Endoscopic Technologies for Peripheral Pulmonary Lesions: From Diagnosis to Therapy
Abstract
:1. Introduction
1.1. The Definition of PPLs
1.2. Evaluation and Risk Assessment of PPLs
1.3. Initial Approach to PPLs
2. Methodology of the Review
3. Endoscopic Identification of a PPL
3.1. Ultrathin Bronchoscopy
3.2. Endobronchial Ultrasound
3.3. Navigation Systems
3.3.1. Virtual Bronchoscopy
3.3.2. Electromagnetic Navigation
3.3.3. Shape-Sensing Navigation
3.4. CBCT and Augmented Fluoroscopy
3.5. Robotic Bronchoscopy
3.6. Others
4. Treatment of PPLs with Endoscopic Ablation Techniques
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Steinfort, D.P.; Khor, Y.H.; Manser, R.L.; Irving, L.B. Radial Probe Endobronchial Ultrasound for the Diagnosis of Peripheral Lung Cancer: Systematic Review and Meta-Analysis. Eur. Respir. J. 2011, 37, 902–910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivera, M.P.; Mehta, A.C.; Wahidi, M.M. Establishing the Diagnosis of Lung Cancer: Diagnosis and Management of Lung Cancer, 3rd Ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 2013, 143, e142S–e165S. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, R.W. Bronchoscopic Pursuit of the Peripheral Pulmonary Lesion: Navigational Bronchoscopy, Radial Endobronchial Ultrasound, and Ultrathin Bronchoscopy. Curr. Opin. Pulm. Med. 2016, 22, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Holin, S.M.; Dwork, R.E.; Glaser, S.; Rikli, A.E.; Stocklen, J.B. Solitary Pulmonary Nodules Found in a Community-Wide Chest Roentgenographic Survey; a Five-Year Follow-up Study. Am. Rev. Tuberc. 1959, 79, 427–439. [Google Scholar] [CrossRef] [PubMed]
- Ost, D.; Fein, A.M.; Feinsilver, S.H. Clinical Practice. The Solitary Pulmonary Nodule. N. Engl. J. Med. 2003, 348, 2535–2542. [Google Scholar] [CrossRef]
- Callister, M.E.J.; Baldwin, D.R.; Akram, A.R.; Barnard, S.; Cane, P.; Draffan, J.; Franks, K.; Gleeson, F.; Graham, R.; Malhotra, P.; et al. British Thoracic Society Guidelines for the Investigation and Management of Pulmonary Nodules. Thorax 2015, 70 (Suppl. 2), ii1–ii54. [Google Scholar] [CrossRef] [Green Version]
- National Lung Screening Trial Research Team; Aberle, D.R.; Adams, A.M.; Berg, C.D.; Black, W.C.; Clapp, J.D.; Fagerstrom, R.M.; Gareen, I.F.; Gatsonis, C.; Marcus, P.M.; et al. Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening. N. Engl. J. Med. 2011, 365, 395–409. [Google Scholar] [CrossRef] [Green Version]
- De Koning, H.J.; van der Aalst, C.M.; de Jong, P.A.; Scholten, E.T.; Nackaerts, K.; Heuvelmans, M.A.; Lammers, J.-W.J.; Weenink, C.; Yousaf-Khan, U.; Horeweg, N.; et al. Reduced Lung-Cancer Mortality with Volume CT Screening in a Randomized Trial. N. Engl. J. Med. 2020, 382, 503–513. [Google Scholar] [CrossRef]
- Field, J.K.; Vulkan, D.; Davies, M.P.A.; Baldwin, D.R.; Brain, K.E.; Devaraj, A.; Eisen, T.; Gosney, J.; Green, B.A.; Holemans, J.A.; et al. Lung Cancer Mortality Reduction by LDCT Screening: UKLS Randomised Trial Results and International Meta-Analysis. Lancet Reg. Health Eur. 2021, 10, 100179. [Google Scholar] [CrossRef]
- Mazzone, P.J.; Silvestri, G.A.; Souter, L.H.; Caverly, T.J.; Kanne, J.P.; Katki, H.A.; Wiener, R.S.; Detterbeck, F.C. Screening for Lung Cancer: CHEST Guideline and Expert Panel Report. Chest 2021, 160, e427–e494. [Google Scholar] [CrossRef]
- Khan, T.; Usman, Y.; Abdo, T.; Chaudry, F.; Keddissi, J.I.; Youness, H.A. Diagnosis and Management of Peripheral Lung Nodule. Ann. Transl. Med. 2019, 7, 348. [Google Scholar] [CrossRef]
- Patel, V.K.; Naik, S.K.; Naidich, D.P.; Travis, W.D.; Weingarten, J.A.; Lazzaro, R.; Gutterman, D.D.; Wentowski, C.; Grosu, H.B.; Raoof, S. A Practical Algorithmic Approach to the Diagnosis and Management of Solitary Pulmonary Nodules: Part 2: Pretest Probability and Algorithm. Chest 2013, 143, 840–846. [Google Scholar] [CrossRef] [Green Version]
- Gould, M.K.; Ananth, L.; Barnett, P.G. Veterans Affairs SNAP Cooperative Study Group A Clinical Model to Estimate the Pretest Probability of Lung Cancer in Patients with Solitary Pulmonary Nodules. Chest 2007, 131, 383–388. [Google Scholar] [CrossRef] [Green Version]
- Peto, R.; Lopez, A.D.; Boreham, J.; Thun, M.; Heath, C. Mortality from Tobacco in Developed Countries: Indirect Estimation from National Vital Statistics. Lancet Lond. Engl. 1992, 339, 1268–1278. [Google Scholar] [CrossRef]
- Quint, L.E.; Park, C.H.; Iannettoni, M.D. Solitary Pulmonary Nodules in Patients with Extrapulmonary Neoplasms. Radiology 2000, 217, 257–261. [Google Scholar] [CrossRef]
- Mery, C.M.; Pappas, A.N.; Bueno, R.; Mentzer, S.J.; Lukanich, J.M.; Sugarbaker, D.J.; Jaklitsch, M.T. Relationship between a History of Antecedent Cancer and the Probability of Malignancy for a Solitary Pulmonary Nodule. Chest 2004, 125, 2175–2181. [Google Scholar] [CrossRef]
- Naccache, J.-M.; Gibiot, Q.; Monnet, I.; Antoine, M.; Wislez, M.; Chouaid, C.; Cadranel, J. Lung Cancer and Interstitial Lung Disease: A Literature Review. J. Thorac. Dis. 2018, 10, 3829–3844. [Google Scholar] [CrossRef]
- Wilson, D.O.; Weissfeld, J.L.; Balkan, A.; Schragin, J.G.; Fuhrman, C.R.; Fisher, S.N.; Wilson, J.; Leader, J.K.; Siegfried, J.M.; Shapiro, S.D.; et al. Association of Radiographic Emphysema and Airflow Obstruction with Lung Cancer. Am. J. Respir. Crit. Care Med. 2008, 178, 738–744. [Google Scholar] [CrossRef] [Green Version]
- Haruki, T.; Shomori, K.; Shiomi, T.; Taniguchi, Y.; Nakamura, H.; Ito, H. The Morphological Diversity of Small Lung Adenocarcinoma with Mixed Subtypes Is Associated with Local Invasiveness and Prognosis. Eur. J. Cardio-Thorac. Surg. Off. J. Eur. Assoc. Cardio-Thorac. Surg. 2011, 39, 763–768. [Google Scholar] [CrossRef] [Green Version]
- WHO. Thoracic Tumours. WHO Classification of Tumours, 5th ed.; WHO: Geneva, Switzerland, 2021; Volume 5, ISBN 978-92-832-4506-3.
