Robust Finite-Time Control of Linear System with Non-Differentiable Time-Varying Delay
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
4. Numerical Results
5. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, H.; Yuan, Z.; Chen, B.; He, X.; Zhao, J.; Qiu, T. Analysis of the stability and controllability of chemical processes. Comput. Chem. Eng. 2011, 35, 1101–1109. [Google Scholar] [CrossRef]
- Kot, M. Elements of Mathematical Ecology; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Cole, J.D.; Greifinger, C. Acoustic gravity waves from an energy source at the ground in an isothermal atmosphere. J. Geophys. Res. 1969, 74, 3693–3703. [Google Scholar] [CrossRef]
- Hariharan, S.I. A model problem for acoustic wave propagation in the atmosphere. In Proceedings of the First IMACS Symposium on Computer Acoustics; Lee, D., Sternberg, R.L., Schultz, M.H., Eds.; NorthHolland Publishing Company: Amsterdam, The Netherlands, 1988; pp. 65–82. [Google Scholar]
- Vimal Kumar, S.; Raja, R.; Marshal Anthoni, S.; Cao, J.; Tu, Z. Robust finite-time non-fragile sampled-data control for T-S fuzzy flexible spacecraft model with stochastic actuator faults. Appl. Math. Comput. 2018, 321, 483–497. [Google Scholar] [CrossRef]
- Rajakumar, V.; Anbukumar, K.; Arunodayaraj, I.S. Power quality enhancement using linear quadratic regulator based current-controlled voltage source inverter for the grid integrated renewable energy system. Electr. Power Compon. Syst. 2017, 45, 1783–1794. [Google Scholar] [CrossRef]
- Amato, F.; Ariola, M.; Cosentino, C. Robust finite-time stabilisation of uncertain linear systems. Int. J. Control 2011, 84, 2117–2127. [Google Scholar] [CrossRef]
- Niamsup, P.; Phat, V.N. Robust finite-time control for linear time-varying delay systems with bounded control. Asian J. Control 2016, 18, 2317–2324. [Google Scholar] [CrossRef]
- Stojanovic, S.B. Further improvement in delay-dependent finite-time stability criteria for uncertain continuous-time systems with time varying delays. IET Control Theory Appl. 2016, 10, 926–938. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Z.; Zhang, H. Finite-time stability analysis and stabilization for uncertain continuous-time system with time-varying delay. J. Franklin Inst. 2015, 352, 1296–1317. [Google Scholar] [CrossRef]
- Seuret, A.; Gouaisbaut, F. Wirtinger-based integral inequality: Application to time-delay systems. Automatica 2013, 49, 2860–2866. [Google Scholar] [CrossRef] [Green Version]
- Botmart, T.; Niamsup, P.; Phat, V.N. Delay-dependent exponential stabilization for uncertain linear systems with interval non-differentiable time-varying delays. Appl. Math. Comput. 2011, 217, 8236–8247. [Google Scholar] [CrossRef]
- Keadnarmol, P.; Rojsiraphisal, T. Globally exponential stability of a certain neutral differential equation with time-varying delays. Adv. Differ. Equ. 2014, 32. [Google Scholar] [CrossRef] [Green Version]
- Garica-Gonzalez, P.; Garcia-Cerrada, A. Control system for a PWM-based STATCOM. IEEE Trans. Power Deliv. 2000, 15, 1252–1257. [Google Scholar] [CrossRef]
- Debeljkovic, D.L.; Stojanovic, S.B.; Jovanovic, A.M. Finite-time stability of continuous time delay systems: Lyapunov-like approach with Jensen’s and Coppel’s inequality. Acta Polytech. Hung. 2013, 10, 135–150. [Google Scholar]
- Lazarevic, M.P.; Debeljkovic, D.L.; Nenadic, Z.L.; Milinkovic, S.A. Finite-time stability of delayed systems. IMA J. Math. Control Inf. 2000, 17, 101–109. [Google Scholar] [CrossRef]
