The Tectonic Framework of Parecis Basin: Insights from a Multiphysics Interpretation Workflow
Abstract
:1. Introduction
2. Tectonostratigraphic Setting and Tectonic Evolution
3. The Multiphysics Dataset
4. Interpretation Workflow
4.1. Seismic to Well-Tie and Time-to-Depth Conversion
4.2. Residual Gravity Anomaly
4.3. 2D Forward Modeling
4.4. Tectonic Framework
4.5. Perspectives on the Existence of Hydrogen in the Parecis Basin
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PB | Parecis Basin |
ANP | Brazilian National Petroleum, Gas, and Biofuels Agency |
PSTM | pre-stack time migration |
UC | upward continuation |
TecVa | amplitude volume technique |
SDR | seismic datum reference |
ToN | Top of Neoproterozoic |
ToR | Top of Rift |
JuA | Juruena Arc |
SFA | Serra Forma Arc |
VA | Vilhena Arc |
References
- Corrêa, J.; Couto, E. Projeto aluviões diamantíferos de Mato Grosso. Relatório Final, Goiânia, DNPM-CPRM, 2v.(Relatório do Arquivo Técnico da DGM, 1940), 1972. [Google Scholar]
- Siqueira, L.D. Bacia dos Parecis. Boletim de Geociências da PETROBRÁS 1989, 3, 3–16. [Google Scholar]
- Bahia, R.B.C.; Neto, M.A.M.; Barbosa, M.S.C.; Pedreira, A.J. Análise da evolução tectonossedimentar da Bacia dos Parecis através de métodos potenciais. Braz. J. Geol. 2007, 37, 639–649. [Google Scholar] [CrossRef]
- de Souza Cunha, A.; Perosi, F.A.; Braga, L.F.; Adriano, L.B.; Hidalgo-Gato, M.C.; do Couto, V.P.; da Silva, D.S. Airborne gravity gradiometry survey in the southeastern portion of pimenta bueno graben in parecis basin: Integrated 2D forward modeling and its implications in defining a new structural framework. Braz. J. Geophys. 2015, 33, 101–118. [Google Scholar] [CrossRef]
- Braga, L.F.; Siqueira, L.P. Three Dimensional Modelling of the Basement Topography Beneath Parecis Basin, Brazil, Constrained by Spectral Estimates of Depth to Magnetic Sources. In Proceedings of the Latin American Petroleum Congress, Port-of-Spain, Trinidad, 23–26 April 1996; Volume 5, p. 8. [Google Scholar]
- da Silva Haeser, B.; Zalán, P.V.; Ferreira, M.A.; Petersohn, E. Revisão litoestratigráfica da Bacia dos Parecis e implicações para a exploração de petróleo. In Proceedings of the Rio Oil & Gas Expo and Conference, Rio de Janeiro, Brasil, 15–18 September 2014; pp. 1–10. [Google Scholar]
- Vasconcelos, C.; Morales, I.; Trosdtorf, I., Jr.; Santos, S.; Figueiredo, M. Revisao da estratigrafia na secao perfurada pelo poco 2-SM-1-MT (Salto Magessi), Bacia dos Parecis-Alto Xingu, MT. Boletim de Geociências da Petrobras 2014, 22, 171–178. [Google Scholar]
- Loureiro, E.M.L.; Menezes, P.T.L.; Zalán, P.V.; Heilbron, M. Tectonic Framework of Parecis Basin: A Seismic-Gravity Integrated Interpretation. In Proceedings of the 15th International Congress of the Brazilian Geophysical Society & EXPOGEF, Rio de Janeiro, Brazil, 31 July–3 August 2017; Brazilian Geophysical Society: Rio de Janeiro, Brazil, 2017; pp. 478–482. [Google Scholar]
- Teixeira, J.B.G.; Misi, A.; da Silva, M.d.G. Supercontinent evolution and the Proterozoic metallogeny of South America. Gondwana Res. 2007, 11, 346–361. [Google Scholar] [CrossRef]
- Cordani, U.G.; Teixeira, W. Proterozoic accretionary belts in the Amazonian Craton. Geol. Soc. Am. Mem. 2007, 200, 297–320. [Google Scholar]