- Molina, J.R.; Yang, P.; Cassivi, S.D.; Schild, S.E.; Adjei, A.A. Non–Small Cell Lung Cancer: Epidemiology, Risk Factors, Treatment, and Survivorship. Mayo Clin. Proc. Mayo Clin. 2008, 83, 584–594. [Google Scholar] [CrossRef]
- Funai, K.; Yokose, T.; Ishii, G.; Araki, K.; Yoshida, J.; Nishimura, M.; Nagai, K.; Nishiwaki, Y.; Ochiai, A. Clinicopathologic Characteristics of Peripheral Squamous Cell Carcinoma of the Lung. Am. J. Surg. Pathol. 2003, 27, 978–984. [Google Scholar] [CrossRef] [PubMed]
- Tomashefski, J.F.; Connors, A.F.; Rosenthal, E.S.; Hsiue, I.L. Peripheral vs Central Squamous Cell Carcinoma of the Lung. A Comparison of Clinical Features, Histopathology, and Survival. Arch. Pathol. Lab. Med. 1990, 114, 468–474. [Google Scholar] [PubMed]
- Gawrychowski, J.; Bruliński, K.; Malinowski, E.; Papla, B. Prognosis and Survival after Radical Resection of Primary Adenosquamous Lung Carcinoma. Eur. J. Cardio-Thorac. Surg. Off. J. Eur. Assoc. Cardio-Thorac. Surg. 2005, 27, 686–692. [Google Scholar] [CrossRef] [PubMed]
- Huhti, E.; Saloheimo, M.; Sutinen, S.; Reinilä, A. Does the Location of Lung Cancer Affect Its Prognosis? Eur. J. Respir. Dis. 1983, 64, 460–465. [Google Scholar] [PubMed]
- Wang, Z.; Li, M.; Teng, F.; Kong, L.; Yu, J. Primary Tumor Location Is an Important Predictor of Survival in Pulmonary Adenocarcinoma. Cancer Manag. Res. 2019, 11, 2269–2280. [Google Scholar] [CrossRef] [Green Version]
- Kanaji, N.; Sakai, K.; Ueda, Y.; Miyawaki, H.; Ishii, T.; Watanabe, N.; Kita, N.; Kadota, K.; Kadowaki, N.; Bandoh, S. Peripheral-Type Small Cell Lung Cancer Is Associated with Better Survival and Higher Frequency of Interstitial Lung Disease. Lung Cancer Amst. Neth. 2017, 108, 126–133. [Google Scholar] [CrossRef]
- Shin, S.H.; Jeong, D.Y.; Lee, K.S.; Cho, J.H.; Choi, Y.S.; Lee, K.; Um, S.-W.; Kim, H.; Jeong, B.-H. Which Definition of a Central Tumour Is More Predictive of Occult Mediastinal Metastasis in Nonsmall Cell Lung Cancer Patients with Radiological N0 Disease? Eur. Respir. J. 2019, 53, 1801508. [Google Scholar] [CrossRef]
- Klikovits, T.; Lohinai, Z.; Fábián, K.; Gyulai, M.; Szilasi, M.; Varga, J.; Baranya, E.; Pipek, O.; Csabai, I.; Szállási, Z.; et al. New Insights into the Impact of Primary Lung Adenocarcinoma Location on Metastatic Sites and Sequence: A Multicenter Cohort Study. Lung Cancer Amst. Neth. 2018, 126, 139–148. [Google Scholar] [CrossRef]
- Lin, M.-W.; Huang, Y.-L.; Yang, C.-Y.; Kuo, S.-W.; Wu, C.-T.; Chang, Y.-L. The Differences in Clinicopathologic and Prognostic Characteristics Between Surgically Resected Peripheral and Central Lung Squamous Cell Carcinoma. Ann. Surg. Oncol. 2019, 26, 217–229. [Google Scholar] [CrossRef]
- Yang, L.; Wang, S.; Gerber, D.E.; Zhou, Y.; Xu, F.; Liu, J.; Liang, H.; Xiao, G.; Zhou, Q.; Gazdar, A.; et al. Main Bronchus Location Is a Predictor for Metastasis and Prognosis in Lung Adenocarcinoma: A Large Cohort Analysis. Lung Cancer Amst. Neth. 2018, 120, 22–26. [Google Scholar] [CrossRef]
- Sun, W.; Yang, X.; Liu, Y.; Yuan, Y.; Lin, D. Primary Tumor Location Is a Useful Predictor for Lymph Node Metastasis and Prognosis in Lung Adenocarcinoma. Clin. Lung Cancer 2017, 18, e49–e55. [Google Scholar] [CrossRef]
- Moon, Y.; Lee, K.Y.; Sung, S.W.; Park, J.K. Differing Histopathology and Prognosis in Pulmonary Adenocarcinoma at Central and Peripheral Locations. J. Thorac. Dis. 2016, 8, 169–177. [Google Scholar] [CrossRef]
- Ikematsu, Y.; Izumi, M.; Takayama, K.; Kumazoe, H.; Wakamatsu, K.; Kawasaki, M. Small-Cell Lung Cancer from the Peripheral Lung Is Frequently Accompanied by Emphysema and Interstitial Lung Disease in the Background. Thorac. Cancer 2022, 13, 2616–2623. [Google Scholar] [CrossRef]
- Decaluwé, H.; Stanzi, A.; Dooms, C.; Fieuws, S.; Coosemans, W.; Depypere, L.; Deroose, C.M.; Dewever, W.; Nafteux, P.; Peeters, S.; et al. Central Tumour Location Should Be Considered When Comparing N1 Upstaging between Thoracoscopic and Open Surgery for Clinical Stage I Non-Small-Cell Lung Cancer. Eur. J. Cardio-Thorac. Surg. Off. J. Eur. Assoc. Cardio-Thorac. Surg. 2016, 50, 110–117. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Wu, S.; Ma, S.; Lyu, Y.; Xu, H.; Deng, L.; Chen, X. Comparison Between Wedge Resection and Lobectomy/Segmentectomy for Early-Stage Non-Small Cell Lung Cancer: A Bayesian Meta-Analysis and Systematic Review. Ann. Surg. Oncol. 2022, 29, 1868–1879. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2018. CA. Cancer J. Clin. 2018, 68, 7–30. [Google Scholar] [CrossRef]
- Infante, M.; Sestini, S.; Galeone, C.; Marchianò, A.; Lutman, F.R.; Angeli, E.; Calareso, G.; Pelosi, G.; Sozzi, G.; Silva, M.; et al. Lung Cancer Screening with Low-Dose Spiral Computed Tomography: Evidence from a Pooled Analysis of Two Italian Randomized Trials. Eur. J. Cancer Prev. Off. J. Eur. Cancer Prev. Organ. ECP 2017, 26, 324–329. [Google Scholar] [CrossRef]
- Baaklini, W.A.; Reinoso, M.A.; Gorin, A.B.; Sharafkaneh, A.; Manian, P. Diagnostic Yield of Fiberoptic Bronchoscopy in Evaluating Solitary Pulmonary Nodules. Chest 2000, 117, 1049–1054. [Google Scholar] [CrossRef] [Green Version]
- Deppen, S.A.; Davis, W.T.; Green, E.A.; Rickman, O.; Aldrich, M.C.; Fletcher, S.; Putnam, J.B.; Grogan, E.L. Cost-Effectiveness of Initial Diagnostic Strategies for Pulmonary Nodules Presenting to Thoracic Surgeons. Ann. Thorac. Surg. 2014, 98, 1214–1222. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Chen, S.; Dong, X.; Lei, P. Meta-Analysis of the Diagnostic Yield and Safety of Electromagnetic Navigation Bronchoscopy for Lung Nodules. J. Thorac. Dis. 2015, 7, 799–809. [Google Scholar] [CrossRef]
- Swischuk, J.L.; Castaneda, F.; Patel, J.C.; Li, R.; Fraser, K.W.; Brady, T.M.; Bertino, R.E. Percutaneous Transthoracic Needle Biopsy of the Lung: Review of 612 Lesions. J. Vasc. Interv. Radiol. JVIR 1998, 9, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Laurent, F.; Latrabe, V.; Vergier, B.; Michel, P. Percutaneous CT-Guided Biopsy of the Lung: Comparison between Aspiration and Automated Cutting Needles Using a Coaxial Technique. Cardiovasc. Intervent. Radiol. 2000, 23, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Klein, J.S.; Salomon, G.; Stewart, E.A. Transthoracic Needle Biopsy with a Coaxially Placed 20-Gauge Automated Cutting Needle: Results in 122 Patients. Radiology 1996, 198, 715–720. [Google Scholar] [CrossRef] [PubMed]
