, 741, 140026. [Google Scholar] [CrossRef]
- Liu, H.; Guo, W.; Wang, Y.; Wang, D. Impact of Resource on Green Growth and Threshold Effect of International Trade Levels: Evidence from China. Int. J. Env. Res. Pub. He. 2022, 19, 2505. [Google Scholar] [CrossRef]
- Elhorst, J.P. Spatial Econometrics: From Cross-Sectional Data to Spatial Panels; Renmin University Press: Beijing, China, 2014. [Google Scholar]
- Zhou, X.; Tang, X. Spatiotemporal consistency effect of green finance on pollution emissions and its geographic attenuation process. J. Environ. Manage. 2022, 318, 115537. [Google Scholar] [CrossRef]
- Liu, Y.; Xiu, X.H. A optimal method of urban gas stations based on the distance attenuation theory and its practice. Indus. Struct. 2020, 50, 32–38. [Google Scholar] [CrossRef]
- Ahmad, M.; Majeed, A.; Khan, M.A.; Sohaib, M.; Shehzad, K. Digital financial inclusion and economic growth: Provincial data analysis of China. Chin. Eco. J. 2021, 14, 291–310. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Cao, Y. Impact of port trade on regional economic development based on system dynamics. J. Coastal. Res. 2020, 110, 38–42. [Google Scholar] [CrossRef]
- Tian, S.; Qi, A.; Li, Z.; Pan, X.; Liu, Y.; Li, X. Urban "Three States" Human Settlements High-Quality Coordinated Development. Buildings 2022, 12, 178. [Google Scholar] [CrossRef]
- Deng, X.; Liang, L.; Wu, F.; Wang, Z.; He, S. A review of the balance of regional development in China from the perspective of development geography. J. Geogr. Sci. 2022, 32, 3–22. [Google Scholar] [CrossRef]
- Gu, X.; Wei, L.X. The path and countermeasures of Promoting the High-Quality Development of the Open Economy of the Yangtze River Delta under RCEP. Mod. Econ. Res. 2022, 3, 60–69. [Google Scholar] [CrossRef]
- Yang, L.; Luo, X.; Ding, Z.; Liu, X.; Gu, Z. Restructuring for Growth in Development Zones, China: A Systematic Literature and Policy Review (1984–2022). Land 2022, 11, 972. [Google Scholar] [CrossRef]
- Laget, E.; Osnago, A.; Rocha, N.; Ruta, M. Deep trade agreements and global value chains. Review of Industrial Organization. 2020, 57, 379–410. [Google Scholar] [CrossRef]
- Walker, T.; Zhang, X.; Zhang, A.; Wang, Y. Fact or fiction: Implicit government guarantees in China’s corporate bond market. J. Int. Money. Finance. 2021, 116, 102414. [Google Scholar] [CrossRef]
- Zheng, X.M. The Trend Prediction of the New Public Management Model Based on the Discrete Dynamic Evolution Model. Secur. Commun. Netw. 2022, 2022, 3398392. [Google Scholar] [CrossRef]
- Rodrik, D. Why do more open economies have bigger governments? Jour. Polit. Econ. 1998, 106, 997–1032. [Google Scholar] [CrossRef]
- Wu, J.; Wei, Y.D.; Li, Q.; Yuan, F. Economic transition and changing location of manufacturing industry in China: A study of the Yangtze River Delta. Sustainability 2018, 10, 2624. [Google Scholar] [CrossRef] [Green Version]
- Guarini, G.; Porcile, G. Sustainability in a post-Keynesian growth model for an open economy. Ecol. Econ. 2016, 126, 14–22. [Google Scholar] [CrossRef]
