A New Lavender (Lavandula multifida L.) Ecotype from Arid Tunisia, with Differential Essential Oil Composition and Higher Antimicrobial Potential
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Site
2.2. Plant Material and Morphological Traits
2.3. Extraction of Essential Oil
2.4. Chemical Analysis
2.5. Chromatographic Conditions
2.6. Tested Microorganisms
2.7. Antimicrobial Activity
3. Results
3.1. Ecological Context and Distribution
3.2. Communities Associated with L. multifida
3.3. Phenology and Life Cycle
3.4. Morphological Traits
3.5. Composition of Essential Oil
3.6. Minimum Inhibitory Concentration (MIC)
3.7. Microbiological Activity
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mseddi, K.; Alimi, F.; Noumi, E.; Veettil, V.N.; Deshpande, S.; Adnan, M.; Hamdi, A.; Elkahoui, S.; Alghamdi, A.; Kadri, A.; et al. Thymus Musilii Velen. as a Promising Source of Potent Bioactive Compounds with Its Pharmacological Properties: In Vitro and in Silico Analysis. Arab. J. Chem. 2020, 13, 6782–6801. [Google Scholar] [CrossRef]
- Napoli, E.; Siracusa, L.; Ruberto, G. New Tricks for Old Guys: Recent Developments in the Chemistry, Biochemistry, Applications and Exploitation of Selected Species from the Lamiaceae Family. Chem. Biodivers. 2020, 17, e1900677. [Google Scholar] [CrossRef] [PubMed]
- Pourhosseini, S.H.; Mirjalili, M.H.; Ghasemi, M.; Ahadi, H.; Esmaeili, H.; Ghorbanpour, M. Diversity of Phytochemical Components and Biological Activities in Zataria Multiflora Boiss. (Lamiaceae) Populations. S. Afr. J. Bot. 2020, 135, 148–157. [Google Scholar] [CrossRef]
- Drioiche, A.; Benhlima, N.; Kchibale, A.; Boutahiri, S.; Ailli, A.; El Hilali, F.; Moukaid, B.; Zair, T. Ethnobotanical Investigation of Herbal Food Additives of Morocco Used as Natural Dyes. Ethnobot. Res. Appl. 2021, 21, 1–43. [Google Scholar] [CrossRef]
- Boussaïd, M.; Ben Fadhel, N.; Chemli, R.; Ben M’hamed, M. Structure of Vegetation in Northern and Central Tunisia and Protective Measures. Cah. Options Méditerranéennes 1999, 38, 295–302. [Google Scholar]
- Rasheed, A.; Rasool, S.G.; Soriano, P.; Estrelles, E.; Gul, B.; Hameed, A. Ecophysiological and Biochemical Responses Depicting Seed Tolerance to Osmotic Stresses in Annual and Perennial Species of Halopeplis in a Frame of Global Warming. Life 2022, 12, 2020. [Google Scholar] [CrossRef]
- Aili, A.; Xu, H.; Zhao, X.; Zhang, P.; Yang, R. Dynamics of Vegetation Productivity in Relation to Surface Meteorological Factors in the Altay Mountains in Northwest China. Forests 2022, 13, 1907. [Google Scholar] [CrossRef]
- García-Caparrós, P.; Romero, M.J.; Llanderal, A.; Cermeño, P.; Lao, M.T.; Segura, M.L. Effects of Drought Stress on Biomass, Essential Oil Content, Nutritional Parameters, and Costs of Production in Six Lamiaceae Species. Water 2019, 11, 573. [Google Scholar] [CrossRef] [Green Version]
- Mehalaine, S.; Chenchouni, H. New Insights for the Production of Medicinal Plant Materials: Ex Vitro and in Vitro Propagation of Valuable Lamiaceae Species from Northern Africa. Curr. Plant Biol. 2021, 27, 100216. [Google Scholar] [CrossRef]
- El-Banhawy, A.; Al-Juhani, W. DNA Barcoding and Phylogeny of Phlomis Aurea (Lamiaceae) Endemic to Sinai Peninsula, Egypt. Pak. J. Bot 2019, 51, 1263–1271. [Google Scholar] [CrossRef]