- Wallace, M.J.; Krishnamurthy, S.; Broemeling, L.D.; Gupta, S.; Ahrar, K.; Morello, F.A.; Hicks, M.E. CT-Guided Percutaneous Fine-Needle Aspiration Biopsy of Small (< or =1-Cm) Pulmonary Lesions. Radiology 2002, 225, 823–828. [Google Scholar] [CrossRef] [PubMed]
- Saji, H.; Nakamura, H.; Tsuchida, T.; Tsuboi, M.; Kawate, N.; Konaka, C.; Kato, H. The Incidence and the Risk of Pneumothorax and Chest Tube Placement after Percutaneous CT-Guided Lung Biopsy: The Angle of the Needle Trajectory Is a Novel Predictor. Chest 2002, 121, 1521–1526. [Google Scholar] [CrossRef] [PubMed]
- Kazerooni, E.A.; Lim, F.T.; Mikhail, A.; Martinez, F.J. Risk of Pneumothorax in CT-Guided Transthoracic Needle Aspiration Biopsy of the Lung. Radiology 1996, 198, 371–375. [Google Scholar] [CrossRef]
- Wu, C.C.; Maher, M.M.; Shepard, J.-A.O. Complications of CT-Guided Percutaneous Needle Biopsy of the Chest: Prevention and Management. AJR Am. J. Roentgenol. 2011, 196, W678–W682. [Google Scholar] [CrossRef]
- Geraghty, P.R.; Kee, S.T.; McFarlane, G.; Razavi, M.K.; Sze, D.Y.; Dake, M.D. CT-Guided Transthoracic Needle Aspiration Biopsy of Pulmonary Nodules: Needle Size and Pneumothorax Rate. Radiology 2003, 229, 475–481. [Google Scholar] [CrossRef]
- Cox, J.E.; Chiles, C.; McManus, C.M.; Aquino, S.L.; Choplin, R.H. Transthoracic Needle Aspiration Biopsy: Variables That Affect Risk of Pneumothorax. Radiology 1999, 212, 165–168. [Google Scholar] [CrossRef]
- Zarbo, R.J.; Fenoglio-Preiser, C.M. Interinstitutional Database for Comparison of Performance in Lung Fine-Needle Aspiration Cytology. A College of American Pathologists Q-Probe Study of 5264 Cases with Histologic Correlation. Arch. Pathol. Lab. Med. 1992, 116, 463–470. [Google Scholar]
- Greenspan, B.S. Role of PET/CT for Precision Medicine in Lung Cancer: Perspective of the Society of Nuclear Medicine and Molecular Imaging. Transl. Lung Cancer Res. 2017, 6, 617–620. [Google Scholar] [CrossRef] [PubMed]
- Kandathil, A.; Kay, F.U.; Butt, Y.M.; Wachsmann, J.W.; Subramaniam, R.M. Role of FDG PET/CT in the Eighth Edition of TNM Staging of Non-Small Cell Lung Cancer. Radiogr. Rev. Publ. Radiol. Soc. N. Am. Inc 2018, 38, 2134–2149. [Google Scholar] [CrossRef] [PubMed]
- MacMahon, H.; Naidich, D.P.; Goo, J.M.; Lee, K.S.; Leung, A.N.C.; Mayo, J.R.; Mehta, A.C.; Ohno, Y.; Powell, C.A.; Prokop, M.; et al. Guidelines for Management of Incidental Pulmonary Nodules Detected on CT Images: From the Fleischner Society 2017. Radiology 2017, 284, 228–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, M.S.; Sethi, J.; Taneja, A.; Musani, A.; Maldonado, F. Computed Tomography Bronchus Sign and the Diagnostic Yield of Guided Bronchoscopy for Peripheral Pulmonary Lesions. A Systematic Review and Meta-Analysis. Ann. Am. Thorac. Soc. 2018, 15, 978–987. [Google Scholar] [CrossRef] [PubMed]
- Ost, D.E.; Ernst, A.; Lei, X.; Kovitz, K.L.; Benzaquen, S.; Diaz-Mendoza, J.; Greenhill, S.; Toth, J.; Feller-Kopman, D.; Puchalski, J.; et al. Diagnostic Yield and Complications of Bronchoscopy for Peripheral Lung Lesions. Results of the AQuIRE Registry. Am. J. Respir. Crit. Care Med. 2016, 193, 68–77. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Qin, C.; Fu, Q.; Hu, S.; Zhao, W.; Li, H. Comparison of the Detection Rates of Different Diagnostic Methods for Primary Peripheral Lung Cancer. Front. Oncol. 2021, 11, 696239. [Google Scholar] [CrossRef]
- Lin, C.-K.; Jan, I.-S.; Yu, K.-L.; Chang, L.-Y.; Fan, H.-J.; Wen, Y.-F.; Ho, C.-C. Rapid On-Site Cytologic Evaluation by Pulmonologist Improved Diagnostic Accuracy of Endobronchial Ultrasound-Guided Transbronchial Biopsy. J. Formos. Med. Assoc. Taiwan Yi Zhi 2020, 119, 1684–1692. [Google Scholar] [CrossRef]
- Yuan, M.; Wang, Y.; Yin, W.; Xiao, Y.; Hu, M.; Hu, Y. Efficacy of Rapid On-Site Cytological Evaluation (ROSE) by a Pulmonologist in Determining Specimen Adequacy and Diagnostic Accuracy in Interventional Diagnosis of Lung Lesions. J. Int. Med. Res. 2021, 49, 300060520982687. [Google Scholar] [CrossRef]
- Izumo, T.; Matsumoto, Y.; Sasada, S.; Chavez, C.; Nakai, T.; Tsuchida, T. Utility of Rapid On-Site Cytologic Evaluation during Endobronchial Ultrasound with a Guide Sheath for Peripheral Pulmonary Lesions. Jpn. J. Clin. Oncol. 2017, 47, 221–225. [Google Scholar] [CrossRef] [Green Version]
- Du Rand, I.A.; Barber, P.V.; Goldring, J.; Lewis, R.A.; Mandal, S.; Munavvar, M.; Rintoul, R.C.; Shah, P.L.; Singh, S.; Slade, M.G.; et al. British Thoracic Society Guideline for Advanced Diagnostic and Therapeutic Flexible Bronchoscopy in Adults. Thorax 2011, 66 (Suppl. 3), iii1–iii21. [Google Scholar] [CrossRef] [Green Version]
- Khemasuwan, D.; Teerapuncharoen, K.; Griffin, D.C. Diagnostic Yield and Safety of Bronchoscopist-Directed Moderate Sedation with a Bolus Dose Administration of Propofol During Endobronchial Ultrasound Bronchoscopy. J. Bronchol. Interv. Pulmonol. 2018, 25, 181–188. [Google Scholar] [CrossRef]
- Prakash, U.B. The Use of the Pediatric Fiberoptic Bronchoscope in Adults. Am. Rev. Respir. Dis. 1985, 132, 715–717. [Google Scholar] [CrossRef]
- Oki, M.; Saka, H. Diagnostic Value of Ultrathin Bronchoscopy in Peripheral Pulmonary Lesions: A Narrative Review. J. Thorac. Dis. 2020, 12, 7675–7682. [Google Scholar] [CrossRef]
- Sumi, T.; Shijubou, N.; Sawai, T.; Kamada, K.; Yamada, Y.; Nakata, H.; Mori, Y.; Chiba, H. Transbronchial Needle Aspiration with Endobronchial Ultrasonography and Ultrathin Bronchoscopy for Peripheral Pulmonary Lesions. Respir. Investig. 2021, 59, 766–771. [Google Scholar] [CrossRef]
- Kim, S.H.; Kim, J.; Pak, K.; Eom, J.S. Ultrathin Bronchoscopy for the Diagnosis of Peripheral Pulmonary Lesions: A Meta-Analysis. Respir. Int. Rev. Thorac. Dis. 2023, 102, 34–45. [Google Scholar] [CrossRef]
- Nishii, Y.; Nakamura, Y.; Fujiwara, K.; Ito, K.; Sakaguchi, T.; Suzuki, Y.; Furuhashi, K.; Kobayashi, T.; Yasuma, T.; D’Alessandro-Gabazza, C.N.; et al. Use of Ultrathin Bronchoscope on a Need Basis Improves Diagnostic Yield of Difficult-to-Approach Pulmonary Lesions. Front. Med. 2020, 7, 588048. [Google Scholar] [CrossRef]
