Delimitation of Urban Hot Spots and Rural Cold Air Formation Areas for Nocturnal Ventilation Studies Using Urban Climate Simulations
Abstract
:1. Introduction
2. Methods
2.1. Study Area (Aschaffenburg)
2.2. Urban Climate Simulations (MUKLIMO_3, TRACA)
2.3. Objective Delimitation (z-Transformation)
3. Results
3.1. Delimitated Thermal Hot Spots (20:00 CEST)
3.2. Delimitated Cold Air Formation Areas (22:00–04:00 CEST)
3.3. Comparison of Land Cover Classes and Delimitation Using z-Transformation on Numerical Model Results
3.4. Trajectory Analysis
3.4.1. Nocturnal Backward Trajectories (01:00–23:00 CEST, 03:00–01:00 CEST)
3.4.2. Nocturnal Forward Trajectories (23:00–01:00 CEST, 01:00–03:00 CEST)
4. Discussion and Conclusions
4.1. Main Findings
- The applied z-transformation is suitable for the quantitative identification of the most pronounced areas of cold air formation in the rural surrounding of the city and of hot spots within the built-up urban quarters
- Spatial smoothing of the numerical model results in combination with a minimum area size of 125,000 m² for THs and CAs allows the identification of relevant areas for urban and landscape planning
- Backward trajectories show which THs receive venting from CAs or other areas inside or outside the city
- Forward trajectories imply that cold air from the CAs in the nearby hilly surroundings reach the THs in the city. However, airflow originating in some CAs (e.g., located in the upper Main Valley or further away in the mountains) either does not reach THs in Aschaffenburg, or they are less relevant as airflow detaches from the surface prior to its arrival at THs
- Statistical analysis of land cover types in delimitated THs and CAs reveal that the application of z-transformation to numerical urban climate model results provides a more sophisticated picture of urban climate functions than the traditional approach of climatopes. This is mainly due to the fact that numerical urban climate models consider dynamic feedbacks between surface energy exchanges and atmospheric mixing
4.2. Limitations and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Climates; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Stewart, I.D.; Mills, G. The Urban Heat Island: A Guide Book; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- IPCC. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 3–32. [Google Scholar] [CrossRef]
- Barlag, A.-B.; Kuttler, W. The significance of country breezes for urban planning. Energy Build. 1990–1991, 15, 291–297. [Google Scholar] [CrossRef]
- Haeger-Eugensson, M.; Holmer, B. Advection caused by the urban heat island circulation as a regulating factor on the nocturnal urban heat island. Int. J. Climatol. 1999, 19, 975–988. [Google Scholar] [CrossRef]
- Gross, G. On the self-ventilation of an urban heat island. Meteorol. Z. 2019, 28, 87–92. [Google Scholar] [CrossRef]
- Gross, G. Numerical simulation of the nocturnal flow systems in the Freiburg area for different topographies. Contr. Atmos. Phys. 1989, 62, 57–72. [Google Scholar]
- Fernando, H.J.S. Fluid dynamics of urban atmospheres in complex terrains. Annu. Rev. Fluid Mech. 2010, 42, 365–389. [Google Scholar] [CrossRef]
- Schau-Noppel, H.; Kossmann, M.; Buchholz, S. Meteorological information for climate-proof urban planning—The example of KLIMPRAX. Urban Clim. 2020, 32, 100614. [Google Scholar] [CrossRef]
- Whiteman, C.D. Mountain Meteorology: Fundamentals and Applications; Oxford University Press: Oxford, NY, USA, 2000. [Google Scholar]
- Zardi, D.; Whiteman, C.D. Diurnal Mountain Wind Systems. In Mountain Weather Research and Forecasting: Recent Progress and Current Challenges; Chow, F.K., De Wekker, S.F.J., Snyder, B.J., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 11–35. [Google Scholar]