- Stefanaki, A.; van Andel, T. Mediterranean Aromatic Herbs and Their Culinary Use. In Aromatic Herbs in Food; Elsevier: Amsterdam, The Netherlands, 2021; pp. 93–121. [Google Scholar]
- Bousta, D.; Farah, A. A Phytopharmacological Review of a Mediterranean Plant: Lavandula Stoechas L. Clin. Phytoscience 2020, 6, 9. [Google Scholar]
- Aprotosoaie, A.C.; Gille, E.; Trifan, A.; Luca, V.S.; Miron, A. Essential Oils of Lavandula Genus: A Systematic Review of Their Chemistry. Phytochem. Rev. 2017, 16, 761–799. [Google Scholar] [CrossRef]
- Détár, E.; Németh, É.Z.; Gosztola, B.; Demján, I.; Pluhár, Z. Effects of Variety and Growth Year on the Essential Oil Properties of Lavender (Lavandula Angustifolia Mill.) and Lavandin (Lavandula x Intermedia Emeric Ex Loisel.). Biochem. Syst. Ecol. 2020, 90, 104020. [Google Scholar] [CrossRef]
- El Hamdaoui, A.; Msanda, F.; Boubaker, H.; Leach, D.; Bombarda, I.; Vanloot, P.; El Aouad, N.; Abbad, A.; Boudyach, E.H.; Achemchem, F. Essential Oil Composition, Antioxidant and Antibacterial Activities of Wild and Cultivated Lavandula Mairei Humbert. Biochem. Syst. Ecol. 2018, 76, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Benbrahim, C.; Barka, M.S.; Basile, A.; Maresca, V.; Flamini, G.; Sorbo, S.; Carraturo, F.; Notariale, R.; Piscopo, M.; Khadir, A. Chemical Composition and Biological Activities of Oregano and Lavender Essential Oils. Appl. Sci. 2021, 11, 5688. [Google Scholar] [CrossRef]
- Alapetite, G.P. Flore de La Tunisie, Angiospermes-Dicotylédones, Gamopétales; Imprimerie Officielle de la République Tunisienne: Tunisia, Tunisie, 1981. [Google Scholar]
- Le Floc’h, É.; Boulos, L.; Véla, E. Catalogue Synonymique Commenté de La Flore de Tunisie; République Tunisienne. Ministère L’Environnement du Développement Durable, Banq. Natl. Gènes: Tunisia, Tunisie, 2010. [Google Scholar]
- Chograni, H.; Messaoud, C.; Boussaid, M. Genetic Diversity and Population Structure in Tunisian Lavandula Stoechas L. and Lavandula Multifida L. (Lamiaceae). Biochem. Syst. Ecol. 2008, 36, 349–359. [Google Scholar] [CrossRef]
- Chograni, H.; Boussaid, M. Genetic Structure of Tunisian Spontaneous Populations of Lavandula Multifida L. Les Ann. l’INRGREF 2009, 13, 139–152. [Google Scholar]
- El-Hilaly, J.; Hmammouchi, M.; Lyoussi, B. Ethnobotanical Studies and Economic Evaluation of Medicinal Plants in Taounate Province (Northern Morocco). J. Ethnopharmacol. 2003, 86, 149–158. [Google Scholar] [CrossRef]
- Mammeri, A.; Bendif, H.; Bensouici, C.; Benslama, A.; Rebas, K.; Bouasla, A.; Rebaia, I.; Souilah, N.; Miara, M.D. Total Phenolic Contents, in Vitro Antioxidant Activity, Enzymes Inhibition and Antiinflammatory Effect of the Selective Extracts from the Algerian Lavandula Multifida. ACTA Pharm. Sci. 2022, 60, 1–23. [Google Scholar] [CrossRef]
- Gamez, M.J.; Jimenez, J.; Risco, S.; Zarzuelo, A. Hypoglycemic Activity in Various Species of the Genus Lavandula. I: Lavandula Stoechas L. and Lavandula Multifida L. Pharmazie 1987, 42, 706–707. [Google Scholar]
- Politi, M.; De Tommasi, N.; Pescitelli, G.; Di Bari, L.; Morelli, I.; Braca, A. Structure and Absolute Configuration of New Diterpenes from Lavandula m Ultifida. J. Nat. Prod. 2002, 65, 1742–1745. [Google Scholar] [CrossRef]
- Neffati, N.; Aloui, Z.; Karoui, H.; Guizani, I.; Boussaid, M.; Zaouali, Y. Phytochemical Composition and Antioxidant Activity of Medicinal Plants Collected from the Tunisian Flora. Nat. Prod. Res. 2017, 31, 1583–1588. [Google Scholar] [CrossRef] [PubMed]