- Geraldes, M.C.; Van Schmus, W.R.; Condie, K.C.; Bell, S.; Teixeira, W.; Babinski, M. Proterozoic geologic evolution of the SW part of the Amazonian Craton in Mato Grosso state, Brazil. Precambrian Res. 2001, 111, 91–128. [Google Scholar] [CrossRef]
- Cordani, U.G.; Teixeira, W.; D’Agrella-Filho, M.; Trindade, R. The position of the Amazonian Craton in supercontinents. Gondwana Res. 2009, 15, 396–407. [Google Scholar] [CrossRef]
- Casquet, C.; Rapela, C.W.; Pankhurst, R.J.; Baldo, E.G.; Galindo, C.; Fanning, C.; Dahlquist, J.A.; Saavedra, J. A history of Proterozoic terranes in southern South America: From Rodinia to Gondwana. Geosci. Front. 2012, 3, 137–145. [Google Scholar] [CrossRef]
- Cordani, U.G.; Brito-Neves, B.B.; D’Agrella-Filho, M.S. From Rodinia to Gondwana: A review of the available evidence from South America. Gondwana Res. 2003, 6, 275–283. [Google Scholar] [CrossRef]
- de Brito Neves, B.B. A saga dos descendentes de rodínia na construção de Gondwana. Braz. J. Geol. 2003, 33, 77–88. [Google Scholar]
- Alvarenga, C.J.; Trompette, R. Evolução tectônica brasiliana da Faixa Paraguai: A estruturação da região de Cuiabá. Braz. J. Geol. 1993, 23, 18–30. [Google Scholar] [CrossRef]
- Hasui, Y. A grande colisão pré-cambriana do sudeste brasileiro e a estruturação regional. Geociências 2010, 29, 141–169. [Google Scholar]
- Cordani, U.G.; Pimentel, M.M.; De Araújo, C.E.G.; Basei, M.A.S.; Fuck, R.A.; Girardi, V.A.V. Was there an Ediacaran Clymene ocean in central South America? Am. J. Sci. 2013, 313, 517–539. [Google Scholar] [CrossRef]
- Nogueira, A.C.R.; Riccomini, C.; Sial, A.N.; Moura, C.A.V.; Fairchild, T.R. Soft-sediment deformation at the base of the Neoproterozoic Puga cap carbonate (southwestern Amazon craton, Brazil): Confirmation of rapid icehouse to greenhouse transition in snowball Earth. Geology 2003, 31, 613–616. [Google Scholar] [CrossRef]
- de Alvarenga, C.J.; Santos, R.V.; Dantas, E.L. C–O–Sr isotopic stratigraphy of cap carbonates overlying Marinoan-age glacial diamictites in the Paraguay Belt, Brazil. Precambrian Res. 2004, 131, 1–21. [Google Scholar] [CrossRef]
- D’Agrella-Filho, M.S.; Trindade, R.I.; Siqueira, R.; Ponte-Neto, C.F.; Pacca, I.I. Paleomagnetic constraints on the Rodinia supercontinent: Implications for its Neoproterozoic break-up and the formation of Gondwana. Int. Geol. Rev. 1998, 40, 171–188. [Google Scholar] [CrossRef]
- Ramos, R.C.; Koester, E.; Vieira, D.T. Sm–Nd systematics of metaultramafic-mafic rocks from the Arroio Grande Ophiolite (Brazil): Insights on the evolution of the South Adamastor paleo-ocean. Geosci. Front. 2020, 11, 2287–2296. [Google Scholar] [CrossRef]
- de Alvarenga, C.J.; Figueiredo, M.F.; Babinski, M.; Pinho, F.E. Glacial diamictites of Serra Azul Formation (Ediacaran, Paraguay belt): Evidence of the Gaskiers glacial event in Brazil. J. S. Am. Earth Sci. 2007, 23, 236–241. [Google Scholar] [CrossRef]
- de Souza Gaia, V.d.C.; Nogueira, A.C.R.; Domingos, F.H.G.; Sans-Jofre, P.; Junior, J.C.d.S.B.; De Oliveira, J.G.F.; Sial, A.N. The new occurrence of Marinoan cap carbonate in Brazil: The expansion of snowball Earth events to the southwesternmost Amazon Craton. J. S. Am. Earth Sci. 2017, 76, 446–459. [Google Scholar] [CrossRef]
- Júnior, J.B.C.S. Fácies e Estratigrafia da Formação Sepotuba: Registro da última Incursão Marinha na Transição Neoproterozóico-Cambriano da Faixa Paraguai Norte, Mato Grosso. Master’s Thesis, Universidade Federal do Amazonas, Manaus, Brazil, 2006. [Google Scholar]
