Development and Application of an Environmental Vulnerability Index (EVI) for Identifying Priority Restoration Areas in the São Francisco River Basin, Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Environmental Vulnerability Index (EVI)
2.3. Multicriteria Analysis AHP
2.4. Collection of EVI Variables
2.4.1. Land Use Adequacy
2.4.2. Burned Area
2.4.3. Erosion Susceptibility
Rainfall Erosivity (R)
Soil Erodibility (K)
Slope (S)
2.4.4. Quantitative Water Balance
3. Results and Discussion
3.1. Environmental Vulnerability Index (EVI)
3.1.1. Land Use Suitability
3.1.2. Burned Area
3.1.3. Erosion Susceptibility
3.1.4. Quantitative Water Balance
3.1.5. EVI
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pompeu, J.; Assis, T.O.; Ometto, J.P. Landscape Changes in the Cerrado: Challenges of Land Clearing, Fragmentation and Land Tenure for Biological Conservation. Sci. Total Environ. 2024, 906, 167581. [Google Scholar] [CrossRef] [PubMed]
- Barnett, J.; Lambert, S.; Fry, I. The Hazards of Indicators: Insights from the Environmental Vulnerability Index. Ann. Assoc. Am. Geogr. 2008, 98, 102–119. [Google Scholar] [CrossRef]
- Akintan, O.B.; Olusola, J.A.; Imole, O.P.; Adeyemi, M.O. Geotechnical and GIS-Based Environmental Factors and Vulnerability Studies of the Okemesi Landslide, Nigeria. Reg. Sustain. 2023, 4, 249–260. [Google Scholar] [CrossRef]
- Peruchi Trevisan, D.; da Conceição Bispo, P.; Almeida, D.; Imani, M.; Balzter, H.; Eduardo Moschini, L. Environmental Vulnerability Index: An Evaluation of the Water and the Vegetation Quality in a Brazilian Savanna and Seasonal Forest Biome. Ecol. Indic. 2020, 112, 106163. [Google Scholar] [CrossRef]
- Padilha, D.G.; Luiz Trevisan, M.; Cabral Cruz, J. Sensibilidade Do Modelo de Fragilidades Ambientais à Ponderação Multicriterial: Aspectos Físicos Da Bacia Hidrográfica Do Alto Uruguai. Floresta 2014, 44, 535–548. [Google Scholar] [CrossRef]
- Zou, T.; Yoshino, K. Environmental Vulnerability Evaluation Using a Spatial Principal Components Approach in the Daxing’anling Region, China. Ecol. Indic. 2017, 78, 405–415. [Google Scholar] [CrossRef]
- Li, L.; Shi, Z.H.; Yin, W.; Zhu, D.; Ng, S.L.; Cai, C.F.; Lei, A.L. A Fuzzy Analytic Hierarchy Process (FAHP) Approach to Eco-Environmental Vulnerability Assessment for the Danjiangkou Reservoir Area, China. Ecol. Modell. 2009, 220, 3439–3447. [Google Scholar] [CrossRef]
- Li, A.; Wang, A.; Liang, S.; Zhou, W. Eco-Environmental Vulnerability Evaluation in Mountainous Region Using Remote Sensing and GIS—A Case Study in the Upper Reaches of Minjiang River, China. Ecol. Modell. 2006, 192, 175–187. [Google Scholar] [CrossRef]
- da Silva Pinto Vieira, R.M.; Tomasella, J.; Cunha, A.P.M.D.A.; Barbosa, A.A.; Pompeu, J.; Ferreira, Y.; Santos, F.C.; Alves, L.M.; Ometto, J. Socio-Environmental Vulnerability to Drought Conditions and Land Degradation: An Assessment in Two Northeastern Brazilian River Basins. Sustainability 2023, 15, 8029. [Google Scholar] [CrossRef]
- Luo, D.; Caldas, M.M.; Goodin, D.G. Estimating Environmental Vulnerability in the Cerrado with Machine Learning and Twitter Data. J. Environ. Manag. 2021, 289, 112502. [Google Scholar] [CrossRef]