- Chograni, H.; Zaouali, Y.; Rajeb, C.; Boussaid, M. Essential Oil Variation among Natural Populations of Lavandula Multifida L. (Lamiaceae). Chem. Biodivers. 2010, 7, 933–942. [Google Scholar] [CrossRef] [PubMed]
- Bellakhdar, J.; Berrada, M.; Denier, C.; Holeman, M.; Ilidrissi, A. Comparative Chemical Study of the Essential Oils of Ten Populations of Lavandula Multifida L. from Morocco. Biruiya 1985, 1, 95–106. [Google Scholar]
- Ribeiro, S.O.; Fraselle, S.; Baudoux, D.; Zhiri, A.; Stévigny, C.; Souard, F. Proposals for Antimicrobial Testing Guidelines Applied on Ajowan and Spanish Lavender Essential Oils. Planta Med. 2021, 87, 754–763. [Google Scholar] [CrossRef] [PubMed]
- de Santana, N.S.; Santos, A.S.; Borges, D.B.; de Souza França, D.; Reis, J.B.L.; de Oliveira, F.A.; Barreto, M.A.; Corrêa, R.X.; Zucchi, M.I.; Martins, K. Genetic Resilience of Atlantic Forest Trees to Impacts of Biome Loss and Fragmentation. Eur. J. For. Res. 2022, 1–14. [Google Scholar] [CrossRef]
- Hamrick, J.L.; Godt, M.J.W. Allozyme Diversity in Plant Species; Plant Population Genetics, Breeding, and Genetic Resources; Sinauer Associates Inc.: Sunderland, MA, USA, 1990; pp. 43–63. [Google Scholar]
- Godt, M.J.W.; Caplow, F.; Hamrick, J.L. Allozyme Diversity in the Federally Threatened Golden Paintbrush, Castilleja Levisecta (Scrophulariaceae). Conserv. Genet. 2005, 6, 87–99. [Google Scholar] [CrossRef]
- Fadhel, N.B.; Boussaïd, M. Genetic Diversity in Wild Tunisian Populations of Mentha Pulegium L. (Lamiaceae). Genet. Resour. Crop Evol. 2004, 51, 309–321. [Google Scholar] [CrossRef]
- Zaouali, Y.; Messaoud, C.; Salah, A.B.; Boussaid, M. Oil Composition Variability among Populations in Relationship with Their Ecological Areas in Tunisian Rosmarinus Officinalis L. Flavour Fragr. J. 2005, 20, 512–520. [Google Scholar] [CrossRef]
- Teixeira, J.C.; Huber, C.D. The Inflated Significance of Neutral Genetic Diversity in Conservation Genetics. Proc. Natl. Acad. Sci. USA 2021, 118, e2015096118. [Google Scholar] [CrossRef]
- Avise, J.C. Toward a Regional Conservation Genetics Perspective: Phylogeography of Faunas in the Southeastern United States. In Conservation Genetics; Springer: Berlin/Heidelberg, Germany, 1996; pp. 431–470. ISBN 0412145812. [Google Scholar]
- Gitzendanner, M.A.; Soltis, P.S. Patterns of Genetic Variation in Rare and Widespread Plant Congeners. Am. J. Bot. 2000, 87, 783–792. [Google Scholar] [CrossRef]
- Yang, L.; Wen, K.-S.; Ruan, X.; Zhao, Y.-X.; Wei, F.; Wang, Q. Response of Plant Secondary Metabolites to Environmental Factors. Molecules 2018, 23, 762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, A.; Shahzad, B.; Rehman, A.; Bhardwaj, R.; Landi, M.; Zheng, B. Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress. Molecules 2019, 24, 2452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khalid, K.A. Evaluation of Leaf, Flower and Peel Bitter Orange Essential Oils and Their Constituents in Response to Various Planting Locations of Egypt. J. Essent. Oil Bear. Plants 2022, 25, 208–218. [Google Scholar] [CrossRef]
- Sampaio, B.L.; Edrada-Ebel, R.; Da Costa, F.B. Effect of the Environment on the Secondary Metabolic Profile of Tithonia Diversifolia: A Model for Environmental Metabolomics of Plants. Sci. Rep. 2016, 6, 29265. [Google Scholar] [CrossRef]