- de Brito Neves, B.B.; Fuck, R.A. Neoproterozoic evolution of the basement of the South-American platform. J. S. Am. Earth Sci. 2013, 47, 72–89. [Google Scholar] [CrossRef]
- Rubert, R.R.; Mizusaki, A.M.P.; Martinelli, A.G.; Urban, C. Paleoenvironmental reconstruction and evolution of an Upper Cretaceous lacustrine-fluvial-deltaic sequence in the Parecis Basin, Brazil. J. S. Am. Earth Sci. 2017, 80, 512–528. [Google Scholar] [CrossRef]
- Rubert, R.R.; Mizusaki, A.M.P.; Martinelli, A.G. Mesozoic tectonic in the deposition and evolution of Cretaceous sedimentary packages of the Parecis Basin, center-western Brazil. J. S. Am. Earth Sci. 2019, 93, 140–154. [Google Scholar] [CrossRef]
- Milani, E.; Assine, M.; Soares, P.; Daemon, R. A seqüência ordovíciosiluriana da Bacia do Paraná. Boletim de Geociências da PETROBRÁS 1995, 9, 301–320. [Google Scholar]
- Montes-Lauar, C.R.; Pacca, I.; Melfi, A.J.; Piccirillo, E.; Bellieni, G.; Petrini, R.; Rizzieri, R. The Anari and Tapirapuã Jurassic formations, western Brazil: Paleomagnetism, geochemistry and geochronology. Earth Planet. Sci. Lett. 1994, 128, 357–371. [Google Scholar] [CrossRef]
- Quadros, M.; Rizzotto, G. Geologia e Recursos Minerais do Estado de Rondônia. Texto Explicativo do Mapa Geológico e de Recursos Minerais do Estado de Rondônia, Escala 1: 1.000. 000; CPRM: Porto Velho, Brazil, 2007. [Google Scholar]
- Almeida, F.d. Evolução tectônica do Craton do Guaporé comparada com a do Escudo Báltico. Braz. J. Geol. 1974, 4, 191–204. [Google Scholar] [CrossRef]
- Marzoli, A.; Renne, P.R.; Piccirillo, E.M.; Ernesto, M.; Bellieni, G.; De Min, A. Extensive 200-million-year-old continental flood basalts of the Central Atlantic Magmatic Province. Science 1999, 284, 616–618. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, Ö. Seismic Data Analysis; Society of Exploration Geophysicists: Tulsa, OK, USA, 2001; Volume 1. [Google Scholar]
- Adriano, L.B.; Menezes, P.T.L.; Cunha, A.S. Tectonic framework of the barra de são joão graben, campos basin, brazil: Insights from gravity data interpretation. Interpretation 2014, 2, SJ65–SJ74. [Google Scholar] [CrossRef]
- Etris, E.L.; Crabtree, N.J.; Dewar, J.; Pickford, S. True depth conversion: More than a pretty picture. CSEG Rec. 2001, 26, 11–22. [Google Scholar]
- Hearst, R.B.; Morris, W.A. Regional gravity setting of the Sudbury Structure. Geophysics 2001, 66, 1680–1690. [Google Scholar] [CrossRef]
- Adriano, L.B.; Menezes, P.T.L.; Adriano, M.S.; Cunha, A.S.; Cabrera, M.H.; Silva, D.S.; Moura, L.P. Jequitinhonha Basin: Structural aspects, relationship with igneous activity, and hydrocarbon exudations. Interpretation 2018, 6, T51–T60. [Google Scholar] [CrossRef]
- Laske, G.; Masters, G.; Ma, Z.; Pasyanos, M. Update on CRUST1. 0—A 1-degree global model of Earth’s crust. In Proceedings of the Geophysical Research Abstracts, EGU General Assembly, Vienna, Austria, 7–12 April 2013; Volume 15, p. 2658. [Google Scholar]
- Leão, J.W.D.; Menezes, P.T.L.; Beltrão, J.F.; Silva, J.B.C. Gravity inversion of basement relief constrained by the knowledge of depth at isolated points. Geophysics 1996, 61, 1702–1714. [Google Scholar] [CrossRef]
- Curto, J.B.; Vidotti, R.M.; Fuck, R.A.; Blakely, R.J.; Alvarenga, C.J.; Dantas, E.L. The tectonic evolution of the Transbrasiliano Lineament in northern Paraná Basin, Brazil, as inferred from aeromagnetic data. J. Geophys. Res. Solid Earth 2014, 119, 1544–1562. [Google Scholar] [CrossRef]