- Zhao, J.; Ji, G.; Tian, Y.; Chen, Y.; Wang, Z. Environmental Vulnerability Assessment for Mainland China Based on Entropy Method. Ecol. Indic. 2018, 91, 410–422. [Google Scholar] [CrossRef]
- Marengo, J.A.; Galdos, M.V.; Challinor, A.; Cunha, A.P.; Marin, F.R.; Vianna, M.D.S.; Alvala, R.C.S.; Alves, L.M.; Moraes, O.L.; Bender, F. Drought in Northeast Brazil: A Review of Agricultural and Policy Adaptation Options for Food Security. Clim. Resil. Sustain. 2022, 1, e17. [Google Scholar] [CrossRef]
- Wang, S.Y.; Liu, J.S.; Yang, C.J. Eco-Environmental Vulnerability Evaluation in the Yellow River Basin. Pedosphere 2008, 18, 171–182. [Google Scholar] [CrossRef]
- Houghton, J.T.; Ding, Y.; Griggs, D.J.; Noguer, M.; van der Linden, P.J.; Dai, X.; Maskell, K.; Johnson, C.A. IPCC Climate Change 2001: The Scientific Basis; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Vancine, M.H.; Muylaert, R.L.; Niebuhr, B.B.; de Faria Oshima, J.E.; Tonetti, V.; Bernardo, R.; De Angelo, C.; Rosa, M.R.; Grohmann, C.H.; Ribeiro, M.C. The Atlantic Forest of South America: Spatiotemporal Dynamics of the Vegetation and Implications for Conservation. Biol. Conserv. 2024, 291, 110499. [Google Scholar] [CrossRef]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; da Fonseca, G.A.; Kent, J. Biodiversity Hotspots for Conservation Priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef]
- Pires, M.O. ‘Cerrado’, Old and New Agricultural Frontiers. Braz. Political Sci. Rev. 2020, 14, 24. [Google Scholar] [CrossRef]
- Jong, P.; Barreto, T.B.; Tanajura, C.A.S.; Oliveira-Esquerre, K.P.; Kiperstok, A.; Andrade Torres, E. The Impact of Regional Climate Change on Hydroelectric Resources in South America. Renew. Energy 2021, 173, 76–91. [Google Scholar] [CrossRef]
- Freitas, A.A.; Drumond, A.; Carvalho, V.S.B.; Reboita, M.S.; Silva, B.C.; Uvo, C.B. Drought Assessment in São Francisco River Basin, Brazil: Characterization through SPI and Associated Anomalous Climate Patterns. Atmosphere 2022, 13, 41. [Google Scholar] [CrossRef]
- CBHSF. The River Basin. Available online: https://cbhsaofrancisco.org.br/a-bacia/ (accessed on 30 July 2024).
- MapBiomas Coleção 6 Da Série Anual de Mapas Da Cobertura e Uso Do Solo Do Brasil. Available online: https://mapbiomas.org/ (accessed on 4 October 2022).
- Beck, H.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Lutsko, N.J.; Dufour, A.; Zeng, Z.; Jiang, X.; van Dijk, A.I.J.M.; Miralles, D.G. High-Resolution (1 Km) Köppen-Geiger Maps for 1901–2099 Based on Constrained CMIP6 Projections. Sci. Data 2023, 10, 724. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a High-Resolution Global Dataset of Monthly Climate and Climatic Water Balance from 1958–2015. Sci. Data 2018, 5, 170191. [Google Scholar] [CrossRef]
- Copernicus Climate Change Service. (C3S): ERA5: Fifth generation of ECMWF Atmospheric Reanalyses of the Global Climate. Copernicus Climate Change Service Climate Data Store (CDS) 2017. Available online: https://cds.climate.copernicus.eu/cdsapp#!/home (accessed on 23 August 2024).