- Oki, M.; Saka, H.; Ando, M.; Asano, F.; Kurimoto, N.; Morita, K.; Kitagawa, C.; Kogure, Y.; Miyazawa, T. Ultrathin Bronchoscopy with Multimodal Devices for Peripheral Pulmonary Lesions. A Randomized Trial. Am. J. Respir. Crit. Care Med. 2015, 192, 468–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wahidi, M.M.; Herth, F.; Yasufuku, K.; Shepherd, R.W.; Yarmus, L.; Chawla, M.; Lamb, C.; Casey, K.R.; Patel, S.; Silvestri, G.A.; et al. Technical Aspects of Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration: CHEST Guideline and Expert Panel Report. Chest 2016, 149, 816–835. [Google Scholar] [CrossRef] [Green Version]
- Patel, P.; Wada, H.; Hu, H.-P.; Hirohashi, K.; Kato, T.; Ujiie, H.; Ahn, J.Y.; Lee, D.; Geddie, W.; Yasufuku, K. First Evaluation of the New Thin Convex Probe Endobronchial Ultrasound Scope: A Human Ex Vivo Lung Study. Ann. Thorac. Surg. 2017, 103, 1158–1164. [Google Scholar] [CrossRef] [Green Version]
- Boskovic, T.; Stojanovic, M.; Stanic, J.; Pena Karan, S.; Vujasinovic, G.; Dragisic, D.; Zarogoulidis, K.; Kougioumtzi, I.; Dryllis, G.; Kioumis, I.; et al. Pneumothorax after Transbronchial Needle Biopsy. J. Thorac. Dis. 2014, 6, S427–S434. [Google Scholar] [CrossRef]
- Huang, Y.; Huang, H.; Li, Q.; Browning, R.F.; Parrish, S.; Turner, J.F.; Zarogoulidis, K.; Kougioumtzi, I.; Dryllis, G.; Kioumis, I.; et al. Transbronchial Lung Biopsy and Pneumothorax. J. Thorac. Dis. 2014, 6, S443–S447. [Google Scholar] [CrossRef] [PubMed]
- Herout, V.; Heroutova, M.; Merta, Z.; Cundrle, I.; Brat, K. Transbronchial Biopsy from the Upper Pulmonary Lobes Is Associated with Increased Risk of Pneumothorax—A Retrospective Study. BMC Pulm. Med. 2019, 19, 56. [Google Scholar] [CrossRef] [PubMed]
- Tanner, N.T.; Yarmus, L.; Chen, A.; Wang Memoli, J.; Mehta, H.J.; Pastis, N.J.; Lee, H.; Jantz, M.A.; Nietert, P.J.; Silvestri, G.A. Standard Bronchoscopy with Fluoroscopy vs Thin Bronchoscopy and Radial Endobronchial Ultrasound for Biopsy of Pulmonary Lesions. Chest 2018, 154, 1035–1043. [Google Scholar] [CrossRef] [PubMed]
- Kanodra, N.; Silvestri, G.; MD, M.; Tanner, N.; MD, M. Screening and Early Detection Efforts in Lung Cancer. Cancer 2015, 121, 1347–1356. [Google Scholar] [CrossRef] [PubMed]
- Ozgul, G.; Cetinkaya, E.; Ozgul, M.A.; Abul, Y.; Gencoglu, A.; Kamiloglu, E.; Gul, S.; Dincer, H.E. Efficacy and Safety of Electromagnetic Navigation Bronchoscopy with or without Radial Endobronchial Ultrasound for Peripheral Lung Lesions. Endosc. Ultrasound 2016, 5, 189–195. [Google Scholar] [CrossRef] [Green Version]
- Casal, R.F.; Sarkiss, M.; Jones, A.K.; Stewart, J.; Tam, A.; Grosu, H.B.; Ost, D.E.; Jimenez, C.A.; Eapen, G.A. Cone Beam Computed Tomography-Guided Thin/Ultrathin Bronchoscopy for Diagnosis of Peripheral Lung Nodules: A Prospective Pilot Study. J. Thorac. Dis. 2018, 10, 6950–6959. [Google Scholar] [CrossRef]
- Yoshikawa, M.; Sukoh, N.; Yamazaki, K.; Kanazawa, K.; Fukumoto, S.; Harada, M.; Kikuchi, E.; Munakata, M.; Nishimura, M.; Isobe, H. Diagnostic Value of Endobronchial Ultrasonography with a Guide Sheath for Peripheral Pulmonary Lesions without X-Ray Fluoroscopy. Chest 2007, 131, 1788–1793. [Google Scholar] [CrossRef]
- Jiang, L.; Xu, J.; Liu, C.; Gao, N.; Zhao, J.; Han, X.; Zhang, X.; Zhao, X.; Liu, Y.; Wang, W.; et al. Diagnosis of Peripheral Pulmonary Lesions with Transbronchial Lung Cryobiopsy by Guide Sheath and Radial Endobronchial Ultrasonography: A Prospective Control Study. Can. Respir. J. 2021, 2021, 6947037. [Google Scholar] [CrossRef]
- Chen, A.; Chenna, P.; Loiselle, A.; Massoni, J.; Mayse, M.; Misselhorn, D. Radial Probe Endobronchial Ultrasound for Peripheral Pulmonary Lesions. A 5-Year Institutional Experience. Ann. Am. Thorac. Soc. 2014, 11, 578–582. [Google Scholar] [CrossRef]
- Dhillon, S.S.; Harris, K. Bronchoscopy for the Diagnosis of Peripheral Lung Lesions. J. Thorac. Dis. 2017, 9, S1047–S1058. [Google Scholar] [CrossRef] [Green Version]
- Spiro, S.G.; Gould, M.K.; Colice, G.L. American College of Chest Physicians Initial Evaluation of the Patient with Lung Cancer: Symptoms, Signs, Laboratory Tests, and Paraneoplastic Syndromes: ACCP Evidenced-Based Clinical Practice Guidelines (2nd Edition). Chest 2007, 132, 149S–160S. [Google Scholar] [CrossRef]
- Bhadra, K.; Setser, R.M.; Condra, W.; Pritchett, M.A. Lung Navigation Ventilation Protocol to Optimize Biopsy of Peripheral Lung Lesions. J. Bronchol. Interv. Pulmonol. 2022, 29, 7–17. [Google Scholar] [CrossRef]
- Qi, J.-C.; Liao, L.; Zhao, Z.; Zeng, H.; Wang, T.; Hu, M.; Wang, L.; Wu, Z.; Ye, Y.; Ou, Y.; et al. Impact of Rapid On-Site Evaluation Combined with Endobronchial Ultrasound and Virtual Bronchoscopic Navigation in Diagnosing Peripheral Lung Lesions. BMC Pulm. Med. 2022, 22, 117. [Google Scholar] [CrossRef]
- Haoran, E.; Chen, J.; Sun, W.; Zhang, Y.; Ren, S.; Shi, J.; Wen, Y.; Su, C.; Ni, J.; Zhang, L.; et al. Three-Dimensionally Printed Navigational Template: A Promising Guiding Approach for Lung Biopsy. Transl. Lung Cancer Res. 2022, 11, 393–403. [Google Scholar] [CrossRef]
- Dhillon, S.S.; Dexter, E.U. Advances in Bronchoscopy for Lung Cancer. J. Carcinog. 2012, 11, 19. [Google Scholar] [CrossRef]
- Pritchett, M.A.; Bhadra, K.; Calcutt, M.; Folch, E. Virtual or Reality: Divergence between Preprocedural Computed Tomography Scans and Lung Anatomy during Guided Bronchoscopy. J. Thorac. Dis. 2020, 12, 1595–1611. [Google Scholar] [CrossRef]
- Sagar, A.-E.S.; Sabath, B.F.; Eapen, G.A.; Song, J.; Marcoux, M.; Sarkiss, M.; Arain, M.H.; Grosu, H.B.; Ost, D.E.; Jimenez, C.A.; et al. Incidence and Location of Atelectasis Developed During Bronchoscopy Under General Anesthesia: The I-LOCATE Trial. Chest 2020, 158, 2658–2666. [Google Scholar] [CrossRef]
- De Wever, W.; Vandecaveye, V.; Lanciotti, S.; Verschakelen, J.A. Multidetector CT-Generated Virtual Bronchoscopy: An Illustrated Review of the Potential Clinical Indications. Eur. Respir. J. 2004, 23, 776–782. [Google Scholar] [CrossRef] [Green Version]
- The Technology | Archimedes for Biopsy of Suspected Lung Cancer | Advice | NICE. Available online: https://www.nice.org.uk/advice/mib211/chapter/The-technology (accessed on 2 December 2022).