- Masson, V.; Lion, Y.; Peter, A.; Pigeon, G.; Buyck, J.; Brun, E. “Grand Paris”: Regional landscape change to adapt city to climate warming. Clim. Chang. 2013, 117, 769–782. [Google Scholar] [CrossRef]
- Ren, C.; Yang, R.; Cheng, C.; Xing, P.; Fang, X.; Zhang, S.; Wang, H.; Shi, Y.; Zhang, X.; Kwok, Y.T.; et al. Creating breathing cities by adopting urban ventilation assessment and wind corridor plan—The implementation in Chinese cities. J. Wind Eng. Industr. Aerodyn. 2018, 182, 170–188. [Google Scholar] [CrossRef]
- Grunwald, L.; Kossmann, M.; Weber, S. Mapping urban cold-air paths in a Central European city using numerical modelling and geospatial analysis. Urban Clim. 2019, 29, 100503. [Google Scholar] [CrossRef]
- Lazar, R.; Podesser, A. An urban climate analysis of Graz and its significance for urban planning in the tributary valleys east of Graz (Austria). Atmos. Environ. 1999, 33, 4195–4209. [Google Scholar] [CrossRef]
- Ren, C.; Ng, E.Y.; Katzschner, L. Urban climatic map studies: A review. Int. J. Climatol. 2011, 31, 2213–2233. [Google Scholar] [CrossRef]
- Sturman, A.; Zawar-Reza, P. Application of back-trajectory techniques to the delimitation of urban clean air zones. Atmos. Environ. 2002, 36, 3339–3350. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, W.; Chen, B.; Chang, M.; Wang, X. Identification of ventilation corridors using backward trajectory simulations in Beijing. Sustain. Cities Soc. 2021, 70, 102889. [Google Scholar] [CrossRef]
- VDI. Climate and Air Pollution Maps for Cities and Regions; Verein Deutscher Ingenieure, Guideline 3787/1; Beuth Verlag GmbH: Berlin, Germany, 2015. [Google Scholar]
- Reuter, U.; Kapp, R. Climate Booklet for Urban Development—Indications for Urban Land-Use Planning; Ministry of Economy, Work and Housing of Baden: Württemberg, Germany, 2012; Available online: https://www.staedtebauliche-klimafibel.de/ (accessed on 8 July 2022).
- Scherer, D.; Fehrenbach, U.; Beha, H.-D.; Parlow, E. Improved concepts and methods in analysis and evaluation of the urban climate for optimizing urban planning processes. Atmos. Environ. 1999, 33, 4185–4193. [Google Scholar] [CrossRef]
- Moriyama, M.; Takebayashi, H. Making method of “Klimatope” map based on normalized vegetation index and one-dimensional heat budget model. J. Wind Eng. Industr. Aerod. 1999, 81, 211–220. [Google Scholar] [CrossRef]
- Fehrenbach, U.; Scherer, D.; Parlow, E. Automated classification of planning objectives for the consideration of climate and air quality in urban and regional planning for the example of the region of Basel/Switzerland. Atmos. Environ. 2001, 35, 5605–5615. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R. ‘Local climate zones’ for urban temperature studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Demuzere, M.; Kittner, J.; Martilli, A.; Mills, G.; Moede, C.; Stewart, I.D.; van Vliet, J.; Bechtel, B. A global map of Local Climate Zones to support earth system modelling and urban scale environmental science. Earth Syst. Sci. Data Discuss. 2022; in review. Available online: https://essd.copernicus.org/preprints/essd-2022-92/(accessed on 8 July 2022).
- Stewart, I.D.; Oke, T.R.; Krayenhoff, E.S. Evaluation of the ‘local climate zones’ scheme using temperature observations and model simulations. Int. J. Climatol. 2013, 34, 1062–1080. [Google Scholar] [CrossRef]
- VDI. Methods and Presentation of Investigations Relevant for Planning Urban Climate; Verein Deutscher Ingenieure, Guideline 3785/1; Beuth Verlag GmbH: Berlin, Germany, 2008. [Google Scholar]
- Deutscher Wetterdienst. CDC (Climate Data Center). Available online: www.dwd.de/cdc (accessed on 2 May 2022).
- Deutscher Wetterdienst. German Climate Atlas. Available online: www.dwd.de/klimaatlas (accessed on 2 May 2022).