- IBGE Pedologia 1:250,000. Available online: https://www.ibge.gov.br/geociencias/informacoes-ambientais/pedologia/10871-pedologia.html?=&t=downloads (accessed on 26 November 2023).
- Saaty, T.L.; Shang, J.S. An Innovative Orders-of-Magnitude Approach to AHP-Based Mutli-Criteria Decision Making: Prioritizing Divergent Intangible Humane Acts. Eur. J. Oper. Res. 2011, 214, 703–715. [Google Scholar] [CrossRef]
- Sipahi, S.; Timor, M. The Analytic Hierarchy Process and Analytic Network Process: An Overview of Applications. Manag. Decis. 2010, 48, 775–808. [Google Scholar] [CrossRef]
- Bertol, I.; De Maria, I.C.; Souza, L.S. Manejo e conservação do solo e da água. Soc. Bras. De Ciência Do Solo 2019, 1, 1355. [Google Scholar]
- Saaty, T.L. The Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Saaty, T.L. Decision Making with the Analytic Hierarchy Process. Int. J. Serv. Sci. 2008, 1, 83–98. [Google Scholar] [CrossRef]
- Lepsch, I.F.; Espindola, C.R.; Vischi Filho, O.J.; Hernani, L.C.; Siqueira, D.S. Manual Para Levantamento Utilitário e Classificação de Terras No Sistema de Capacidade de Uso, 1st ed.; Sociedade Brasileira de Ciência do Solo: Viçosa, MG, Brazil, 2015; Volume 1. [Google Scholar]
- EMBRAPA. Sistema Brasileiro de Classificação de Solos; EMBRAPA: Brasília, DF, Brazil, 2018. [Google Scholar]
- Monteiro, L.I.B.; Pruski, F.F.; Calegario, A.T.; Oliveira, A.N.G.; Pereira, S.B. Methodology for Payment for Ecosystem Services Based on the Concept of Land Use and Management Capability. Soil. Use Manag. 2018, 34, 515–524. [Google Scholar] [CrossRef]
- NASA NASADEM Merged DEM Global 1 Arc Second V001. Available online: https://catalog.data.gov/dataset/nasadem-global-digital-elevation-model (accessed on 4 November 2022).
- FBDS Permanent Preservation Areas. Available online: http://geo.fbds.org.br (accessed on 8 October 2023).
- CAR Legal Reserves. Available online: https://www.car.gov.br/#/ (accessed on 8 October 2023).
- Berlinck, C.N.; Batista, E.K.L. Good Fire, Bad Fire: It Depends on Who Burns. Flora Morphol. Distrib. Funct. Ecol. Plants 2020, 268, 151610. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; Balch, J.; Artaxo, P.; Bond, W.J.; Cochrane, M.A.; D’Antonio, C.M.; Defries, R.; Johnston, F.H.; Keeley, J.E.; Krawchuk, M.A.; et al. The Human Dimension of Fire Regimes on Earth. J. Biogeogr. 2011, 38, 2223–2236. [Google Scholar] [CrossRef]
- MapBiomas Método MapBiomas Fogo. Projeto MapBiomas 2021. Available online: https://mapbiomas.org/metodo-mapbiomas-fogo-1 (accessed on 5 October 2023).