- Paulo de Tarso, L.M.; Travassos, J.M. EM modeling of the central–northern portion of Ponta Grossa Arch, Paraná Basin, Brazil. Phys. Earth Planet. Inter. 2005, 150, 145–158. [Google Scholar]
- Lyrio, J.C.S.; Menezes, P.T.L.; Correa, J.L.; Viana, A.R. Multiphysics anomaly map: A new data fusion workflow for geophysical interpretation. Interpretation 2020, 8, B35–B43. [Google Scholar] [CrossRef]
- Rocha, N.M.; Coelho, A.C.M.Q.; Menezes, P.T.L. A high-resolution fault assessment workflow for unconventional reservoirs exploration: A case study on the onshore Sergipe-Alagoas Basin, Brazil. J. S. Am. Earth Sci. 2022, 113, 103641. [Google Scholar] [CrossRef]
- Talwani, M.; Worzel, J.L.; Landisman, M. Rapid gravity computations for two-dimensional bodies with application to the Mendocino submarine fracture zone. J. Geophys. Res. 1959, 64, 49–59. [Google Scholar] [CrossRef]
- Hinze, W.J. Bouguer reduction density, why 2.67? Geophysics 2003, 68, 1559–1560. [Google Scholar] [CrossRef]
- Bulhões, É.M.; de Amorim, W.N. Princípio da sismocamada elementar e sua aplicação à técnica volume de amplitudes (tecva). In Proceedings of the 9th International Congress of the Brazilian Geophysical Society, Salvador, Brazil, 11–14 September 2005. [Google Scholar]
- Coelho, A.C.Q.M.; Menezes, P.T.L.; Mane, M.A. Gravity data as a faulting assessment tool for unconventional reservoirs regional exploration: The Sergipe–Alagoas Basin example. J. Nat. Gas Sci. Eng. 2021, 94, 104077. [Google Scholar] [CrossRef]
- Kusky, T.; Li, J.; Santosh, M. The Paleoproterozoic north Hebei orogen: North China Craton’s collisional suture with the Columbia supercontinent. Gondwana Res. 2007, 12, 4–28. [Google Scholar] [CrossRef]
- Fuck, R.A.; Neves, B.B.B.; Schobbenhaus, C. Rodinia descendants in south America. Precambrian Res. 2008, 160, 108–126. [Google Scholar] [CrossRef]
- Pimentel, M.M.; Fuck, R.A.; de Alvarenga, C.J. Post-Brasiliano (Pan-African) high-K granitic magmatism in Central Brazil: The role of Late Precambrian-early Palaeozoic extension. Precambrian Res. 1996, 80, 217–238. [Google Scholar] [CrossRef]
- Pimentel, M.M.; Fuck, R.A.; Gioia, S.M.C.L. The Neoproterozoic Goiás magmatic arc, central Brazil: A review and new Sm-Nd isotopic data. Rev. Bras. GeociÊNcias 2000, 30, 35–39. [Google Scholar] [CrossRef]
- Laux, J.H.; Pimentel, M.M.; Dantas, E.L.; Armstrong, R.; Junges, S.L. Two neoproterozoic crustal accretion events in the Brasília belt, central Brazil. J. S. Am. Earth Sci. 2005, 18, 183–198. [Google Scholar] [CrossRef]
- Fontes, S.; Meju, M.; Maurya, V.; La Terra, E.; Miquelutti, L. Deep structure of Parecis Basin, Brazil from 3D magnetotelluric imaging. J. S. Am. Earth Sci. 2019, 96, 102381. [Google Scholar] [CrossRef]
- Flexor, J.M.; Braga, L.F.; Fontes, S.L.; La Terra, E.F.; Germano, C.R. Estudo geofísico integrado da Bacia dos Parecis: Contribuição do método magnetotelúrico. In Proceedings of the 8th International Congress of the Brazilian Geophysical Society, Rio de Janeiro, Brazil, 14–18 September 2003. [Google Scholar]
- Osman, A.I.; Mehta, N.; Elgarahy, A.M.; Hefny, M.; Al-Hinai, A.; Al-Muhtaseb, A.H.; Rooney, D.W. Hydrogen production, storage, utilisation and environmental impacts: A review. Environ. Chem. Lett. 2022, 20, 1–36. [Google Scholar] [CrossRef]