- Thompson, M. Social capital, innovation and economic growth. J. Behav. Exp. Econ. 2018, 73, 46–52. [Google Scholar] [CrossRef]
- Liu, W.; Wei, S.; Wang, S.; Lim, M.K.; Wang, Y. Problem identification model of agricultural precision management based on smart supply chains: An exploratory study from China. J. Clean. Prod. 2022, 352, 131622. [Google Scholar] [CrossRef]
- Li, J.; Qin, X.; Tang, J.; Yang, L. Foreign Trade and Innovation Sustainability: Evidence from China. J. Asia. Econ. 2022, 81, 101497. [Google Scholar] [CrossRef]
Spatial Weight Matrix | Meaning | Formula | Explanation |
---|---|---|---|
Adjacency Weight Matrix W1 | The provinces are geographically adjacent to each other | 0 represents no connection between two regions, 1 represents the connection between two areas | |
Economic distance Weight Matrix W2 | The economic gap between the provinces | ✕ | represent the average of real GDP per capita between province I and province j over the sample period, dij is the geographical straight-line distance of each provincial capital city. |
Nested Weight Matrix W3 | The geographical proximity and economic gap between the provinces | The product of the adjacency matrix and the economic matrix |
First-Level Indicators | Secondary Indicators | The Meaning of Indicators | Unit |
---|---|---|---|
The foundation of open economy | GDP per capita | Regional GDP / total regional population | Million yuan |
The proportion of secondary and tertiary industries | Secondary industry output/regional GDP | % | |
Human capital level | Number of people in scientific services, technical exploration / total regional population | % | |
Fixed asset investment per capita | Regional fixed asset investment amount / total regional population | Million yuan | |
Urbanization rate | Urban population / total regional population | % | |
The scale of open economy | Foreign trade volume | Total import and export | Billion |
Domestic trade volume | Total retail sales of social consumer goods | 100 Million yuan | |
Amount of foreign direct investment | Actual utilization of foreign investment | Billion | |
Foreign trade dependence | Foreign trade in goods/regional GDP | % | |
Foreign investment dependence | Actual foreign direct investment/regional GDP | % | |
The quality and efficiency of open economy | Trade economic contribution | (Total retail sales of social consumer goods + total exports-total imports)/regional GDP | % |
The net export contribution rate | Increase in net exports / increase in GDP | % | |
Share of international tourism revenue | Tourism foreign exchange earnings / regional GDP | % | |
Contribution of foreign investment | FDI / social fixed asset investment | % | |
The proportion of foreign-invested enterprises | Number of foreign-invested enterprises/number of industrial enterprises | % | |
The potential of open economy | Fiscal expenditure to GDP ratio | Fiscal spending/regional GDP | % |