- Isah, T. Stress and Defense Responses in Plant Secondary Metabolites Production. Biol. Res. 2019, 52, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rani, A.; Kashyap, R.; Azmi, W. Conservation of Biodiversity by Biotechnology. In Basic Concepts in Environmental Biotechnology; CRC Press: Boca Raton, FL, USA, 2021; pp. 149–175. ISBN 1003131425. [Google Scholar]
- Sampaio, B.L.; Costa, F.B. Da Influence of Abiotic Environmental Factors on the Main Constituents of the Volatile Oils of Tithonia Diversifolia. Rev. Bras. Farmacogn. 2018, 28, 135–144. [Google Scholar] [CrossRef]
- Giordano, A.; Fuentes-Barros, G.; Castro-Saavedra, S.; González-Cooper, A.; Suárez-Rozas, C.; Salas-Norambuena, J.; Acevedo-Fuentes, W.; Leyton, F.; Tirapegui, C.; Echeverría, J. Variation of Secondary Metabolites in the Aerial Biomass of Cryptocarya Alba. Nat. Prod. Commun. 2019, 14, 1934578X19856258. [Google Scholar] [CrossRef]
- Baj, T.; Sieniawska, E.; Kowalski, R.; Wesolowski, M.; Ulewicz-Magulska, B. Effectiveness of the Deryng and Clevenger-Type Apparatus in Isolation of Various Types of Components of Essential Oil from the Mutelina Purpurea Thell. Flowers. Acta Pol. Pharm 2015, 72, 507–515. [Google Scholar]
- Oumzil, H.; Ghoulami, S.; Rhajaoui, M.; Ilidrissi, A.; Fkih-Tetouani, S.; Faid, M.; Benjouad, A. Antibacterial and Antifungal Activity of Essential Oils of Mentha Suaveolens. Phyther. Res. 2002, 16, 727–731. [Google Scholar] [CrossRef]
- Sakkas, H.; Gousia, P.; Economou, V.; Sakkas, V.; Petsios, S.; Papadopoulou, C. In Vitro Antimicrobial Activity of Five Essential Oils on Multidrug Resistant Gram-Negative Clinical Isolates. J. Intercult. Ethnopharmacol. 2016, 5, 212. [Google Scholar] [CrossRef] [PubMed]
- Raunkiaer, C. The Life Forms of Plants and Statistical Plant Geography Being the Collected Papers of C. Raunkiaer; Oxford at the Clarendon Press: Oxford, UK, 1934. [Google Scholar]
- Mifsud, S. Lavandula multifida (Fern-Leaved Lavender): MaltaWildPlants. Com-the Online Flora of the Maltese Islands. 2002. Available online: https://maltawildplants.com/LABT/Lavandula_multifida.php (accessed on 21 September 2022).
- Hnia, C.; Mohamed, B. Genetic Diversity of Lavandula multifida L. (Lamiaceae) in Tunisia: Implication for Conservation. Afr. J. Ecol. 2011, 49, 10–20. [Google Scholar] [CrossRef]
- Msaada, K.; Salem, N.; Tammar, S.; Hammami, M.; Jamal Saharkhiz, M.; Debiche, N.; Limam, F.; Marzouk, B. Essential Oil Composition of Lavandula Dentata, L. Stoechas and L. Multifida Cultivated in Tunisia. J. Essent. Oil Bear. Plants 2012, 15, 1030–1039. [Google Scholar] [CrossRef]
- Upson, T.M.; Jury, S.L. A Revision of Native Moroccan Species of Lavandula L. Section Pterostoechas Ging. (Lamiaceae). Taxon 2002, 51, 309–327. [Google Scholar] [CrossRef]
- Panuccio, M.R.; Fazio, A.; Musarella, C.M.; Mendoza-Fernández, A.J.; Mota, J.F.; Spampinato, G. Seed Germination and Antioxidant Pattern in Lavandula Multifida (Lamiaceae): A Comparison between Core and Peripheral Populations. Plant Biosyst. Int. J. Deal. with all Asp. Plant Biol. 2018, 152, 398–406. [Google Scholar] [CrossRef]
- The Euro+Med PlantBase. The Information Resource for Euro-Mediterranean Plant Diversity. 2011. Available online: https://www.emplantbase.org/home.html (accessed on 21 September 2022).
