Results for Nonlinear-Prešić Contractions in Relational Metric Spaces
Abstract
:1. Introduction
2. Preliminaries
- (i)
- is the set of all fixed points of ,
- (ii)
- .
- (Ψ1)
- : for each ,
- (Ψ2)
- : for each ,
- (Ψ3)
- : for each .
- (I)
- with for .
- (II)
- with for .
- (a)
- is ℜ-complete,
- (b)
- ℜ is -closed and locally finitely -transitive,
- (c)
- Either is ℜ-continuous or ℜ is d-self-closed,
- (d)
- ,
- (e)
- There exists , such that with .
- (i)
- ,
- (ii)
- (iii)
3. Main Results
- (a)
- is ℜ-complete,
- (b)
- is nonempty,
- (c)
- ℜ is -closed, -reflexive, and locally finitely -transitive,
- (d)
- either is ℜ-continuous or ℜ is d-self-closed,
- (e)
- there exists , such that nonlinear Prešić contraction holds:with for .
- (i)
- (ii)
- .
- (u)
- : is -connected,
- (u′)
- is complete,
- (u″)
- is -directed.
- (1)
- For and taking , Theorem 5 reduces to a nonlinear fixed point Theorem.
- (2)
- Upon setting the (universal relation) and with in Theorem 5, we conclude Theorem 1 (due to Prešić [5]).
- (3)
- (4)
- If we replace the condition of by , denote the class of such functions satisfying by . However, if we replace the class by class then the earlier utilized relation (such as locally finitely -transitive relation) does not hold. In this case, we employ class along with locally -transitive relation in Theorem 5, and we deduce a sharpened version (in the context that ℜ is not a partial order) of Corollary 6 due to Shukla and Radenović [39].
4. Illustrative Examples
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Banach, S. Sur les operations dans les ensembles abstraits et leur application aux equations intgerales. Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Cvetković, M.S. On JS-contraction. J. Nonlinear Convex Anal. 2022, 23, 1255–1260. [Google Scholar]
- Cvetković, M.S. Comparison of F-contraction and φ-contractions. Filomat 2023, 37, 3951–3961. [Google Scholar] [CrossRef]
- Cvetković, M.S. Results on Hardy–Rogers Contraction. Mediterr. J. Math. 2024, 21, 140. [Google Scholar] [CrossRef]
- Prešić, S.B. Sur une classe dinequations aux differences finite et sur la convergence de certaines suites. Publ. L’Institut Mathématique 1965, 5, 75–78. [Google Scholar]
- Prešić, S.B. Sur la convergence des suites. Comptes. Rendus. L’Acad. Paris 1965, 260, 3828–3830. [Google Scholar]
- Opoitsev, V.I. Heterogenic and combined-concave operators. Syber. Math. J. 1975, 16, 781–792. (In Russian) [Google Scholar]
- Opoitsev, V.I. Dynamics of collective behavior. III. Heterogenic system. Avtomat. Telemekh. 1975, 36, 124–138. (In Russian) [Google Scholar]
- Opoitsev, V.I.; Khurodze, T.A. Nonlinear operators in space with a cone. Tbilis. Gos. Univ. Tbilisi 1984, 271. (In Russian) [Google Scholar]
- Guo, D.; Lakshmikantham, V. Coupled fixed points of nonlinear operators with applications. Nonlinear Anal. 1987, 11, 623–632. [Google Scholar] [CrossRef]
- Berinde, V.; Borcut, M. Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces. Nonlinear Anal. 2011, 74, 4889–4897. [Google Scholar] [CrossRef]
- Karapinar, E.; Luong, N.V. Quadrupled fixed point theorems for nonlinear contractions. Comp. Math. Appl. 2012, 64, 1839–1848. [Google Scholar] [CrossRef]