- Ramzy, J.; Travaline, J.; Thomas, J.; Basile, M.; Massetti, P.; Criner, G. Biopsy through Lung Parenchymal Lesion Using Virtual Bronchoscopy Navigation (VBN) Archimedes with EBUS Sheath Tunneling. Eur. Respir. J. 2018, 52, PA876. [Google Scholar] [CrossRef]
- Herth, F.J.F.; Gompelmann, D.; Hoffmann, H.; Sterman, D.; Silvestri, G.; Shah, P.; Eberhardt, R. Bronchoscopic Trans-Parenchymal Nodule Access (BTPNA)—A New Real-Time Image-Guided Approach to Accessing Solitary Pulmonary Nodules (SPNs)—First in Human Data. Eur. Respir. J. 2014, 44, 326–332. [Google Scholar]
- Giri, M.; Puri, A.; Wang, T.; Huang, G.; Guo, S. Virtual Bronchoscopic Navigation versus Non-Virtual Bronchoscopic Navigation Assisted Bronchoscopy for the Diagnosis of Peripheral Pulmonary Lesions: A Systematic Review and Meta-Analysis. Ther. Adv. Respir. Dis. 2021, 15, 17534666211017048. [Google Scholar] [CrossRef] [PubMed]
- Ishida, T.; Asano, F.; Yamazaki, K.; Shinagawa, N.; Oizumi, S.; Moriya, H.; Munakata, M.; Nishimura, M. Virtual Navigation in Japan Trial Group Virtual Bronchoscopic Navigation Combined with Endobronchial Ultrasound to Diagnose Small Peripheral Pulmonary Lesions: A Randomised Trial. Thorax 2011, 66, 1072–1077. [Google Scholar] [CrossRef] [PubMed]
- Asano, F.; Shinagawa, N.; Ishida, T.; Shindoh, J.; Anzai, M.; Tsuzuku, A.; Oizumi, S.; Morita, S. Virtual Bronchoscopic Navigation Combined with Ultrathin Bronchoscopy. A Randomized Clinical Trial. Am. J. Respir. Crit. Care Med. 2013, 188, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, Y.; Greif, J.; Becker, H.D.; Ernst, A.; Mehta, A. Real-Time Electromagnetic Navigation Bronchoscopy to Peripheral Lung Lesions Using Overlaid CT Images: The First Human Study. Chest 2006, 129, 988–994. [Google Scholar] [CrossRef] [PubMed]
- Leong, S.; Ju, H.; Marshall, H.; Bowman, R.; Yang, I.; Ree, A.-M.; Saxon, C.; Fong, K.M. Electromagnetic Navigation Bronchoscopy: A Descriptive Analysis. J. Thorac. Dis. 2012, 4, 173–185. [Google Scholar] [CrossRef]
- Kalchiem-Dekel, O.; Connolly, J.G.; Lin, I.-H.; Husta, B.C.; Adusumilli, P.S.; Beattie, J.A.; Buonocore, D.J.; Dycoco, J.; Fuentes, P.; Jones, D.R.; et al. Shape-Sensing Robotic-Assisted Bronchoscopy in the Diagnosis of Pulmonary Parenchymal Lesions. Chest 2022, 161, 572–582. [Google Scholar] [CrossRef]
- Eberhardt, R.; Anantham, D.; Ernst, A.; Feller-Kopman, D.; Herth, F. Multimodality Bronchoscopic Diagnosis of Peripheral Lung Lesions: A Randomized Controlled Trial. Am. J. Respir. Crit. Care Med. 2007, 176, 36–41. [Google Scholar] [CrossRef]
- Gex, G.; Pralong, J.A.; Combescure, C.; Seijo, L.; Rochat, T.; Soccal, P.M. Diagnostic Yield and Safety of Electromagnetic Navigation Bronchoscopy for Lung Nodules: A Systematic Review and Meta-Analysis. Respir. Int. Rev. Thorac. Dis. 2014, 87, 165–176. [Google Scholar] [CrossRef]
- Wang Memoli, J.S.; Nietert, P.J.; Silvestri, G.A. Meta-Analysis of Guided Bronchoscopy for the Evaluation of the Pulmonary Nodule. Chest 2012, 142, 385–393. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.Y.; Berkowitz, D.; Krimsky, W.S.; Hogarth, D.K.; Parks, C.; Bechara, R. Safety of Pacemakers and Defibrillators in Electromagnetic Navigation Bronchoscopy. Chest 2013, 143, 75–81. [Google Scholar] [CrossRef]
- Magnani, A.; Balbo, P.; Facchini, E.; Occhetta, E.; Marino, P. Lack of Interference of Electromagnetic Navigation Bronchoscopy to Implanted Cardioverter-Defibrillator: In-Vivo Study. Eur. Eur. Pacing Arrhythm. Card. Electrophysiol. J. Work. Groups Card. Pacing Arrhythm. Card. Cell. Electrophysiol. Eur. Soc. Cardiol. 2014, 16, 1767–1771. [Google Scholar] [CrossRef]
- Simoff, M.J.; Pritchett, M.A.; Reisenauer, J.S.; Ost, D.E.; Majid, A.; Keyes, C.; Casal, R.F.; Parikh, M.S.; Diaz-Mendoza, J.; Fernandez-Bussy, S.; et al. Shape-Sensing Robotic-Assisted Bronchoscopy for Pulmonary Nodules: Initial Multicenter Experience Using the IonTM Endoluminal System. BMC Pulm. Med. 2021, 21, 322. [Google Scholar] [CrossRef]
- Fielding, D.I.K.; Bashirzadeh, F.; Son, J.H.; Todman, M.; Chin, A.; Tan, L.; Steinke, K.; Windsor, M.N.; Sung, A.W. First Human Use of a New Robotic-Assisted Fiber Optic Sensing Navigation System for Small Peripheral Pulmonary Nodules. Respir. Int. Rev. Thorac. Dis. 2019, 98, 142–150. [Google Scholar] [CrossRef]
- Benn, B.S.; Romero, A.O.; Lum, M.; Krishna, G. Robotic-Assisted Navigation Bronchoscopy as a Paradigm Shift in Peripheral Lung Access. Lung 2021, 199, 177–186. [Google Scholar] [CrossRef]
- Reisenauer, J.; Simoff, M.J.; Pritchett, M.A.; Ost, D.E.; Majid, A.; Keyes, C.; Casal, R.F.; Parikh, M.S.; Diaz-Mendoza, J.; Fernandez-Bussy, S.; et al. Ion: Technology and Techniques for Shape-Sensing Robotic-Assisted Bronchoscopy. Ann. Thorac. Surg. 2022, 113, 308–315. [Google Scholar] [CrossRef]
- Chandrika, S.; Yarmus, L. Recent Developments in Advanced Diagnostic Bronchoscopy. Eur. Respir. Rev. 2020, 29, 190184. [Google Scholar] [CrossRef]
- Yi, L.; Peng, Z.; Chen, Z.; Tao, Y.; Lin, Z.; He, A.; Jin, M.; Peng, Y.; Zhong, Y.; Yan, H.; et al. Identification of Pulmonary Adenocarcinoma and Benign Lesions in Isolated Solid Lung Nodules Based on a Nomogram of Intranodal and Perinodal CT Radiomic Features. Front. Oncol. 2022, 12, 924055. [Google Scholar] [CrossRef]
- Zhang, X.; Lv, F.; Fu, B.; Li, W.; Lin, R.; Chu, Z. Clinical and Computed Tomography Characteristics for Early Diagnosis of Peripheral Small-Cell Lung Cancer. Cancer Manag. Res. 2022, 14, 589–601. [Google Scholar] [CrossRef]
- Setser, R.; Chintalapani, G.; Bhadra, K.; Casal, R.F. Cone Beam CT Imaging for Bronchoscopy: A Technical Review. J. Thorac. Dis. 2020, 12, 7416–7428. [Google Scholar] [CrossRef]
- Verhoeven, R.L.J.; Fütterer, J.J.; Hoefsloot, W.; van der Heijden, E.H.F.M. Cone-Beam CT Image Guidance with and Without Electromagnetic Navigation Bronchoscopy for Biopsy of Peripheral Pulmonary Lesions. J. Bronchol. Interv. Pulmonol. 2021, 28, 60–69. [Google Scholar] [CrossRef]
- Hohenforst-Schmidt, W.; Zarogoulidis, P.; Vogl, T.; Turner, J.F.; Browning, R.; Linsmeier, B.; Huang, H.; Li, Q.; Darwiche, K.; Freitag, L.; et al. Cone Beam Computertomography (CBCT) in Interventional Chest Medicine—High Feasibility for Endobronchial Realtime Navigation. J. Cancer 2014, 5, 231–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verhoeven, R.L.J.; Vos, S.; van der Heijden, E.H.F.M. Multi-Modal Tissue Sampling in Cone Beam CT Guided Navigation Bronchoscopy: Comparative Accuracy of Different Sampling Tools and Rapid on-Site Evaluation of Cytopathology. J. Thorac. Dis. 2021, 13, 4396–4406. [Google Scholar] [CrossRef] [PubMed]
- DiBardino, D.M.; Kim, R.Y.; Cao, Y.; Andronov, M.; Lanfranco, A.R.; Haas, A.R.; Vachani, A.; Ma, K.C.; Hutchinson, C.T. Diagnostic Yield of Cone-Beam-Derived Augmented Fluoroscopy and Ultrathin Bronchoscopy Versus Conventional Navigational Bronchoscopy Techniques. J. Bronchol. Interv. Pulmonol. 2022. [Google Scholar] [CrossRef] [PubMed]