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V.; et al. An Assessment of the Global Impact of 21st Century Land Use Change on Soil Erosion. Nat. Commun. 2017, 8, 2013. [Google Scholar] [CrossRef]
- Bertoni, J.; Lombardi Neto, F. Conservação Do Solo, 10th ed.; Ícone: São Paulo, SP, Brazil, 2017. [Google Scholar]
- Cecílio, R.A.; de Oliveira, J.P.B.; de Sousa Teixeira, D.B.; Pruski, F.F.; Zanetti, S.S. Database of Rainfall Erosivity Factor for 141 Locations in Brazil. Lat. Am. Data Sci. 2021, 1, 95–101. [Google Scholar] [CrossRef]
- Durães, M.F.; de Mello, C.R. Spatial Distribution of the Potential and Current Soil Erosion for the Sapucaí River Basin, MG, Brazil. Eng. Sanit. E Ambient. 2016, 21, 677–685. [Google Scholar] [CrossRef]
- Chagas, R.; Morais, S.; Celina, M.; Sales, L. Estimativa Do Potencial Natural de Erosão Dos Solos Da Bacia Hidrográfica Do Alto Gurguéia, Piauí-Brasil, Com Uso de Sistema de Informação Geográfica Estimation of the Natural Soil Erosion Potential of the Upper Gurguéia Basin, Piauí-Brazil, Using Geographic Information System. Número Espec. 2017, 27, 84. [Google Scholar] [CrossRef]
- Salomão, F.X.T. Controle e Prevenção de Processos Erosivos. In Erosão e Conservação Dos Solos: Conceitos, Temas e Aplicações; Bertrand Brasil: Rio de Janeiro, RJ, Brazil, 2005. [Google Scholar]
- Schaefer, C.E.; Albuquerque, M.A.; Charmelo, L.L.; Campos, J.C.F.; Simas, F.B. Elementos Da Paisagem e a Gestão Da Qualidade Ambiental. Inf. Agropecuário 2000, 21, 22–44. [Google Scholar]
- Resende, M.; Curi, N.; Rezende, S.B.; Silva, S.H.G. Da Rocha Ao Solo: Enfoque Ambiental, 1st ed.; UFLA: Lavras, MG, Brazil, 2019. [Google Scholar]
- Souza Valladares, G.; da Silva Gomes, A.; Enrique Torresan, F.; Aparecida Gonçalves Rodrigues, C.; Regina Grego, C.; Monitoramento por Satélite, E.; Soldado Passarinho, A. Multicriteria Additive Model in Generating Maps of Susceptibility to Erosion in Rural Area. Pesqui. Agropecuária Bras. 2012, 47, 1376–1383. [Google Scholar]
- ANA. Balanço Hídrico Quantitativo; Agência Nacional de Águas e Saneamento Básico: Brasília, DF, Brazil, 2022. [Google Scholar]
- Cano-Crespo, A.; Traxl, D.; Thonicke, K. Spatio-Temporal Patterns of Extreme Fires in Amazonian Forests. Eur. Phys. J. Spec. Top. 2021, 230, 3033–3044. [Google Scholar] [CrossRef]
- Ricotta, C.; Bajocco, S.; Guglietta, D.; Conedera, M. Assessing the Influence of Roads on Fire Ignition: Does Land Cover Matter? Fire 2018, 1, 24. [Google Scholar] [CrossRef]
- Syphard, A.D.; Keeley, J.E.; Abatzoglou, J.T. Trends and Drivers of Fire Activity Vary across California Aridland Ecosystems. J. Arid Environ. 2017, 144, 110–122. [Google Scholar] [CrossRef]
- Azevedo, T.; Rosa, M.; Shimbo, J.; Del Lama Marques, C.; Oliveira, M.; Valdiones, A.P.; Teixeira, L.M.S.; Coelho, M. Relatório Anual Do Desmatamento No Brasil; MapBiomas: São Paulo, SP, Brazil, 2023. [Google Scholar]
- IAS Municípios e Saneamento. Available online: https://www.aguaesaneamento.org.br (accessed on 28 April 2024).