- Roldán, A.; Martinez-Moreno, J.; Roldán, C. Multidimensional fixed point theorems in partially ordered complete metric spaces. J. Math. Anal. Appl. 2012, 396, 536–545. [Google Scholar] [CrossRef]
- Roldán, A.; Martinez-Moreno, J.; Roldán, C.; Karapinar, E. Some remarks on multidimensional fixed point theorems. Fixed Point Theory 2014, 15, 545–558. [Google Scholar]
- Roldán, A.; Martínez-Morenoa, J.; Roldán, C.; Cho, Y.J. Multidimensional fixed point theorems under (ψ,Varphi)-contractive conditions in partially ordered complete metric spaces. J. Comput. Appl. Math. 2015, 273, 76–87. [Google Scholar] [CrossRef]
- Akhadkulov, H.; Saaban, A.B.; Alipiah, M.F.; Jameel, A.F. On applications of multidimensional fixed point theorems. Nonlinear Funct. Anal. Appl. 2018, 23, 585–593. [Google Scholar]
- Karapınar, E.; Roldán, A.; Martínez-Moreno, J.; Roldán, C. Meir-Keeler Type Multidimensional Fixed Point Theorems in Partially Ordered Metric Spaces. Abstr. Appl. Anal. 2013, 2013, 406026. [Google Scholar] [CrossRef]
- Rad, G.S.; Shukla, S.; Rahimi, H. Some relations between n-tuple fixed point and fixed point results. Rev. Real Acad. Cienc. Exactas Físicas Nat. Ser. Matemáticas 2014, 109, 471–781. [Google Scholar] [CrossRef]
- Alam, A.; Imdad, M.; Javid, A. Unified multi-tupled fixed point theorems involving mixed monotone property in ordered metric spaces. Cogent Math. 2016, 3, 1248270. [Google Scholar] [CrossRef]
- Turinici, M. Fixed points for monotone iteratively local contractions. Dem. Math. 1986, 19, 171–180. [Google Scholar]
- Ran, A.C.M.; Reurings, M.C.B. A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Amer. Math. Soc. 2004, 132, 1435–1443. [Google Scholar] [CrossRef]
- Nieto, J.J.; Rodríguez-López, R. Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order 2005, 22, 223–239. [Google Scholar] [CrossRef]
- Alam, A.; Imdad, M. Relation-theoretic contraction principle. J. Fixed Point Theory Appl. 2015, 17, 693–702. [Google Scholar] [CrossRef]
- Browder, F.E. On the convergence of successive approximations for nonlinear functional equations. Proc. K. Ned. Akad. Wet. Ser. A Indag. Math. 1968, 30, 27–35. [Google Scholar] [CrossRef]
- Boyd, D.W.; Wong, J.S.W. On nonlinear contractions. Proc. Amer. Math. Soc. 1969, 20, 458–464. [Google Scholar] [CrossRef]
- Mukherjea, A. Contractions and completely continuous mappings. Nonlinear Anal. 1977, 1, 235–247. [Google Scholar] [CrossRef]
- Jotić, N. Some fixed point theorems in metric spaces. Indian J. Pure Appl. Math. 1995, 26, 947–952. [Google Scholar]
- Agarwal, R.P.; El-Gebeily, M.A.; O’Regan, D. Generalized contractions in partially ordered metric spaces. Appl. Anal. 2008, 87, 109–116. [Google Scholar] [CrossRef]
- O’Regan, D.; Petruşel, A. Fixed point theorems for generalized contractions in ordered metric spaces. J. Math. Anal. Appl. 2008, 341, 1241–1252. [Google Scholar] [CrossRef]
- Alam, A.; Arif, M.; Imdad, M. Metrical fixed point theorems under locally finitely T-transitive binary relations using comparison functions. Miskolc Math. Notes 2019, 20, 59–73. [Google Scholar] [CrossRef]
- Alam, A.; Imdad, M. Nonlinear contractions in metric spaces under locally T-transitive binary relations. Fixed Point Theory 2018, 19, 13–24. [Google Scholar] [CrossRef]