Share of expenditure on science and education | Expenditure on science and education / total regional financial expenditure | % | |
Number of invention patents per 10,000 people | Number of granted invention patent applications/total regional population | Piece | |
The proportion of total post and telecommunication business in GDP | Gross postal and telecommunications business/regional GDP | % | |
Internet penetration | Number of Internet users | Door |
City | 2005 | 2010 | 2015 | 2019 | M | R | City | 2005 | 2010 | 2015 | 2019 | M | R |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Shanghai | 0.271 | 0.467 | 0.494 | 0.615 | 0.435 | 1 | Taizhou | 0.044 | 0.059 | 0.075 | 0.090 | 0.068 | 22 |
Suzhou | 0.200 | 0.287 | 0.329 | 0.365 | 0.305 | 2 | Lianyungang | 0.054 | 0.062 | 0.070 | 0.075 | 0.066 | 23 |
Hangzhou | 0.113 | 0.186 | 0.256 | 0.278 | 0.209 | 3 | Tongling | 0.052 | 0.069 | 0.076 | 0.069 | 0.066 | 24 |
Nanjing | 0.124 | 0.153 | 0.212 | 0.263 | 0.183 | 4 | Huaian | 0.033 | 0.090 | 0.071 | 0.088 | 0.065 | 25 |
Ningbo | 0.113 | 0.147 | 0.195 | 0.214 | 0.173 | 5 | Taizhou | 0.046 | 0.054 | 0.071 | 0.088 | 0.065 | 26 |
Wuxi | 0.105 | 0.155 | 0.182 | 0.213 | 0.167 | 6 | Lishui | 0.035 | 0.042 | 0.077 | 0.066 | 0.065 | 27 |
Changzhou | 0.076 | 0.119 | 0.149 | 0.174 | 0.131 | 7 | Xuzhou | 0.031 | 0.048 | 0.064 | 0.088 | 0.057 | 28 |
Jiaxing | 0.083 | 0.101 | 0.132 | 0.164 | 0.122 | 8 | Yancheng | 0.029 | 0.048 | 0.056 | 0.077 | 0.056 | 29 |
Nantong | 0.080 | 0.096 | 0.116 | 0.124 | 0.109 | 9 | Bengbu | 0.039 | 0.037 | 0.065 | 0.068 | 0.055 | 30 |
Zhenjiang | 0.075 | 0.104 | 0.107 | 0.111 | 0.105 | 10 | Xuancheng | 0.030 | 0.036 | 0.060 | 0.068 | 0.052 | 31 |
Huzhou | 0.069 | 0.089 | 0.107 | 0.132 | 0.099 | 11 | Huainan | 0.053 | 0.044 | 0.057 | 0.052 | 0.051 | 32 |
Hefei | 0.067 | 0.078 | 0.103 | 0.153 | 0.096 | 12 | Quzhou | 0.029 | 0.036 | 0.060 | 0.068 | 0.046 | 33 |
Zhoushan | 0.058 | 0.080 | 0.141 | 0.109 | 0.095 | 13 | Huaibei | 0.028 | 0.039 | 0.053 | 0.052 | 0.045 | 34 |
Shaoxing | 0.061 | 0.078 | 0.117 | 0.115 | 0.094 | 14 | Chuzhou | 0.021 | 0.025 | 0.050 | 0.062 | 0.044 | 35 |
Jinhua | 0.054 | 0.065 | 0.096 | 0.117 | 0.090 | 15 | Suqian | 0.020 | 0.027 | 0.062 | 0.061 | 0.041 | 36 |
Yangzhou | 0.058 | 0.091 | 0.085 | 0.108 | 0.088 | 16 | Lu’an | 0.025 | 0.027 | 0.047 | 0.062 | 0.041 | 37 |
Huangshan | 0.051 | 0.071 | 0.080 | 0.088 | 0.079 | 17 | Bozhou | 0.019 | 0.028 | 0.049 | 0.055 | 0.040 | 38 |
Wenzhou | 0.047 | 0.055 | 0.088 | 0.111 | 0.077 | 18 | Suzhou | 0.021 | 0.027 | 0.047 | 0.068 | 0.039 | 39 |
Wuhu | 0.053 | 0.067 | 0.090 | 0.104 | 0.077 | 19 | Anqing | 0.024 | 0.030 | 0.037 | 0.047 | 0.037 | 40 |
Ma’anshan | 0.046 | 0.069 | 0.084 | 0.099 | 0.074 | 20 | Fuyang | 0.026 | 0.029 | 0.034 | 0.049 | 0.036 | 41 |
Chizhou | 0.042 | 0.051 | 0.081 | 0.085 | 0.070 | 21 |
Year | FO | SO | QEO | PO |
---|---|---|---|---|
2005 | 0.679 | 0.657 | 0.878 | 0.291 |
2006 | 0.720 | 0.771 | 0.928 | 0.308 |
2007 | 0.762 | 0.903 | 0.955 | 0.355 |
2008 | 0.811 | 0.987 | 0.935 | 0.378 |
2009 | 0.864 | 0.919 | 1.100 | 0.467 |