- Zhou, H.; Dai, J.; Chen, X.; Hu, B.; Wei, H.; Cai, H.H. Understanding innovation of new energy industry: Observing development trend and evolution of hydrogen fuel cell based on patent mining. Int. J. Hydrog. Energy 2024, 52, 548–560. [Google Scholar] [CrossRef]
- Prinzhofer, A.; Tahara Cissé, C.S.; Diallo, A.B. Discovery of a large accumulation of natural hydrogen in Bourakebougou (Mali). Int. J. Hydrog. Energy 2018, 43, 19315–19326. [Google Scholar] [CrossRef]
- Wang, L.; Jin, Z.; Chen, X.; Su, Y.; Huang, X. The Origin and Occurrence of Natural Hydrogen. Energies 2023, 16, 2400. [Google Scholar] [CrossRef]
- Zgonnik, V. The occurrence and geoscience of natural hydrogen: A comprehensive review. Earth-Sci. Rev. 2020, 203, 103140. [Google Scholar] [CrossRef]
- Prinzhofer, A.; Moretti, I.; Françolin, J.; Pacheco, C.; d’Agostino, A.; Werly, J.; Rupin, F. Natural hydrogen continuous emission from sedimentary basins: The example of a Brazilian H2-emitting structure. Int. J. Hydrog. Energy 2019, 44, 5676–5685. [Google Scholar] [CrossRef]
- Serratt, H.; Cupertino, J.A.; Cruz, M.F.; Girelli, T.J.; Lehn, I.; Teixeira, C.D.; Oliveira, H.O.S.; Chemale, F., Jr. Southern Brazil hydrogen systems review. Int. J. Hydrog. Energy 2024, 69, 347–357. [Google Scholar] [CrossRef]
- Cathles, L.; Prinzhofer, A. What Pulsating H2 Emissions Suggest about the H2 Resource in the Sao Francisco Basin of Brazil. Geosciences 2020, 10, 149. [Google Scholar] [CrossRef]
- Donzé, F.V.; Truche, L.; Shekari Namin, P.; Lefeuvre, N.; Bazarkina, E.F. Migration of Natural Hydrogen from Deep-Seated Sources in the São Francisco Basin, Brazil. Geosciences 2020, 10, 346. [Google Scholar] [CrossRef]
- Myagkiy, A.; Brunet, F.; Popov, C.; Krüger, R.; Guimarães, H.; Sousa, R.S.; Charlet, L.; Moretti, I. H2 dynamics in the soil of a H2-emitting zone (São Francisco Basin, Brazil): Microbial uptake quantification and reactive transport modelling. Appl. Geochem. 2020, 112, 104474. [Google Scholar] [CrossRef]
- Geymond, U.; Ramanaidou, E.; Lévy, D.; Ouaya, A.; Moretti, I. Can Weathering of Banded Iron Formations Generate Natural Hydrogen? Evidence from Australia, Brazil and South Africa. Minerals 2022, 12, 163. [Google Scholar] [CrossRef]
- Brown, A.R. GC Dim Spots in Seismic Images as Hydrocarbon Indicators. Search Discov. V 1, 1-3 2010. [Google Scholar]
- EPE. Relatório Subcomitê Potencial de Petróleo e Gás Onshore; Arquivos Publications: Sao Paolo, Brasil, 2022.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loureiro, E.M.L.; Menezes, P.T.L.; Zalán, P.V.; Heilbron, M. The Tectonic Framework of Parecis Basin: Insights from a Multiphysics Interpretation Workflow. Minerals 2024, 14, 783. https://doi.org/10.3390/min14080783
Loureiro EML, Menezes PTL, Zalán PV, Heilbron M. The Tectonic Framework of Parecis Basin: Insights from a Multiphysics Interpretation Workflow. Minerals. 2024; 14(8):783. https://doi.org/10.3390/min14080783
Chicago/Turabian StyleLoureiro, Elaine M. L., Paulo T. L. Menezes, Pedro V. Zalán, and Monica Heilbron. 2024. "The Tectonic Framework of Parecis Basin: Insights from a Multiphysics Interpretation Workflow" Minerals 14, no. 8: 783. https://doi.org/10.3390/min14080783
APA StyleLoureiro, E. M. L., Menezes, P. T. L., Zalán, P. V., & Heilbron, M. (2024). The Tectonic Framework of Parecis Basin: Insights from a Multiphysics Interpretation Workflow. Minerals, 14(8), 783. https://doi.org/10.3390/min14080783