- Berzig, M.; Karapinar, E.; Roldán, A. Discussion on generalized-(αψ,βφ)-contractive mappings via generalized altering distance function and related fixed point theorems. Abstr. Appl. Anal. 2014, 2014, 259768. [Google Scholar] [CrossRef]
- Arif, M.; Imdad, M.; Sessa, S. φ-ψ-Contractions under W-Distances Employing Symmetric Locally T-Transitive Binary Relation. Symmetry 2022, 14, 1456. [Google Scholar] [CrossRef]
- Alam, A.; Imdad, M.; Arif, M. Observations on relation-theoretic coincidence theorems under Boyd–Wong type nonlinear contractions. Fixed Point Theory Appl. 2019, 2019, 6. [Google Scholar] [CrossRef]
- Berzig, M.; Karapinar, E. Fixed point results for (αψ,βφ)-contractive mappings for a generalized altering distance. Fixed Point Theory Appl. 2013, 2013, 205. [Google Scholar] [CrossRef]
- Arif, M.; Imdad, M. Fixed Point Results under Nonlinear Suzuki (F, R≠)-contractions with an Application. Filomat 2022, 36, 3155–3165. [Google Scholar] [CrossRef]
- Arif, M.; Imdad, M. Coincidence point results on a metric space endowed with a locally T-transitive binary relation employing comparison functions. Miskolc Math. Notes 2024, 25, 63–78. [Google Scholar] [CrossRef]
- Turinici, M. Contractive maps in locally transitive relational metric spaces. Sci. World J. 2014, 2014, 169358. [Google Scholar] [CrossRef] [PubMed]
- Shukla, S.; Radenović, S. Prešić-Boyd-Wong type results in ordered metric spaces. Int. J. Anal. Appl. 2014, 5, 154–166. [Google Scholar]
- Lipschutz, S. Schaum’s Outlines of Theory and Problems of Set Theory and Related Topics; McGraw-Hill: New York, NY, USA, 1964. [Google Scholar]
- Alam, A.; Imdad, M. Relation-theoretic metrical coincidence theorems. Filomat 2017, 31, 4421–4439. [Google Scholar] [CrossRef]
- Samet, B.; Turinici, M. Fixed point theorems on a metric space endowed with an arbitrary binary relation and applications. Commun. Math. Anal. 2012, 13, 82–97. [Google Scholar]
- Kolman, B.; Busby, R.C.; Ross, S. Discrete Mathematical Structures, 3rd ed.; PHI Pvt. Ltd.: New Delhi, India, 2000. [Google Scholar]
- Alam, A.; Khan, A.R.; Imdad, M. Some coincidence theorems for generalized nonlinear contractions in ordered metric spaces with applications. Fixed Point Theory Appl. 2014, 2014, 216. [Google Scholar] [CrossRef]
- Burton, D.M. Elementary Number Theory, 7th ed.; McGraw-Hill: New York, NY, USA, 2007. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, F.A.; Alnefaie, K.; Eljaneid, N.H.E.; Alshaban, E.; Alatawi, A.; Alruwaytie, M.Z. Results for Nonlinear-Prešić Contractions in Relational Metric Spaces. Symmetry 2024, 16, 1125. https://doi.org/10.3390/sym16091125
Khan FA, Alnefaie K, Eljaneid NHE, Alshaban E, Alatawi A, Alruwaytie MZ. Results for Nonlinear-Prešić Contractions in Relational Metric Spaces. Symmetry. 2024; 16(9):1125. https://doi.org/10.3390/sym16091125
Chicago/Turabian StyleKhan, Faizan Ahmad, Kholood Alnefaie, Nidal H. E. Eljaneid, Esmail Alshaban, Adel Alatawi, and Mohammed Zayed Alruwaytie. 2024. "Results for Nonlinear-Prešić Contractions in Relational Metric Spaces" Symmetry 16, no. 9: 1125. https://doi.org/10.3390/sym16091125