Ostrowski–Trapezoid–Grüss-Type on (q, ω)-Hahn Difference Operator
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
3.1. An Ostrowski-Type Inequality on (q, ω)-Hahn Difference Operator
3.2. A Trapezoid-Type Inequality on (q, ω)-Hahn Difference Operator
3.3. A Grüss-Type Inequality on (q, ω)-Hahn Difference Operator
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ostrowski, A. Über die Absolutabweichung einer differentiierbaren Funktion von ihrem Integralmittelwert. Comment. Math. Helv. 1937, 10, 226–227. [Google Scholar] [CrossRef]
- Grüss, G. . Math. Z. 1935, 39, 215–226. [Google Scholar] [CrossRef]
- Mitrinovic, D.S.; Pecaric, J.; Fink, A.M. Inequalities Involving Functions and Their Integrals and Derivatives; Springer Science and Business Media: Berlin, Germany, 2012; Volume 53. [Google Scholar]
- Pachpatte, B.G. On trapezoid and Grüss like integral inequalities. Tamkang J. Math. 2003, 34, 356–370. [Google Scholar] [CrossRef]
- El-Deeb, A.A. On some dynamic inequalities of Ostrowski, trapezoid, and Grüss type on time scales. J. Inequalities Appl. 2022, 2022, 100. [Google Scholar] [CrossRef]
- El-Deeb, A.A.; Elsennary, H.A.; Nwaeze, E.R. Generalized weighted Ostrowski, trapezoid and Grüss type inequalities on time scales. Fasc. Math. 2018, 60, 123–144. [Google Scholar]
- Ahmad, F.; Cerone, P.; Dragomir, S.S.; Mir, N.A. On some bounds of Ostrowski and Čebyšev type. J. Math. Inequal 2010, 4, 53–65. [Google Scholar] [CrossRef]
- Cerone, P.; Dragomir, S.S.; Roumeliotis, J. An Inequality of Ostrowski-Grüss Type for Twice Differentiable Mappings and Applications in Numerical Integration. RGMIA Research Report Collection 1998. Volume 1. Available online: https://vuir.vu.edu.au/17115/ (accessed on 23 July 2022).
- Dragomir, S.S.; Cerone, P.; Roumeliotis, J. A new generalization of Ostrowski’s integral inequality for mappings whose derivatives are bounded and applications in numerical integration and for special means. Appl. Math. Lett. 2000, 13, 19–25. [Google Scholar] [CrossRef]
- Liu, W. Several error inequalities for a quadrature formula with a parameter and applications. Comput. Math. Appl. 2008, 56, 1766–1772. [Google Scholar] [CrossRef]
- Liu, W.J.; Huang, Y.; Pan, X.X. New weighted Ostrowski-Grüss-Čebyšev type inequalities. Bull. Korean Math. Soc. 2008, 45, 477–483. [Google Scholar] [CrossRef]
- Liu, W.J.; Xue, Q.L.; Wang, S.F. Several new perturbed Ostrowski-like type inequalities. JIPAM J. Inequalities Pure Appl. Math. Electron. Only 2007, 8, 110. [Google Scholar]
- Dragomir, S.S. A generalization of the Ostrowski integral inequality for mappings whose derivatives belong to Lp[a,b] and applications in numerical integration. J. Math. Anal. Appl. 2001, 255, 605–626. [Google Scholar] [CrossRef]
- Awan, K.; Pecaric, J.; Penava, M.R. Companion inequalities to Ostrowski-Grüss type inequality and applications. Turk. J. Math. 2015, 39, 228–234. [Google Scholar] [CrossRef]
- Tuna, A.; Daghan, D. Generalization of Ostrowski and Ostrowski-Grüss type inequalities on time scales. Comput. Math. Appl. 2010, 60, 803–811. [Google Scholar] [CrossRef]
- Acu, A.M. Improvement of Grüss and Ostrowski type inequalities. Filomat 2015, 29, 2027–2035. [Google Scholar] [CrossRef]
- Mitrinovic, D.S.; Pecaric, J.E.; Fink, A.M. Classical and New Inequalities in Analysis; Volume 61 of Mathematics and Its Applications (East European Series); Kluwer Academic Publishers Group: Dordrecht, The Netherlands, 1993. [Google Scholar]
- Annaby, M.H.; Hamza, A.E.; Aldwoah, K.A. Hahn difference operator and associated Jackson–Nörlund integrals. J. Optim. Theory Appl. 2012, 154, 133–153. [Google Scholar] [CrossRef]
- Hahn, W. Ein beitrag zur theorie der orthogonalpolynome. Monatshefte Math. 1983, 95, 19–24. [Google Scholar] [CrossRef]
- Jordan, C.; Jordán, K. Calculus of Finite Differences; American Mathematical Society: Providence, RI, USA, 1965; Volume 33. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Deeb, A.A.; Awrejcewicz, J. Ostrowski–Trapezoid–Grüss-Type on (q, ω)-Hahn Difference Operator. Symmetry 2022, 14, 1776. https://doi.org/10.3390/sym14091776
El-Deeb AA, Awrejcewicz J. Ostrowski–Trapezoid–Grüss-Type on (q, ω)-Hahn Difference Operator. Symmetry. 2022; 14(9):1776. https://doi.org/10.3390/sym14091776
Chicago/Turabian StyleEl-Deeb, Ahmed A., and Jan Awrejcewicz. 2022. "Ostrowski–Trapezoid–Grüss-Type on (q, ω)-Hahn Difference Operator" Symmetry 14, no. 9: 1776. https://doi.org/10.3390/sym14091776
APA StyleEl-Deeb, A. A., & Awrejcewicz, J. (2022). Ostrowski–Trapezoid–Grüss-Type on (q, ω)-Hahn Difference Operator. Symmetry, 14(9), 1776. https://doi.org/10.3390/sym14091776