- Hohenforst-Schmidt, W.; Banckwitz, R.; Zarogoulidis, P.; Vogl, T.; Darwiche, K.; Goldberg, E.; Huang, H.; Simoff, M.; Li, Q.; Browning, R.; et al. Radiation Exposure of Patients by Cone Beam CT during Endobronchial Navigation—A Phantom Study. J. Cancer 2014, 5, 192–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Podder, S.; Chaudry, S.; Singh, H.; Jondall, E.M.; Kurman, J.S.; Benn, B.S. Efficacy and Safety of Cone-Beam CT Augmented Electromagnetic Navigation Guided Bronchoscopic Biopsies of Indeterminate Pulmonary Nodules. Tomogr. Ann Arbor Mich 2022, 8, 2049–2058. [Google Scholar] [CrossRef]
- Duke, J.D.; Fernandez-Bussy, S.; Reisenauer, J. Combined Portable Cone Beam Computed Tomography and Robotic-Assisted Bronchoscopy Impacting Diagnosis of a Solitary Pulmonary Nodule: A Case Report. AME Case Rep. 2022, 6, 23. [Google Scholar] [CrossRef]
- Verhoeven, R.L.J.; van der Sterren, W.; Kong, W.; Langereis, S.; van der Tol, P.; van der Heijden, E.H.F.M. Cone-Beam CT and Augmented Fluoroscopy-Guided Navigation Bronchoscopy: Radiation Exposure and Diagnostic Accuracy Learning Curves. J. Bronchol. Interv. Pulmonol. 2021, 28, 262–271. [Google Scholar] [CrossRef]
- Cicenia, J.; Bhadra, K.; Sethi, S.; Nader, D.A.; Whitten, P.; Hogarth, D.K. Augmented Fluoroscopy: A New and Novel Navigation Platform for Peripheral Bronchoscopy. J. Bronchol. Interv. Pulmonol. 2021, 28, 116–123. [Google Scholar] [CrossRef]
- Pritchett, M.A.; Schampaert, S.; de Groot, J.A.H.; Schirmer, C.C.; van der Bom, I. Cone-Beam CT With Augmented Fluoroscopy Combined With Electromagnetic Navigation Bronchoscopy for Biopsy of Pulmonary Nodules. J. Bronchol. Interv. Pulmonol. 2018, 25, 274–282. [Google Scholar] [CrossRef]
- Pertzov, B.; Gershman, E.; Izhakian, S.; Heching, M.; Amor, S.M.; Rosengarten, D.; Kramer, M.R. The LungVision Navigational Platform for Peripheral Lung Nodule Biopsy and the Added Value of Cryobiopsy. Thorac. Cancer 2021, 12, 2007–2012. [Google Scholar] [CrossRef]
- Yu, K.-L.; Yang, S.-M.; Ko, H.-J.; Tsai, H.-Y.; Ko, J.-C.; Lin, C.-K.; Ho, C.-C.; Shih, J.-Y. Efficacy and Safety of Cone-Beam Computed Tomography-Derived Augmented Fluoroscopy Combined with Endobronchial Ultrasound in Peripheral Pulmonary Lesions. Respir. Int. Rev. Thorac. Dis. 2021, 100, 538–546. [Google Scholar] [CrossRef]
- Singer, E.; Kneuertz, P.J.; D’Souza, D.M.; Moffatt-Bruce, S.D.; Merritt, R.E. Understanding the Financial Cost of Robotic Lobectomy: Calculating the Value of Innovation? Ann. Cardiothorac. Surg. 2019, 8, 194–201. [Google Scholar] [CrossRef]
- Kneuertz, P.J.; Singer, E.; D’Souza, D.M.; Abdel-Rasoul, M.; Moffatt-Bruce, S.D.; Merritt, R.E. Hospital Cost and Clinical Effectiveness of Robotic-Assisted versus Video-Assisted Thoracoscopic and Open Lobectomy: A Propensity Score-Weighted Comparison. J. Thorac. Cardiovasc. Surg. 2019, 157, 2018–2026.e2. [Google Scholar] [CrossRef] [Green Version]
- Lu, M.; Nath, S.; Semaan, R.W. A Review of Robotic-Assisted Bronchoscopy Platforms in the Sampling of Peripheral Pulmonary Lesions. J. Clin. Med. 2021, 10, 5678. [Google Scholar] [CrossRef]
- Fernandez-Bussy, S.; Abia-Trujillo, D.; Patel, N.M.; Pascual, J.M.; Majid, A.; Folch, E.E.; Reisenauer, J.S. Precautionary Strategy for High-Risk Airway Bleeding Cases during Robotic-Assisted Bronchoscopy. Respirol. Case Rep. 2021, 9, e00794. [Google Scholar] [CrossRef]
- Fernandez-Bussy, S.; Abia-Trujillo, D.; Majid, A.; Folch, E.E.; Patel, N.M.; Herth, F.J.F.; Reisenauer, J.S. Management of Significant Airway Bleeding during Robotic Assisted Bronchoscopy: A Tailored Approach. Respir. Int. Rev. Thorac. Dis. 2021, 100, 547–550. [Google Scholar] [CrossRef]
- Hassan, T.; Piton, N.; Lachkar, S.; Salaün, M.; Thiberville, L. A Novel Method for In Vivo Imaging of Solitary Lung Nodules Using Navigational Bronchoscopy and Confocal Laser Microendoscopy. Lung 2015, 193, 773–778. [Google Scholar] [CrossRef] [Green Version]
- Hassan, T.; Thiberville, L.; Hermant, C.; Lachkar, S.; Piton, N.; Guisier, F.; Salaun, M. Assessing the Feasibility of Confocal Laser Endomicroscopy in Solitary Pulmonary Nodules for Different Part of the Lungs, Using Either 0.6 or 1.4 Mm Probes. PloS One 2017, 12, e0189846. [Google Scholar] [CrossRef] [Green Version]
- Sorokina, A.; Danilevskaya, O.; Averyanov, A.; Zabozlaev, F.; Sazonov, D.; Yarmus, L.; Lee, H.J. Comparative Study of Ex Vivo Probe-Based Confocal Laser Endomicroscopy and Light Microscopy in Lung Cancer Diagnostics. Respirol. Carlton Vic 2014, 19, 907–913. [Google Scholar] [CrossRef] [PubMed]
- Wellikoff, A.S.; Holladay, R.C.; Downie, G.H.; Chaudoir, C.S.; Brandi, L.; Turbat-Herrera, E.A. Comparison of in Vivo Probe-Based Confocal Laser Endomicroscopy with Histopathology in Lung Cancer: A Move toward Optical Biopsy. Respirol. Carlton Vic 2015, 20, 967–974. [Google Scholar] [CrossRef]
- Takemura, M.; Kurimoto, N.; Hoshikawa, M.; Maeno, T.; Hisada, T.; Kurabayashi, M.; Inoue, T.; Miyazawa, T.; Mineshita, M. Probe-Based Confocal Laser Endomicroscopy for Rapid on-Site Evaluation of Transbronchial Biopsy Specimens. Thorac. Cancer 2019, 10, 1441–1447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goorsenberg, A.; Kalverda, K.A.; Annema, J.; Bonta, P. Advances in Optical Coherence Tomography and Confocal Laser Endomicroscopy in Pulmonary Diseases. Respir. Int. Rev. Thorac. Dis. 2020, 99, 190–205. [Google Scholar] [CrossRef] [PubMed]
- Pahlevaninezhad, H.; Lee, A.M.; Ritchie, A.; Shaipanich, T.; Zhang, W.; Ionescu, D.N.; Hohert, G.; MacAulay, C.; Lam, S.; Lane, P. Endoscopic Doppler Optical Coherence Tomography and Autofluorescence Imaging of Peripheral Pulmonary Nodules and Vasculature. Biomed. Opt. Express 2015, 6, 4191–4199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, M.; Pan, S.-Y.; Huang, J.; Yuan, C.; Zhang, Q.; Zhu, X.-L.; Cai, Y. Optical Coherence Tomography for Identification of Malignant Pulmonary Nodules Based on Random Forest Machine Learning Algorithm. PloS One 2021, 16, e0260600. [Google Scholar] [CrossRef] [PubMed]
- Remon, J.; Soria, J.-C.; Peters, S.; ESMO Guidelines Committee. Electronic address: Clinicalguidelines@esmo.org Early and Locally Advanced Non-Small-Cell Lung Cancer: An Update of the ESMO Clinical Practice Guidelines Focusing on Diagnosis, Staging, Systemic and Local Therapy. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2021, 32, 1637–1642. [Google Scholar] [CrossRef]
- Lembicz, M.; Gabryel, P.; Brajer-Luftmann, B.; Dyszkiewicz, W.; Batura-Gabryel, H. Comorbidities with Non-Small Cell Lung Cancer: Is There an Interdisciplinary Consensus Needed to Qualify Patients for Surgical Treatment? Ann. Thorac. Med. 2018, 13, 101–107. [Google Scholar] [CrossRef]
- Belot, A.; Fowler, H.; Njagi, E.N.; Luque-Fernandez, M.-A.; Maringe, C.; Magadi, W.; Exarchakou, A.; Quaresma, M.; Turculet, A.; Peake, M.D.; et al. Association between Age, Deprivation and Specific Comorbid Conditions and the Receipt of Major Surgery in Patients with Non-Small Cell Lung Cancer in England: A Population-Based Study. Thorax 2019, 74, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, S.; Goto, T. Role of Surgical Intervention in Unresectable Non-Small Cell Lung Cancer. J. Clin. Med. 2020, 9, 3881. [Google Scholar] [CrossRef]