2010 | 0.955 | 1.069 | 0.817 | 0.625 |
2011 | 0.978 | 1.184 | 0.917 | 0.631 |
2012 | 1.050 | 1.262 | 0.918 | 0.735 |
2013 | 1.160 | 1.305 | 0.846 | 0.874 |
2014 | 1.234 | 1.324 | 0.806 | 0.876 |
2015 | 1.324 | 1.295 | 0.771 | 1.022 |
2016 | 1.311 | 1.297 | 0.756 | 1.035 |
2017 | 1.166 | 1.732 | 1.161 | 1.623 |
2018 | 1.401 | 1.460 | 0.683 | 1.318 |
2019 | 1.519 | 1.508 | 0.653 | 1.405 |
Year | G | FG | SG | QEG | PG |
---|---|---|---|---|---|
2005 | 0.406 | 0.383 | 0.619 | 0.336 | 0.187 |
2006 | 0.407 | 0.379 | 0.601 | 0.336 | 0.203 |
2007 | 0.402 | 0.376 | 0.580 | 0.335 | 0.190 |
2008 | 0.413 | 0.376 | 0.577 | 0.346 | 0.229 |
2009 | 0.423 | 0.371 | 0.567 | 0.412 | 0.266 |
2010 | 0.435 | 0.374 | 0.569 | 0.369 | 0.384 |
2011 | 0.413 | 0.354 | 0.563 | 0.347 | 0.320 |
2012 | 0.405 | 0.356 | 0.537 | 0.341 | 0.330 |
2013 | 0.394 | 0.350 | 0.527 | 0.340 | 0.306 |
2014 | 0.392 | 0.351 | 0.533 | 0.342 | 0.280 |
2015 | 0.399 | 0.362 | 0.545 | 0.358 | 0.293 |
2016 | 0.392 | 0.345 | 0.540 | 0.359 | 0.291 |
2017 | 0.368 | 0.377 | 0.467 | 0.383 | 0.246 |
2018 | 0.388 | 0.341 | 0.536 | 0.371 | 0.283 |
2019 | 0.390 | 0.343 | 0.521 | 0.353 | 0.318 |
Year | T | TER | TRR | TS | TN | TEC | TRC | TSC | TNC |
---|---|---|---|---|---|---|---|---|---|
2005 | 0.1293 | 0.0671 | 0.0622 | 0.0500 | 0.0828 | 0.5189 | 0.4811 | 0.8047 | 1.3307 |
2006 | 0.1301 | 0.0689 | 0.0611 | 0.0516 | 0.0849 | 0.5300 | 0.4700 | 0.8438 | 1.3880 |
2007 | 0.1286 | 0.0670 | 0.0616 | 0.0549 | 0.078 | 0.5207 | 0.4793 | 0.8907 | 1.2661 |
2008 | 0.1364 | 0.0719 | 0.0646 | 0.0615 | 0.0813 | 0.5267 | 0.4733 | 0.9523 | 1.2596 |
2009 | 0.1474 | 0.0683 | 0.0790 | 0.0609 | 0.0752 | 0.4638 | 0.5362 | 0.7701 | 0.9515 |
2010 | 0.1435 | 0.0734 | 0.0702 | 0.0638 | 0.0821 | 0.5110 | 0.4890 | 0.9093 | 1.1694 |
2011 | 0.1318 | 0.0672 | 0.0646 | 0.0615 | 0.0723 | 0.5096 | 0.4904 | 0.9520 | 1.1195 |
2012 | 0.1309 | 0.0638 | 0.0670 | 0.0609 | 0.0665 | 0.4877 | 0.5123 | 0.9085 | 0.9921 |
2013 | 0.1281 | 0.0585 | 0.0696 | 0.0556 | 0.0612 | 0.4566 | 0.5434 | 0.7980 | 0.8792 |
2014 | 0.1237 | 0.0556 | 0.0681 | 0.0491 | 0.0615 | 0.4492 | 0.5508 | 0.7208 | 0.9023 |
2015 | 0.1202 | 0.0520 | 0.0682 | 0.0481 | 0.0556 | 0.4325 | 0.5675 | 0.7046 | 0.8146 |
2016 | 0.1074 | 0.0449 | 0.0625 | 0.0395 | 0.0500 | 0.4184 | 0.5816 | 0.6321 | 0.8010 |
2017 | 0.0827 | 0.0317 | 0.0510 | 0.0375 | 0.0262 | 0.3829 | 0.6171 | 0.7353 | 0.5127 |
2018 | 0.0971 | 0.0387 | 0.0584 | 0.0362 | 0.0412 | 0.3989 | 0.6011 | 0.6195 | 0.7055 |
2019 | 0.0944 | 0.0373 | 0.0571 | 0.0356 | 0.0389 | 0.3951 | 0.6049 | 0.6240 | 0.6812 |
Year | Moran’s I | p Value | Z Value | Year | Moran’s I | p Value | Z Value |
---|---|---|---|---|---|---|---|
2005 | 0.28 | 0.02 | 3.30 | 2013 | 0.25 | 0.03 | 2.93 |
2006 | 0.29 | 0.02 | 3.43 | 2014 | 0.20 | 0.05 | 2.52 |
2007 | 0.28 | 0.01 | 3.40 | 2015 | 0.21 | 0.04 | 2.58 |
2008 | 0.25 | 0.03 | 3.07 | 2016 | 0.19 | 0.07 | 2.40 |
2009 | 0.31 | 0.01 | 3.64 | 2017 | 0.23 | 0.02 | 2.84 |
2010 | 0.21 | 0.04 | 2.77 | 2018 | 0.22 | 0.05 | 2.71 |