- Puangmalai, J.; Tongkum, J.; Rojsiraphisal, T. Finite-time stability criteria of linear system with non-differentiable time-varying delay via new integral inequality. Math. Comput. Simul. 2020, 171, 170–186. [Google Scholar] [CrossRef]
- Amato, F.; Ariola, M.; Cosentino, C. Finite-time stabilization via dynamic output feedback. Automatica 2006, 42, 337–342. [Google Scholar] [CrossRef]
- Lin, X.; Liang, K.; Li, H.; Jiao, Y.; Nie, J. Finite-time stability and stabilization for continuous systems with additive time-varying delays. Circ. Syst. Signal Process. 2017, 36, 2971–2990. [Google Scholar] [CrossRef]
- Liu, H.; Shi, P.; Karimi, H.R.; Chadli, M. Finite-time stability and stabilisation for a class of nonlinear systems with time-varying delay. Int. J. Syst. Sci. 2016, 47, 1433–1444. [Google Scholar] [CrossRef]
- Rojsiraphisal, T.; Puangmalai, J. An improved finite-time stability and stabilization of linear system with constant delay. Math. Probl. Eng. 2014, 154769. [Google Scholar] [CrossRef]
- Stojanovic, S.B.; Debeljkovic, D.L.; Antic, D.S. Finite-time stability and stabilization of linear time-delay systems. Facta Univ. Automat. Control Robot. 2012, 11, 25–36. [Google Scholar]
- Zamart, C.; Rojsiraphisal, T. Finite-time stabilization of Linear Systems with time-varying delays using new integral inequalities. Thai J. Math. 2019, 17, 173–191. [Google Scholar]
- Ruan, Y.; Huang, T. Finite-Time Control for Nonlinear Systems with Time-Varying Delay and Exogenous Disturbance. Symmetry 2020, 12, 447. [Google Scholar] [CrossRef] [Green Version]
- Bos, A. Parameter Estimation for Scientists and Engineers; Wiley: Hoboken, NJ, USA, 2007. [Google Scholar]
2 | 4 | 6 | 8 | 10 | ||
---|---|---|---|---|---|---|
RFTS | Theorem 1 | |||||
Corollary 1 | ||||||
Theorem 3 [9] | NF | NF | NF | NF | NF | |
RFTU | Theorem 1 | |||||
Corollary 1 |
Computed and Value of () | ||||||
---|---|---|---|---|---|---|
Fixed | Theorem 1 | Corollary 1 | Fixed | Theorem 1 | Corollary 1 | |
1 | 7 | NF | ||||
2 | 75 | 54 | NF | |||
3 | 400 | 320 | NF | |||
4 | 2000 | 1750 | NF | |||
5 | 9500 | 9330 | NF |
10 | 50 | 100 | 500 | 1000 | 5000 | 10,000 | 50,000 | |
---|---|---|---|---|---|---|---|---|
Theorem 1 | ||||||||
Corollary 1 | ||||||||
Computed and Value of () | ||||||
---|---|---|---|---|---|---|
Fixed | Theorem 1 | Corollary 1 | Fixed | Theorem 1 | Corollary 1 | |
1 | NF | |||||
2 | 16 | NF | ||||
3 | 64 | NF | ||||
4 | 245 | NF | ||||
5 | 900 | NF |
1 | 2 | 3 | 4 | 5 | |
---|---|---|---|---|---|
Theorem 1 | 391 | 1935 | 9313 | ||
Corollary 1 | 317 | 1735 | 9490 | ||
Computed and Value of () | ||||||
---|---|---|---|---|---|---|
Fixed | Theorem 1 | Corollary 1 | Fixed | Theorem 1 | Corollary 1 | |
1 | NF | |||||
2 | NF | |||||
3 | NF | |||||
4 | 207 | NF | ||||
5 | 759 | NF |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puangmalai, W.; Puangmalai, J.; Rojsiraphisal, T. Robust Finite-Time Control of Linear System with Non-Differentiable Time-Varying Delay. Symmetry 2020, 12, 680. https://doi.org/10.3390/sym12040680
Puangmalai W, Puangmalai J, Rojsiraphisal T. Robust Finite-Time Control of Linear System with Non-Differentiable Time-Varying Delay. Symmetry. 2020; 12(4):680. https://doi.org/10.3390/sym12040680
Chicago/Turabian StylePuangmalai, Wanwisa, Jirapong Puangmalai, and Thaned Rojsiraphisal. 2020. "Robust Finite-Time Control of Linear System with Non-Differentiable Time-Varying Delay" Symmetry 12, no. 4: 680. https://doi.org/10.3390/sym12040680
APA StylePuangmalai, W., Puangmalai, J., & Rojsiraphisal, T. (2020). Robust Finite-Time Control of Linear System with Non-Differentiable Time-Varying Delay. Symmetry, 12(4), 680. https://doi.org/10.3390/sym12040680