- BKG. Aktualisiertes 3D-Gebäudemodell im Level of Detail 1. Bundesamt für Kartographie und Geodäsie [German Federal Agency for Cartography and Geodesy]. 2019. Available online: https://www.bkg.bund.de/SharedDocs/Produktinformationen/BKG/DE/P-2019/190211_LoD1.html (accessed on 2 May 2022).
- Sievers, U.; Zdunkowski, W. A microscale urban climate model. Contr. Atmos. Phys. 1985, 59, 13–40. [Google Scholar]
- Sievers, U. Generalization of the stream-function method to three dimensions. Meteorol. Z. 1995, 4, 3–15. [Google Scholar] [CrossRef]
- Sievers, U.; Forkel, R.; Zdunkowski, W. Transport equations for heat and moisture in the soil and their application to boundary layer problems. Contr. Atmos. Phys. 1983, 56, 58–83. [Google Scholar]
- Möller, F. Ein Kurzverfahren zur Bestimmung der langwelligen Ausstrahlung dicker Atmosphärenschichten. Archiv für Meteorologie Geophysik und Bioklimatologie Serie A 1953, 7, 158–169. [Google Scholar] [CrossRef]
- Sievers, U.; Früh, B. A practical approach to compute short-wave irradiance interacting with subgrid-scale buildings. Meteorol. Z. 2012, 21, 349–364. [Google Scholar] [CrossRef]
- Siebert, J.; Sievers, U.; Zdunkowski, W. A one-dimensional simulation of the interaction between land surface processes and the atmosphere. Boundary-Layer Meteorol. 1992, 59, 1–34. [Google Scholar] [CrossRef]
- Bokwa, A.; Dobrovoly, P.; Gal, T.; Geletic, J.; Gulyas, A.; Hajto, M.J.; Holec, J.; Hollosi, B.; Lehnert, M.; Sarbit, N.; et al. Urban climate in Central European cities and global climate change. Acta Clim. 2018, 51–52, 7–35. [Google Scholar] [CrossRef]
- Geletic, J.; Lehnert, M.; Dobrovolny, P.; Zuvela-Aloise, M. Spatial modelling of summer climate indices based on local climate zones: Expected changes in the furture climate of Brno, Czech Republic. Clim. Chang. 2019, 152, 487–502. [Google Scholar] [CrossRef]
- Gal, T.; Maho, S.I.; Skarbit, N.; Unger, J. Numerical modelling for analysis of the effect of different urban green spaces on urban heat load patterns in the present and in the future. Comput. Environ. Urban Syst. 2021, 87, 101600. [Google Scholar] [CrossRef]
- Hollosi, B.; Zuvela-Aloise, M.; Oswald, S.; Kainz, A.; Schöner, W. Applying urban climate model in prediction mode—Evaluation of MUKLIMO_3 model performance for Austrian cities based on the summer period of 2019. Theor. Appl. Climatol. 2021, 144, 1181–1204. [Google Scholar] [CrossRef]
- European Environment Agency. Urban Atlas. 2012. Available online: https://land.copernicus.eu/local/urban-atlas/urban-atlas-2012 (accessed on 2 May 2022).
- European Environment Agency. High Resolution Layers. 2012. Available online: https://land.copernicus.eu/pan-european/high-resolution-layers (accessed on 2 May 2022).
- BKG. Digital Topographic Map DTK 1:200000, Bundesamt für Kartographie und Geodäsie [German Federal Agency for Cartography and Geodesy]. 2020. Available online: https://daten.gdz.bkg.bund.de/produkte/dtk/dtk200-v/2015/dtk200-v_eng.pdf (accessed on 17 May 2022).