- Dickhoff, C.; Dahele, M.; Paul, M.A.; van de Ven, P.M.; de Langen, A.J.; Senan, S.; Smit, E.F.; Hartemink, K.J. Salvage Surgery for Locoregional Recurrence or Persistent Tumor after High Dose Chemoradiotherapy for Locally Advanced Non-Small Cell Lung Cancer. Lung Cancer Amst. Neth. 2016, 94, 108–113. [Google Scholar] [CrossRef]
- Sonobe, M.; Yutaka, Y.; Nakajima, D.; Hamaji, M.; Menju, T.; Ohsumi, A.; Chen-Yoshikawa, T.F.; Sato, T.; Date, H. Salvage Surgery After Chemotherapy or Chemoradiotherapy for Initially Unresectable Lung Carcinoma. Ann. Thorac. Surg. 2019, 108, 1664–1670. [Google Scholar] [CrossRef]
- Ding, R.; Zhu, D.; He, P.; Ma, Y.; Chen, Z.; Shi, X. Comorbidity in Lung Cancer Patients and Its Association with Medical Service Cost and Treatment Choice in China. BMC Cancer 2020, 20, 250. [Google Scholar] [CrossRef]
- Leduc, C.; Antoni, D.; Charloux, A.; Falcoz, P.-E.; Quoix, E. Comorbidities in the Management of Patients with Lung Cancer. Eur. Respir. J. 2017, 49, 1601721. [Google Scholar] [CrossRef]
- Shibazaki, T.; Odaka, M.; Noda, Y.; Tsukamoto, Y.; Mori, S.; Asano, H.; Yamashita, M.; Morikawa, T. Effect of Comorbidities on Long-Term Outcomes after Thoracoscopic Surgery for Stage I Non-Small Cell Lung Cancer Patients with Chronic Obstructive Pulmonary Disease. J. Thorac. Dis. 2018, 10, 909–919. [Google Scholar] [CrossRef] [Green Version]
- Lüchtenborg, M.; Jakobsen, E.; Krasnik, M.; Linklater, K.M.; Mellemgaard, A.; Møller, H. The Effect of Comorbidity on Stage-Specific Survival in Resected Non-Small Cell Lung Cancer Patients. Eur. J. Cancer Oxf. Engl. 1990 2012, 48, 3386–3395. [Google Scholar] [CrossRef]
- Bral, S.; Gevaert, T.; Linthout, N.; Versmessen, H.; Collen, C.; Engels, B.; Verdries, D.; Everaert, H.; Christian, N.; De Ridder, M.; et al. Prospective, Risk-Adapted Strategy of Stereotactic Body Radiotherapy for Early-Stage Non-Small-Cell Lung Cancer: Results of a Phase II Trial. Int. J. Radiat. Oncol. Biol. Phys. 2011, 80, 1343–1349. [Google Scholar] [CrossRef]
- Kimura, T.; Fujiwara, T.; Kameoka, T.; Adachi, Y.; Kariya, S. Stereotactic Body Radiation Therapy for Metastatic Lung Metastases. Jpn. J. Radiol. 2022, 40, 995–1005. [Google Scholar] [CrossRef]
- Casutt, A.; Kinj, R.; Ozsahin, E.-M.; von Garnier, C.; Lovis, A. Fiducial Markers for Stereotactic Lung Radiation Therapy: Review of the Transthoracic, Endovascular and Endobronchial Approaches. Eur. Respir. Rev. Off. J. Eur. Respir. Soc. 2022, 31, 210149. [Google Scholar] [CrossRef]
- Fakiris, A.J.; McGarry, R.C.; Yiannoutsos, C.T.; Papiez, L.; Williams, M.; Henderson, M.A.; Timmerman, R. Stereotactic Body Radiation Therapy for Early-Stage Non-Small-Cell Lung Carcinoma: Four-Year Results of a Prospective Phase II Study. Int. J. Radiat. Oncol. Biol. Phys. 2009, 75, 677–682. [Google Scholar] [CrossRef]
- Harris, K.; Puchalski, J.; Sterman, D. Recent Advances in Bronchoscopic Treatment of Peripheral Lung Cancers. Chest 2017, 151, 674–685. [Google Scholar] [CrossRef] [Green Version]
- Hyun, K.; Park, I.K.; Song, J.W.; Park, S.; Kang, C.H.; Kim, Y.T. Electromagnetic Navigation Bronchoscopic Dye Marking for Localization of Small Subsolid Nodules: Retrospective Observational Study. Medicine 2019, 98, e14831. [Google Scholar] [CrossRef]
- Bowling, M.R.; Folch, E.E.; Khandhar, S.J.; Arenberg, D.A.; Awais, O.; Minnich, D.J.; Pritchett, M.A.; Rickman, O.B.; Sztejman, E.; Anciano, C.J. Pleural Dye Marking of Lung Nodules by Electromagnetic Navigation Bronchoscopy. Clin. Respir. J. 2019, 13, 700–707. [Google Scholar] [CrossRef] [PubMed]
- Lachkar, S.; Baste, J.-M.; Thiberville, L.; Peillon, C.; Rinieri, P.; Piton, N.; Guisier, F.; Salaun, M. Pleural Dye Marking Using Radial Endobronchial Ultrasound and Virtual Bronchoscopy before Sublobar Pulmonary Resection for Small Peripheral Nodules. Respir. Int. Rev. Thorac. Dis. 2018, 95, 354–361. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Largacha, J.A.; Ebright, M.I.; Litle, V.R.; Fernando, H.C. Electromagnetic Navigational Bronchoscopy with Dye Marking for Identification of Small Peripheral Lung Nodules during Minimally Invasive Surgical Resection. J. Thorac. Dis. 2017, 9, 802–808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinfort, D.P.; Siva, S.; Kron, T.; Chee, R.R.; Ruben, J.D.; Ball, D.L.; Irving, L.B. Multimodality Guidance for Accurate Bronchoscopic Insertion of Fiducial Markers. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 2015, 10, 324–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hagmeyer, L.; Priegnitz, C.; Kocher, M.; Schilcher, B.; Budach, W.; Treml, M.; Stieglitz, S.; Randerath, W. Fiducial Marker Placement via Conventional or Electromagnetic Navigation Bronchoscopy (ENB): An Interdisciplinary Approach to the Curative Management of Lung Cancer. Clin. Respir. J. 2016, 10, 291–297. [Google Scholar] [CrossRef]
- Sabath, B.F.; Casal, R.F. Bronchoscopic Ablation of Peripheral Lung Tumors. J. Thorac. Dis. 2019, 11, 2628–2638. [Google Scholar] [CrossRef]
- Krimsky, W.S.; Minnich, D.J.; Cattaneo, S.M.; Sarkar, S.A.; Harley, D.P.; Finley, D.J.; Browning, R.F.; Parrish, S.C. Thoracoscopic Detection of Occult Indeterminate Pulmonary Nodules Using Bronchoscopic Pleural Dye Marking. J. Community Hosp. Intern. Med. Perspect. 2014, 4, 23084. [Google Scholar] [CrossRef] [Green Version]
- Awais, O.; Reidy, M.R.; Mehta, K.; Bianco, V.; Gooding, W.E.; Schuchert, M.J.; Luketich, J.D.; Pennathur, A. Electromagnetic Navigation Bronchoscopy-Guided Dye Marking for Thoracoscopic Resection of Pulmonary Nodules. Ann. Thorac. Surg. 2016, 102, 223–229. [Google Scholar] [CrossRef] [Green Version]
- Marino, K.A.; Sullivan, J.L.; Weksler, B. Electromagnetic Navigation Bronchoscopy for Identifying Lung Nodules for Thoracoscopic Resection. Ann. Thorac. Surg. 2016, 102, 454–457. [Google Scholar] [CrossRef] [Green Version]
- Song, J.W.; Park, I.K.; Bae, S.Y.; Na, K.J.; Park, S.; Kang, C.H.; Kim, Y.T. Electromagnetic Navigation Bronchoscopy-Guided Dye Marking for Localization of Pulmonary Nodules. Ann. Thorac. Surg. 2022, 113, 1663–1669. [Google Scholar] [CrossRef]
- Sullivan, J.L.; Martin, M.G.; Weksler, B. Navigational Bronchoscopy-Guided Dye Marking to Assist Resection of a Small Lung Nodule. J. Vis. Surg. 2017, 3, 131. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; He, J.; Chen, J.; Zhong, Y.; He, J.; Li, S. Application of Indocyanine Green Injection Guided by Electromagnetic Navigation Bronchoscopy in Localization of Pulmonary Nodules. Transl. Lung Cancer Res. 2021, 10, 4414–4422. [Google Scholar] [CrossRef]
- Anayama, T.; Hirohashi, K.; Miyazaki, R.; Okada, H.; Kawamoto, N.; Yamamoto, M.; Sato, T.; Orihashi, K. Near-Infrared Dye Marking for Thoracoscopic Resection of Small-Sized Pulmonary Nodules: Comparison of Percutaneous and Bronchoscopic Injection Techniques. J. Cardiothorac. Surg. 2018, 13, 5. [Google Scholar] [CrossRef] [Green Version]