- Campos, J.A.; da Silva, D.D.; Moreira, M.C.; de Menezes Filho, F.C.M. Environmental Fragility and Land Use Capacity as Instruments of Environmental Planning, Caratinga River Basin, Brazil. Environ. Earth Sci. 2021, 80, 264. [Google Scholar] [CrossRef]
- Cruz, B.B.; Manfré, L.A.; Ricci, D.S.; Brunoro, D.; Appolinario, L.; Quintanilha, J.A. Environmental Fragility Framework for Water Supply Systems: A Case Study in the Paulista Macro Metropolis Area (SE Brazil). Environ. Earth Sci. 2017, 76, 441. [Google Scholar] [CrossRef]
- de Jesus França, L.C.; Lopes, L.F.; de Morais, M.S.; Lisboa, G.D.S.; da Rocha, S.J.S.S.; de Morais Junior, V.T.M.; Santana, R.C.; Mucida, D.P. Environmental Fragility Zoning Using GIS and AHP Modeling: Perspectives for the Conservation of Natural Ecosystems in Brazil. Conservation 2022, 2, 349–366. [Google Scholar] [CrossRef]
- Sahoo, S.; Dhar, A.; Kar, A. Environmental Vulnerability Assessment Using Grey Analytic Hierarchy Process Based Model. Environ. Impact Assess. Rev. 2016, 56, 145–154. [Google Scholar] [CrossRef]
- Nguyen, K.A.; Liou, Y.A. Global Mapping of Eco-Environmental Vulnerability from Human and Nature Disturbances. Sci. Total Environ. 2019, 664, 995–1004. [Google Scholar] [CrossRef] [PubMed]
- Liou, Y.A.; Nguyen, A.K.; Li, M.H. Assessing Spatiotemporal Eco-Environmental Vulnerability by Landsat Data. Ecol. Indic. 2017, 80, 52–65. [Google Scholar] [CrossRef]
- da Fonseca Aguiar, L.; Cataldi, M. Social and Environmental Vulnerability in Southeast Brazil Associated with the South Atlantic Convergence Zone. Nat. Hazards 2021, 109, 2423–2437. [Google Scholar] [CrossRef]
- Malta, F.S.; da Costa, E.M. Socio-Environmental Vulnerability Index: An Application to Rio de Janeiro-Brazil. Int. J. Public Health 2021, 66, 584308. [Google Scholar] [CrossRef]
- Roque, M.P.B.; Ferreira Neto, J.A.; da Cruz Vieira, W.; Rocha, B.D.; Calegario, A.T. Social Vulnerability to Environmental Disasters in the Paraopeba River Basin, Minas Gerais, Brazil. Nat. Hazards 2023, 118, 1191–1210. [Google Scholar] [CrossRef]
1/9 | 1/7 | 1/5 | 1/3 | 1 | 3 | 5 | 7 | 9 | |
---|---|---|---|---|---|---|---|---|---|
Extreme | Very strong | Strong | Moderate | Equally | Moderate | Strong | Very strong | Extreme | |
Less important | Equal | More important | |||||||
N | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
RI | 0 | 0 | 0.58 | 0.90 | 1.21 | 1.24 | 1.32 | 1.41 | 1.45 |
Criteria | Land Use Adequacy | Erosion Susceptibility | Burned Area | Quantitative Water Balance | Weights | CR |
---|---|---|---|---|---|---|
Land Use Adequacy | 1.00 | 1.00 | 6.00 | 7.00 | 0.429 | 0.09 |
Erosion Susceptibility | 1.00 | 1.00 | 6.00 | 7.00 | 0.429 | |
Burned Area | 0.17 | 0.17 | 1.00 | 0.50 | 0.061 | |
Quantitative Water Balance | 0.14 | 0.14 | 2.00 | 1.00 | 0.08 |
LUC | Description |
---|---|
I | Land suitable for all uses, including intensive agriculture without intensive conservation practices |
II | Land suitable for crops with simple conservation practices |
III | Land suitable for crops with intensive or complex conservation practices |
IV | Land suitable for occasional annual crops, limited perennial crops, crops in rotation with pastures, forests, and protection of wild fauna and flora |
V | Land with little to no risk of erosion but with limitations impractical to be removed that greatly limit its use. Hence, it is more suitable for pasture, reforestation, or wildlife |