- Blanca, G.; Cabezudo, B.; Cueto, M.; Salazar, C.; Morales Torres, C. Flora Vascular de Andalucía Oriental; Junta de Andalucia. Consejeria de Medio Ambiente: Andalucia, Spain, 2009; Volume 4. [Google Scholar]
- Tutin, T.G.; Heywood, V.H.; Burges, N.A.; Valentine, D.H.; Walters, S.M.; Webb, D.A. Flora Europaea: Plantaginaceae to Compositae (and Rubiaceae); Cambridge University Press: Cambridge, UK, 1964; Volume 4, ISBN 0521087171. [Google Scholar]
- Ashraf, M.A.; Iqbal, M.; Rasheed, R.; Hussain, I.; Riaz, M.; Arif, M.S. Environmental Stress and Secondary Metabolites in Plants: An Overview. In Plant Metabolites and Regulation under Environmental Stress; Academic Press: Cambridge, MA, USA, 2018; pp. 153–167. [Google Scholar]
- Messaoud, C.; Chograni, H.; Boussaid, M. Chemical Composition and Antioxidant Activities of Essential Oils and Methanol Extracts of Three Wild Lavandula L. Species. Nat. Prod. Res. 2012, 26, 1976–1984. [Google Scholar] [CrossRef]
- Saadi, A.; Brada, M.; Kouidri, M.; Dekkiche, H.; Attar, F. Chemical Composition and Content of Essential Oil of Lavandula Multifida from Algeria. Chem. Nat. Compd. 2016, 52, 162–164. [Google Scholar] [CrossRef]
- Znini, M.; Laghchimia, A.; Paolinib, J.; Costab, J.; Majidia, L. Characterization of Lavandula Multifida Volatile Composition from Morocco by Headspace Solid-Phase Microextraction (HS-SPME) and Hydrodistillation Coupled to GC–MS. Arab. J. Med. Aromat. Plants 2019, 5, 18–31. [Google Scholar]
- Vaičiulytė, V.; Ložienė, K.; Taraškevičius, R. Impact of Edaphic and Climatic Factors on Thymus Pulegioides Essential Oil Composition and Potential Prevalence of Chemotypes. Plants 2022, 11, 2536. [Google Scholar] [CrossRef]
- Danh, L.T.; Han, L.N.; Triet, N.D.A.; Zhao, J.; Mammucari, R.; Foster, N. Comparison of Chemical Composition, Antioxidant and Antimicrobial Activity of Lavender (Lavandula Angustifolia L.) Essential Oils Extracted by Supercritical CO2, Hexane and Hydrodistillation. Food Bioprocess Technol. 2013, 6, 3481–3489. [Google Scholar] [CrossRef]
- Jianu, C.; Pop, G.; TGruia, A.; Horhat, F.G. Chemical Composition and Antimicrobial Activity of Essential Oils of Lavender (Lavandula Angustifolia) and Lavandin (Lavandula x Intermedia) Grown in Western Romania. Int. J. Agric. Biol. 2013, 15, 772–776. [Google Scholar]
- Andoğan, B.C.; Baydar, H.; Kaya, S.; Demirci, M.; Özbaşar, D.; Mumcu, E. Antimicrobial Activity and Chemical Composition of Some Essential Oils. Arch. Pharm. Res. 2002, 25, 860–864. [Google Scholar] [CrossRef] [PubMed]
- Benabdelkader, T.; Zitouni, A.; Guitton, Y.; Jullien, F.; Maitre, D.; Casabianca, H.; Legendre, L.; Kameli, A. Essential Oils from Wild Populations of Algerian Lavandula Stoechas L.: Composition, Chemical Variability, and in Vitro Biological Properties. Chem. Biodivers. 2011, 8, 937–953. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Blair, N.T.; Clapham, D.E. Camphor Activates and Strongly Desensitizes the Transient Receptor Potential Vanilloid Subtype 1 Channel in a Vanilloid-Independent Mechanism. J. Neurosci. 2005, 25, 8924–8937. [Google Scholar] [CrossRef] [PubMed]
