Forecasting real-world time series in domains with strong event sensitivity and regional variability poses unique challenges, as predictive models must account for sudden disruptions, heterogeneous contextual factors, and structural differences across locations. In tackling these challenges, we draw on the concept of symmetry
[...] Read more.
Forecasting real-world time series in domains with strong event sensitivity and regional variability poses unique challenges, as predictive models must account for sudden disruptions, heterogeneous contextual factors, and structural differences across locations. In tackling these challenges, we draw on the concept of symmetry that refers to the balance and invariance patterns across temporal, multimodal, and structural dimensions, which help reveal consistent relationships and recurring patterns within complex systems. This study is based on two multimodal datasets covering 12 tourist regions and more than 3 years of records, ensuring robustness and practical relevance of the results. In many applications, such as monitoring economic indicators, assessing operational performance, or predicting demand patterns, short-term fluctuations are often triggered by discrete events, policy changes, or external incidents, which conventional statistical and deep learning approaches struggle to model effectively. To address these limitations, we propose an event-aware multimodal time-series forecasting framework with graph-based regional transfer built upon an enhanced PatchTST backbone. The framework unifies multimodal feature extraction, event-sensitive temporal reasoning, and graph-based structural adaptation. Unlike Informer, Autoformer, FEDformer, or PatchTST, our model explicitly addresses naive multimodal fusion, event-agnostic modeling, and weak cross-regional transfer by introducing an event-aware Multimodal Encoder, a Temporal Event Reasoner, and a Multiscale Graph Module. Experiments on diverse multi-region multimodal datasets demonstrate that our method achieves substantial improvements over eight state-of-the-art baselines in forecasting accuracy, event response modeling, and transfer efficiency. Specifically, our model achieves a 15.06% improvement in the event recovery index, a 15.1% reduction in MAE, and a 19.7% decrease in event response error compared to PatchTST, highlighting its empirical impact on tourism event economics forecasting.
Full article