VI | Land with severe limitations, generally unsuitable for crops, and limited use for pastures, planted forests, or native forests as a refuge for wild flora and fauna |
VII | Land with very severe limitations, unsuitable for crops, limited use for pastures, planted forests, and refuge of wild flora and fauna |
VIII | Land with limitations that prevent its use for any agricultural activity, restricting them to recreation and/or protection of wild flora and fauna or even water storage (dams) |
Soil Class—SiBCS | Soil Class—WRB/FAO | LUC | Slope (%) | LUC |
---|---|---|---|---|
Cambissolo Húmico | Cambisol | VII | 0–2 | I |
Cambissolo Háplico | ||||
Plintossolo Pétrico | Plinthosols | VII | 2–5 | II |
Plintossolo Háplico | V | |||
Gleissolo Melânico | Gleysols | VIII | 5–10 | III |
Gleissolo Háplico | ||||
Latossolo Amarelo | Ferralsols | II | 10–20 | IV |
Latossolo Vermelho Amarelo | ||||
Latossolo Vermelho | 20–30 | V | ||
Nitossolo Vermelho | Nitisols | III | ||
Argissolo Vermelho Amarelo | Acrisols | III | 30–45 | VI |
Argissolo Vermelho | ||||
Neossolo Litólico | Leptsols | VIII | 45–70 | VII |
Neossolo Quartzarênico | Arenosols | V | ||
Neossolo Flúvico | Fluvisols | I | >70 | VIII |
Luvissolo Crômico | Luvisols | III |
Land Use and Land Cover | LUI |
---|---|
Forest Formation | VIII |
Savanna Formation | VI |
Silviculture | VI |
Other Non-Forest Formations | VIII |
Flooded Field and Swampy Area | VIII |
Grasslands | VIII |
Pastures | III |
Agriculture | II |
Mosaic of Uses | II |
Urbanized Area | I |
Other Non-Vegetated Areas | I |
Mining | I |
Rocky Outcrop | VIII |
Water Body | VIII |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coelho, C.D.; da Silva, D.D.; Amorim, R.S.S.; Vasconcelos, B.N.F.; Possato, E.L.; Filho, E.I.F.; Brandão, P.C.; Ferreira Neto, J.A.; Silva, L.V. Development and Application of an Environmental Vulnerability Index (EVI) for Identifying Priority Restoration Areas in the São Francisco River Basin, Brazil. Land 2024, 13, 1475. https://doi.org/10.3390/land13091475
Coelho CD, da Silva DD, Amorim RSS, Vasconcelos BNF, Possato EL, Filho EIF, Brandão PC, Ferreira Neto JA, Silva LV. Development and Application of an Environmental Vulnerability Index (EVI) for Identifying Priority Restoration Areas in the São Francisco River Basin, Brazil. Land. 2024; 13(9):1475. https://doi.org/10.3390/land13091475
Chicago/Turabian StyleCoelho, Clívia Dias, Demetrius David da Silva, Ricardo Santos Silva Amorim, Bruno Nery Fernandes Vasconcelos, Ernani Lopes Possato, Elpídio Inácio Fernandes Filho, Pedro Christo Brandão, José Ambrósio Ferreira Neto, and Lucas Vieira Silva. 2024. "Development and Application of an Environmental Vulnerability Index (EVI) for Identifying Priority Restoration Areas in the São Francisco River Basin, Brazil" Land 13, no. 9: 1475. https://doi.org/10.3390/land13091475
APA StyleCoelho, C. D., da Silva, D. D., Amorim, R. S. S., Vasconcelos, B. N. F., Possato, E. L., Filho, E. I. F., Brandão, P. C., Ferreira Neto, J. A., & Silva, L. V. (2024). Development and Application of an Environmental Vulnerability Index (EVI) for Identifying Priority Restoration Areas in the São Francisco River Basin, Brazil. Land, 13(9), 1475. https://doi.org/10.3390/land13091475