Zone | Station | Latitude | Longitude | Altitude m | Presence of L. multifida | Geomorphology |
---|---|---|---|---|---|---|
1 | 1 | 34°42′49.13″ N | 10°32′45.10″ E | 116 | + | Bed of wadi |
2 | 34°42′53.67″ N | 10°32′43.56″ E | 100 | +++ | Deep narrow wadi | |
3 | 34°42′54.22″ N | 10°32′45.87″ E | 104 | − | Plateau | |
2 | 4 | 34°42′38.95″ N | 10°32′38.59″ E | 117 | ++ | Beginning of wadi |
5 | 34°42′36.17″ N | 10°32′40.14″ E | 115 | − | Plateau | |
6 | 34°42′36.04″ N | 10°32′37.23″ E | 114 | +++ | Wadi dam | |
7 | 34°42′35.54″ N | 10°32′36.39″ E | 116 | − | Plateau | |
3 | 8 | 34°42′31.50″ N | 10°32′58.09″ E | 105 | − | High slope wadi |
9 | 34°42′30.98″ N | 10°32′57.42″ E | 104 | + | Bed of wadi | |
10 | 34°42′33.11″ N | 10°32′54.54″ E | 107 | ++ | Wadi narrow bed | |
11 | 34°42′36.11″ N | 10°32′51.20″ E | 110 | +++ | Wadi dam | |
12 | 34°42′32.54″ N | 10°32′52.21″ E | 109 | − | Plateau | |
4 | 13 | 34°41′34.87″ N | 10°33′23.66″ E | 75 | ++ | Deep narrow wadi |
14 | 34°41′32.55″ N | 10°33′24.75″ E | 71 | + | Wadi narrow bed | |
15 | 34°41′31.47″ N | 10°33′22.64″ E | 69 | − | Open large wadi | |
16 | 34°41′29.95″ N | 10°33′25.06″ E | 69 | − | Open large wadi | |
17 | 34°41′35.01″ N | 10°33′19.67″ E | 72 | − | Open large | |
18 | 34°41′31.75″ N | 10°33′15.94″ E | 70 | − | Large bed wadi | |
5 | 19 | 34°41′12.72″ N | 10°33′35.78″ E | 64 | − | Open wadi |
20 | 34°41′6.17″ N | 10°33′37.02″ E | 63 | − | Large bed wadi | |
21 | 34°41′5.80″ N | 10°33′41.65″ E | 63 | + | Wadi deep bed | |
22 | 34°41′6.83″ N | 10°33′42.10″ E | 63 | + | Wadi deep bed | |
23 | 34°41′8.62″ N | 10°33′41.94″ E | 63 | +++ | Wadi deep narrow bed | |
24 | 34°41′10.07″ N | 10°33′42.67″ E | 65 | +++ | Wadi deep narrow bed | |
6 | 25 | 34°41′8.96″ N | 10°33′43.09″ E | 64 | − | Plateau near Wadi |
26 | 34°41′3.55″ N | 10°33′45.25″ E | 63 | − | Large wadi bed | |
7 | 27 | 34°40′59.58″ N | 10°33′46.70″ E | 62 | − | Plateau |
28 | 34°40′22.39″ N | 10°33′43.42″ E | 53 | − | Finish of Wadi | |
8 | 29 | 34°40′1.07″ N | 10°33′47.33″ E | 49 | − | Tree culture |
Presence of L.m. | ++ | +++ | ++ | + | − | +++ | − | − |
---|---|---|---|---|---|---|---|---|
Geomorphology in Wadi | Wadi Up-Stream | Deep Narrow Wadi | Deep Bed | Large Bed | High Slope Wadi | Wadi Dam | Wadi Down-Stream | Plateau |
Asparagus albus L. | + | + | + | + | + | |||
Agyga iva (L.) Scherb. | + | + | ||||||
Allium roseum L. | + | + | + | |||||
Anabasis oropediorum Maire | + | |||||||
Artemisia campestris L. | + | + | + | |||||
Artemisia herba-alba Asso | + | + | + | + | ||||
Asparagus stipularis Forssk | + | + | + | |||||
Atractylis serratuloides Sieber | + | |||||||
Cenchrus ciliaris L. | + | + | + | |||||
Fagonia cretica L. | + | |||||||
Filago germanica L. | + | |||||||
Gymnocarpos decander Forssk. | + | |||||||
Hyparrhenia hirta (L.) Stapf | + | + | ||||||
Lavandula multifida L. | + | + | ||||||
Lycium shawii Roem. & Schult. | + | + | ||||||
Lygeum spartum L. | + | |||||||
Peganum harmala L. | + | |||||||
Periploca laevigata Aiton | ||||||||
Deverra tortuosa (Desf.) DC. | + | + | ||||||
Plantago albicans L. | + | + | ||||||
Retama raetam (Forssk.) Webb | + | + | + | + | ||||
Rhanterium suaveolens Desf. | + | |||||||