- Keck, M. TRACA Manual. Technical Instructions for Installation and Application; Institute of Meteorology and Climatology: Hannover, Germany, 2014. [Google Scholar]
- Straka, M.; Sodoudi, S. Evaluating climate change adaptation strategies and scenarios of enhanced vertical and horizontal compactness at urban scale (a case study for Berlin). Landsc. Urban Plan. 2019, 183, 68–78. [Google Scholar] [CrossRef]
- Kiefer, M.T.; Zhong, S. The effect of sidewall forest canopies on the formation of cold-air pools: A numerical study. J. Geophys. Res. Atmos. 2013, 118, 5965–5978. [Google Scholar] [CrossRef]
- Kiefer, M.T.; Zhong, S. The role of forest cover and valley geometry in cold-air pool evolution. J. Geophys. Res. Atmos. 2015, 120, 8693–8711. [Google Scholar] [CrossRef]
- De Wekker, S.F.J.; Kossmann, M.; Knievel, J.C.; Giovannini, L.; Gutmann, E.; Zardi, D. Meteorological applications benefiting from an improved understanding of atmospheric exchange processes over mountains. Atmosphere 2018, 9, 371. [Google Scholar] [CrossRef]
No. | Land Cover Class | Land Cover ID | Proportion of CA | Proportion of TH |
---|---|---|---|---|
1 | Very dense urban fabric | 11100 | 0.0% of 234 ha | 93.0% of 161 ha |
3 | Dense urban fabric | 11210 | 0.0% of 985 ha | 65.2% of 544 ha |
4 | Medium density urban fabric | 11220 | 0.5% of 480 ha | 34.9% of 204 ha |
5 | Moderate density urban fabric | 11230 | 0.9% of 241 ha | 17.0% of 56 ha |
6 | Low density urban fabric | 11240 | 12.6% of 69 ha | 0.0% of 31 ha |
7 | Isolated Structures | 11300 | 19.6% of 36 ha | 0.0% of 16 ha |
9 | Industrial, commercial, public, military and private units | 12100 | 4.5% of 1252 ha | 48.9% 753 ha |
10 | Highways | 12210 | 1.3% of 94 ha | 6.0% of 25 ha |
11 | Streets and roads | 12220 | 1.8% of 42 ha | 33.1% of 31 ha |
12 | Railways | 12230 | 2.4% of 73 ha | 44.6% of 49 ha |
13 | Port areas | 12300 | 0.0% of 88 ha | 51.0% of 88 ha |
15 | Mineral extraction and dump sites | 13100 | 15.9% of 21 ha | 4.3% of 6 ha |
16 | Construction sites | 13300 | 0.0% of 31 ha | 22.4% of 12 ha |
17 | Unused area | 13400 | 0.0% of 46 ha | 11.9% of 30 ha |
18 | Green urban areas | 14100 | 1.2% of 247 ha | 5.2% of 178 ha |
19 | Sports and leisure facilities | 14200 | 10.8% of 327 ha | 7.1% of 222 ha |
20 | Arable land | 21000 | 37.7% of 1020 ha | 0.7% of 220 ha |
22 | Permanent crops | 22000 | 58.7% of 30 ha | 8.1% of 28 ha |
23 | Pastures | 23000 | 51.3% of 3957 ha | 1.3% of 1400 ha |
27 | Forest | 31000 | 3.6% of 4884 ha | 0.0% of 2146 ha |
31 | Herbaceous vegetation associations | 32000 | 32.1% of 21 ha | 0.0% of 2 ha |
33 | Water | 50000 | 0.0% of 223 ha | 0.3% of 172 ha |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steigerwald, F.; Kossmann, M.; Schau-Noppel, H.; Buchholz, S.; Panferov, O. Delimitation of Urban Hot Spots and Rural Cold Air Formation Areas for Nocturnal Ventilation Studies Using Urban Climate Simulations. Land 2022, 11, 1330. https://doi.org/10.3390/land11081330
Steigerwald F, Kossmann M, Schau-Noppel H, Buchholz S, Panferov O. Delimitation of Urban Hot Spots and Rural Cold Air Formation Areas for Nocturnal Ventilation Studies Using Urban Climate Simulations. Land. 2022; 11(8):1330. https://doi.org/10.3390/land11081330
Chicago/Turabian StyleSteigerwald, Florian, Meinolf Kossmann, Heike Schau-Noppel, Saskia Buchholz, and Oleg Panferov. 2022. "Delimitation of Urban Hot Spots and Rural Cold Air Formation Areas for Nocturnal Ventilation Studies Using Urban Climate Simulations" Land 11, no. 8: 1330. https://doi.org/10.3390/land11081330