2011 | 0.25 | 0.04 | 2.95 | 2019 | 0.19 | 0.05 | 2.55 |
2012 | 0.25 | 0.03 | 2.93 |
Test of Spatial Econometric Model | Statistics | |
---|---|---|
LM Test | LM_Spatial error | 61.199 *** |
Robust LM_Spatial error | 17.747 *** | |
LM_Spatial lag | 53.203 *** | |
Robust LM_Spatial lag | 9.751 *** | |
Hausman Test | 77.470 *** | |
LR Test | LR Test for SLM | 105.290 ** |
LR Test for SEM | 90.180 *** | |
Wald Test | Wald Test for SLM | 115.110 * |
Wald Test for SEM | 101.100 *** |
Explanatory Variable | OLS | SDM | The Lagged Item Result | ||||
---|---|---|---|---|---|---|---|
Coefficient | Standard Error | Coefficient | Standard Error | Variable | Coefficient | Standard Error | |
X2 | 0.1628 *** | 0.0330 | 0.4119 *** | 0.3277 | W*X2 | −0.2098 *** | 0.0407 |
X3 | 1.0667 * | 0.2183 | −0.0884 | 0.1953 | W*X3 | 0.1529 | 0.1721 |
X4 | 0.1134 | 0.0261 | 0.0707 *** | 0.0212 | W*X4 | 0.1448 *** | 0.0246 |
X5 | 0.2115 ** | 0.0415 | 0.3043 *** | 0.0376 | W*X5 | 0.1458 *** | 0.0405 |
X6 | 0.1325 *** | 0.0200 | 0.0405 ** | 0.0173 | W*X6 | −0.0867 *** | 0.0190 |
X7 | −0.0704 | 0.0166 | 0.0090 | 0.0186 | W*X7 | −0.0396 ** | 0.0171 |
X8 | 0.0047 | 0.0196 | 0.0473 * | 0.0184 | W*X8 | −0.0622 *** | 0.0188 |
X10 | 0.1629 * | 0.0184 | 0.1178 *** | 0.0158 | W*X10 | −0.0492 *** | 0.0178 |
ρ | —— | 0.1713 *** | |||||
Log-likelihood | —— | 147.1855 | |||||
N | 615 | 615 | |||||
R2 | 0.8442 | 0.9425 |
Explanatory Variable | SDM | The Lagged Item Result | |||
---|---|---|---|---|---|
Coefficient | Standard Error | Variable | Coefficient | Standard Error | |
X2 | 0.4167 *** | 0.0332 | W*X2 | −0.2044 *** | 0.0413 |
X3 | 0.1888 | 0.1959 | W*X3 | 0.2228 | 0.1805 |
X4 | 0.0729 *** | 0.0210 | W*X4 | 0.1374 *** | 0.0232 |
X5 | 0.2789 *** | 0.0388 | W*X5 | 0.1510 *** | 0.0420 |
X6 | 0.0355 ** | 0.0175 | W*X6 | −0.0918 *** | 0.0194 |
X7 | 0.0030 | 0.0188 | W*X7 | −0.0286 * | 0.0173 |
X8 | 0.0410 ** | 0.0184 | W*X8 | −0.0539 *** | 0.0187 |
X10 | 0.1290 *** | 0.0160 | W*X10 | −0.0682 *** | 0.0179 |
ρ | 0.1939 *** | ||||
Log-likelihood | 149.8725 | ||||
N | 615 | ||||
R2 | 0.9431 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, D.; Zhang, J.; Wang, Z.; Sun, D. Spatio-Temporal Evolution and Influencing Factors of Open Economy Development in the Yangtze River Delta Area. Land 2022, 11, 1813. https://doi.org/10.3390/land11101813
Ma D, Zhang J, Wang Z, Sun D. Spatio-Temporal Evolution and Influencing Factors of Open Economy Development in the Yangtze River Delta Area. Land. 2022; 11(10):1813. https://doi.org/10.3390/land11101813
Chicago/Turabian StyleMa, Debin, Jie Zhang, Ziyi Wang, and Dongqi Sun. 2022. "Spatio-Temporal Evolution and Influencing Factors of Open Economy Development in the Yangtze River Delta Area" Land 11, no. 10: 1813. https://doi.org/10.3390/land11101813
APA StyleMa, D., Zhang, J., Wang, Z., & Sun, D. (2022). Spatio-Temporal Evolution and Influencing Factors of Open Economy Development in the Yangtze River Delta Area. Land, 11(10), 1813. https://doi.org/10.3390/land11101813