Rhus tripartita (Ucria) | + | |||||||
Stipa tenacissima L. | + | |||||||
Teucrium polium L. | + | |||||||
Thymelaea hirsuta (L.) Endl. | + | |||||||
Trigonella stellata Forssk | + |
Parameters | Description | Average Value |
---|---|---|
Roots | Woody, strong and deep. Length going from 17 to 41cm | 24.5 ± 4.5 cm |
Root branching | 1–3 long ramifications | 2.5 ± 0.5 ramifications |
Root diameter | 0.8–1.0 cm | 1 ± 0.2 cm |
Stem length | 45–72 cm | 58.7 ± 18.3 cm |
Leaves | Deeply lobed, lacy, silver-green; usually twice pinnately divided into narrow segments | 2.0 ± 0.5 cm long |
Phyllotaxy | 2 and sometimes 3 whorl/stem | 2.5 ± 0.5 whorl/stem |
Number leaves/whorl | Leaves disposed in 4–5/whorls | 4.5 ± 0.5 leaves/whorl |
Spike (inflorescence) | Dense with 4 rows, with 7–10 flowers.Position in terminal spikes (5 cm long), apical stems rising above the foliage to 15–45 cm tall | 4 ± 1 cm long 36 ± 3.5 flowers/spike 38.5 ± 7.5 cm leafless stems long |
Flowers | length; 0.8 ± 0.05 cm |
No | Compounds | % w/w | Substance, Group | RT (min) | Kovats Retention Index |
---|---|---|---|---|---|
1 | Tricyclene | 0.11 | monoterpene | 6.361 | 924 |
2 | Alpha-Pinene | 13.82 | terpene | 6.786 | 939 |
3 | Camphene | 2.51 | monoterpene | 7.16 | 954 |
4 | 1,3,5-Cycloheptatriene, 3,7,7-trimethyl | 0.13 | annulene | 7.809 | 970 |
5 | beta-Pinene | 0.99 | monoterpene | 8.104 | 981 |
6 | beta-Myrcene | 0.40 | monoterpene | 8.701 | 989 |
7 | Delta 3-Carene | 5.43 | monoterpene | 9.5 | 1006 |
8 | alpha –Terpinene | 0.12 | monoterpene | 9.671 | 1018 |
9 | p-cymene | 0.58 | monoterpene | 9.811 | 1027 |
10 | 1,8-Cineole (Eucalyptol) | 14.15 | monoterpenoid | 10.149 | 1034 |
11 | Limonene | 1.20 | monoterpene | 10.206 | 1032 |
12 | trans-beta-Ocimene | 0.09 | monoterpenes | 10.538 | 1037 |
13 | 1,3,7-Octatriene, 3,7-dimethyl- | 0.14 | monoterpenes | 10.994 | 1046 |
14 | gamma-Terpinene | 0.10 | monoterpene | 11.373 | 1061 |
15 | cis-Linaloloxide | 0.11 | furanoid | 11.731 | 1066 |
16 | Alpha-Terpinolene | 0.13 | p-menthadiene | 12.644 | 1087 |
17 | Linalool L | 9.00 | monoterpenoid | 13.153 | 1100 |
18 | Camphor | 15.68 | cyclic monoterpene ketone | 14.44 | 1153 |
19 | Borneol L | 6.04 | Terpene | 15.758 | 1177 |
20 | Lavandulol | 0.17 | monoterpene alcohol | 15.97 | 1162 |
21 | 4-Terpineol | 0.31 | terpineol | 16.287 | 1184 |
22 | Alpha Terpineol | 2.40 | isomeric monoterpenoids | 16.847 | 1198 |
23 | Hexyl butanoate | 0.12 | fatty acid ester | 17.174 | 1190 |
24 | Linalyl anthranilate | 6.08 | linalyl ester | 20.464 | 2157 |
25 | l-Bornyl acetate | 1.84 | monoterpenoid and an acetate ester | 21.564 | 1302 |
26 | Lavandulyl Acetate | 0.80 | acetate ester | 22.01 | 1283 |
27 | Camphene | 0.60 | monoterpene | 24.469 | 954 |
28 | Neryl Acetate | 0.22 | acetate ester | 25.118 | 1355 |
29 | alpha-Copaene | 0.50 | hydrocarbon | 26.01 | 1375 |
30 | alpha-Gurjunene | 0.77 | carbotricyclic | 27.271 | 1475 |
31 | trans-Caryophyllene | 2.28 | sesquiterpene | 27.525 | 1422 |
32 | alpha-Humulene | 1.71 | monocyclic sesquiterpene | 28.698 | 1458 |
33 | trans-Caryophyllene | 0.18 | sesquiterpene | 28.978 | 1422 |