- Belanger, A.R.; Burks, A.C.; Chambers, D.M.; Ghosh, S.; MacRosty, C.R.; Conterato, A.J.; Rivera, M.P.; Akulian, J.A. Peripheral Lung Nodule Diagnosis and Fiducial Marker Placement Using a Novel Tip-Tracked Electromagnetic Navigation Bronchoscopy System. J. Bronchol. Interv. Pulmonol. 2019, 26, 41–48. [Google Scholar] [CrossRef]
- Rong, Y.; Bazan, J.G.; Sekhon, A.; Haglund, K.; Xu-Welliver, M.; Williams, T. Minimal Inter-Fractional Fiducial Migration during Image-Guided Lung Stereotactic Body Radiotherapy Using SuperLock Nitinol Coil Fiducial Markers. PloS One 2015, 10, e0131945. [Google Scholar] [CrossRef] [Green Version]
- Aboudara, M.; Rickman, O.; Maldonado, F. Therapeutic Bronchoscopic Techniques Available to the Pulmonologist: Emerging Therapies in the Treatment of Peripheral Lung Lesions and Endobronchial Tumors. Clin. Chest Med. 2020, 41, 145–160. [Google Scholar] [CrossRef]
- Tsushima, K.; Koizumi, T.; Tanabe, T.; Nakagawa, R.; Yoshikawa, S.; Yasuo, M.; Kubo, K. Bronchoscopy-Guided Radiofrequency Ablation as a Potential Novel Therapeutic Tool. Eur. Respir. J. 2007, 29, 1193–1200. [Google Scholar] [CrossRef]
- Xie, F.; Zheng, X.; Xiao, B.; Han, B.; Herth, F.J.F.; Sun, J. Navigation Bronchoscopy-Guided Radiofrequency Ablation for Nonsurgical Peripheral Pulmonary Tumors. Respir. Int. Rev. Thorac. Dis. 2017, 94, 293–298. [Google Scholar] [CrossRef]
- Fernando, H.C. Radiofrequency Ablation to Treat Non-Small Cell Lung Cancer and Pulmonary Metastases. Ann. Thorac. Surg. 2008, 85, S780–S784. [Google Scholar] [CrossRef]
- Bao, F.; Yu, F.; Wang, R.; Chen, C.; Zhang, Y.; Lin, B.; Wang, Y.; Hao, X.; Gu, Z.; Fang, W. Electromagnetic Bronchoscopy Guided Microwave Ablation for Early Stage Lung Cancer Presenting as Ground Glass Nodule. Transl. Lung Cancer Res. 2021, 10, 3759–3770. [Google Scholar] [CrossRef]
- Belfiore, G.; Ronza, F.; Belfiore, M.P.; Serao, N.; di Ronza, G.; Grassi, R.; Rotondo, A. Patients’ Survival in Lung Malignancies Treated by Microwave Ablation: Our Experience on 56 Patients. Eur. J. Radiol. 2013, 82, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Mehta, A.C.; Abuquyyas, S.; Raju, S.; Farver, C. Primary Lung Neoplasms Presenting as Multiple Synchronous Lung Nodules. Eur. Respir. Rev. Off. J. Eur. Respir. Soc. 2020, 29, 190142. [Google Scholar] [CrossRef] [PubMed]
- Giraldo Ospina, C.F.; Mongil Poce, R.; Arrabal Sánchez, R.; Medina Sánchez, R.; Sánchez Martin, N.; Gonzalez Rivas, D. Subxiphoid Uniportal Video-Assisted Bilateral Surgery: Right Upper Lobectomy and Left Upper Wedge Resection S3. J. Vis. Surg. 2017, 3, 186. [Google Scholar] [CrossRef] [PubMed]
- Siu, I.C.H.; Chan, J.W.Y.; Ii, T.B.M.; Ngai, J.C.L.; Lau, R.W.H.; Ng, C.S.H. Bronchoscopic Ablation of Lung Tumours: Patient Selection and Technique. J. Vis. Surg. 2022, 8, 36. [Google Scholar] [CrossRef]
- Moghissi, K.; Dixon, K. Is Bronchoscopic Photodynamic Therapy a Therapeutic Option in Lung Cancer? Eur. Respir. J. 2003, 22, 535–541. [Google Scholar] [CrossRef] [Green Version]
- Bansal, S.; Bechara, R.I.; Patel, J.D.; Mehta, H.J.; Ferguson, J.S.; Witt, B.L.; Murgu, S.D.; Yasufuku, K.; Casal, R.F. Safety and Feasibility of Photodynamic Therapy for Ablation of Peripheral Lung Tumors. J. Bronchol. Interv. Pulmonol. 2022. [Google Scholar] [CrossRef]
- Chang, H.; Liao, K.S.; Hsieh, Y.-S. Bronchoscopic Light Delivery Method for Peripheral Lung Cancer Photodynamic Therapy. J. Thorac. Dis. 2020, 12, 3611–3621. [Google Scholar] [CrossRef]
- Harms, W.; Krempien, R.; Grehn, C.; Hensley, F.; Debus, J.; Becker, H.D. Electromagnetically Navigated Brachytherapy as a New Treatment Option for Peripheral Pulmonary Tumors. Strahlenther. Onkol. Organ Dtsch. Rontgengesellschaft Al 2006, 182, 108–111. [Google Scholar] [CrossRef]
- Zheng, X.; Yang, C.; Zhang, X.; Yuan, H.; Xie, F.; Li, Y.; Xu, B.; Herth, F.J.F.; Sun, J. The Cryoablation for Peripheral Pulmonary Lesions Using a Novel Flexible Bronchoscopic Cryoprobe in the Ex Vivo Pig Lung and Liver. Respir. Int. Rev. Thorac. Dis. 2019, 97, 457–462. [Google Scholar] [CrossRef]
- Steinfort, D.P.; Herth, F.J.F. Bronchoscopic Treatments for Early-Stage Peripheral Lung Cancer: Are We Ready for Prime Time? Respirol. Carlton Vic 2020, 25, 944–952. [Google Scholar] [CrossRef]
- Vergnon, J.-M.; Huber, R.M.; Moghissi, K. Place of Cryotherapy, Brachytherapy and Photodynamic Therapy in Therapeutic Bronchoscopy of Lung Cancers. Eur. Respir. J. 2006, 28, 200–218. [Google Scholar] [CrossRef]
- Casal, R.F.; Walsh, G.; McArthur, M.; Hill, L.R.; Landaeta, M.F.; Armas Villalba, A.J.; Ong, P.; Debiane, L.; Vakil, E.; Grosu, H.B.; et al. Bronchoscopic Laser Interstitial Thermal Therapy: An Experimental Study in Normal Porcine Lung Parenchyma. J. Bronchol. Interv. Pulmonol. 2018, 25, 322–329. [Google Scholar] [CrossRef]
- Steinfort, D.P.; Christie, M.; Antippa, P.; Rangamuwa, K.; Padera, R.; Müller, M.R.; Irving, L.B.; Valipour, A. Bronchoscopic Thermal Vapour Ablation for Localized Cancer Lesions of the Lung: A Clinical Feasibility Treat-and-Resect Study. Respir. Int. Rev. Thorac. Dis. 2021, 100, 432–442. [Google Scholar] [CrossRef]
- DeMaio, A.; Sterman, D. Bronchoscopic Intratumoural Therapies for Non-Small Cell Lung Cancer. Eur. Respir. Rev. Off. J. Eur. Respir. Soc. 2020, 29, 200028. [Google Scholar] [CrossRef]
Method | Advantages | Disadvantages |
---|---|---|
Ultrathin bronchoscopy |
|
|
RP-EBUS |
|
|
Virtual navigation bronchoscopy |
|
|
EMN |
|
|
Shape-sensing navigation |
|
|
Augmented fluoroscopy |
|
|
CBCT |
|
|
Robotic bronchoscopy |
|
|
Method | Mechanism of Action |
---|---|
RFA | Electromagnetic-induced selective heat damage |
MWA | Microwave-induced selective heat damage |
PDT | Oxidative damage by a photosensitizing agent |
Brachytherapy | Selective, high-dose radiation exposure |
Cryoablation | Freezing-induced cytotoxicity and delayed cell apoptosis |
BLITT | Heat-induced damage and charring |
Thermal vapor ablation | Vapor-induced regional heat damage |
Intralesional therapeutic drugs | Direct injection of an antineoplastic drug |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fantin, A.; Manera, M.; Patruno, V.; Sartori, G.; Castaldo, N.; Crisafulli, E. Endoscopic Technologies for Peripheral Pulmonary Lesions: From Diagnosis to Therapy. Life 2023, 13, 254. https://doi.org/10.3390/life13020254
Fantin A, Manera M, Patruno V, Sartori G, Castaldo N, Crisafulli E. Endoscopic Technologies for Peripheral Pulmonary Lesions: From Diagnosis to Therapy. Life. 2023; 13(2):254. https://doi.org/10.3390/life13020254
Chicago/Turabian StyleFantin, Alberto, Massimiliano Manera, Vincenzo Patruno, Giulia Sartori, Nadia Castaldo, and Ernesto Crisafulli. 2023. "Endoscopic Technologies for Peripheral Pulmonary Lesions: From Diagnosis to Therapy" Life 13, no. 2: 254. https://doi.org/10.3390/life13020254
APA StyleFantin, A., Manera, M., Patruno, V., Sartori, G., Castaldo, N., & Crisafulli, E. (2023). Endoscopic Technologies for Peripheral Pulmonary Lesions: From Diagnosis to Therapy. Life, 13(2), 254. https://doi.org/10.3390/life13020254