34 | γ-Muurolene | 0.11 | sesquiterpene | 29.507 | 1476 |
35 | Germacrene D | 0.07 | sesquiterpenes | 29.622 | 1492 |
36 | (+)-Epi-bicyclosesquiphellandrene | 0.15 | sesquiterpenoid | 29.788 | 1489 |
37 | alpha-selinene | 0.07 | sesquiterpenes | 30.14 | 1521 |
38 | (+)-Aromadendrene | 0.09 | sesquiterpenoid | 30.255 | 1447 |
39 | γ-Cadinene | 1.77 | sesquiterpenes | 30.722 | 1513 |
40 | Cis-Calamenene | 0.42 | sesquiterpene | 30.831 | 1538 |
41 | (+)-delta-Cadinene | 1.11 | sesquiterpenes | 31.048 | 1531 |
42 | Alpha-Calacorene | 0.19 | sesquiterpenoid | 31.417 | 1538 |
43 | Caryophyllene oxide | 0.27 | sesquiterpenoid | 32.59 | 1586 |
44 | alpha-Caryophyllene | 0.14 | sesquiterpene | 33.062 | 1422 |
45 | o-Menth-8-ene | 0.33 | homopolymer | 33.357 | 1488 |
46 | Naphthalene, 1,2,3,4,6,8a-hexahydro-1-isopropyl-4,7-dimethyl | 0.74 | sesquiterpenoid | 33.726 | 1539 |
47 | Dehydroxy-isocalamendiol | 0.30 | Sesquiterpene | 34.022 | 1645 |
48 | Humulane-1,6-dien-3-ol | 0.46 | Sesquiterpenoids | 34.146 | 1606 |
49 | alpha-Cadinol | 2.27 | sesquiterpenoid | 34.452 | 1660 |
50 | Ledol | 0.30 | sesquiterpenoid | 34.535 | 1563 |
51 | Benzonaphthofuran | 0.36 | Hetero-Polycyclic | 35.267 | 2089 |
52 | alpha-Bisabolol | 0.64 | monocyclic sesquiterpene alcohol | 35.729 | 1684 |
53 | 2-Methoxy-10H-phenothiazine | 0.09 | phenothiazines | 37.285 | 2542 |
54 | Isothujol | 0.09 | bicyclic monoterpenoids | 37.405 | 1157 |
55 | Tridecane | 0.07 | alkane | 38.043 | 1299 |
56 | Tritetracontane | 0.07 | phenol | 38.754 | 4300 |
57 | Octadecane | 0.07 | alkane hydrocarbon | 39.511 | 1800 |
58 | Hexatriacontane | 0.09 | alkane | 39.833 | 3600 |
Total | 98.98 |
Strain | Extracts | Concentrations (μg/mL) | ||||
---|---|---|---|---|---|---|
5 | 2.5 | 1.25 | 0.625 | 0.312 | ||
E. coli | L. multifida oil | + | + | + | + | - |
Camphor | + | + | + | - | - | |
S. aureus | L. multifida oil | + | + | + | + | - |
Camphor | + | + | + | - | - |
Essential Oil (μg/mL) | Camphor (μg/mL) | |||||
---|---|---|---|---|---|---|
1.25 | 0.625 | 1.25 | 0.625 | 1.25 | 0.625 | |
E. coli | 22.6 | 21.3 | - | 13.2 | 10.6 | - |
S. aureus | 17.8 | 15.6 | - | 14.1 | 12.2 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tofah, M.L.; Mseddi, K.; Al-Abbasi, O.K.; Ben Yazid, A.; Khechine, A.; Gdoura, R.; Khannous, L. A New Lavender (Lavandula multifida L.) Ecotype from Arid Tunisia, with Differential Essential Oil Composition and Higher Antimicrobial Potential. Life 2023, 13, 103. https://doi.org/10.3390/life13010103
Tofah ML, Mseddi K, Al-Abbasi OK, Ben Yazid A, Khechine A, Gdoura R, Khannous L. A New Lavender (Lavandula multifida L.) Ecotype from Arid Tunisia, with Differential Essential Oil Composition and Higher Antimicrobial Potential. Life. 2023; 13(1):103. https://doi.org/10.3390/life13010103
Chicago/Turabian StyleTofah, Mohanad Lateef, Khalil Mseddi, Omar K. Al-Abbasi, Ahmed Ben Yazid, Ahmed Khechine, Radhouane Gdoura, and Lamia Khannous. 2023. "A New Lavender (Lavandula multifida L.) Ecotype from Arid Tunisia, with Differential Essential Oil Composition and Higher Antimicrobial Potential" Life 13, no. 1: 103. https://doi.org/10.3390/life13010103