Ultrasonography in the Diagnosis of Adnexal Lesions: The Role of Texture Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Group
2.2. Reference Standard
2.3. Image Acquisition and Interpretation
2.4. Texture Analysis Protocol
2.4.1. Image Pre-Processing and Segmentation
2.4.2. Feature Extraction
2.4.3. Feature Selection
2.4.4. Class Prediction
3. Results
4. Discussion
4.1. Study Outcomes
4.2. Study Population
4.3. Image Pre-Processing and Segmentation
4.4. Feature Extraction and Reduction
4.5. Class Prediction
4.6. Future Perspectives
4.7. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Saba, L.; Guerriero, S.; Sulcis, R.; Virgilio, B.; Melis, G.; Mallarini, G. Mature and immature ovarian teratomas: CT, US and MR imaging characteristics. Eur. J. Radiol. 2009, 72, 454–463. [Google Scholar] [CrossRef]
- Jung, S.I.; Park, H.S.; Kim, Y.J.; Jeon, H.J. Multidetector Computed Tomography for the Assessment of Adnexal Mass: Is Unenhanced CT Scan Necessary? Korean J. Radiol. 2014, 15, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Togashi, K. Ovarian cancer: The clinical role of US, CT, and MRI. Eur. Radiol. 2003, 13 (Suppl. S4), L87–L104. [Google Scholar] [CrossRef]
- Gramellini, D.; Fieni, S.; Sanapo, L.; Casilla, G.; Verrotti, C.; Nardelli, G.B. Diagnostic accuracy of IOTA ultrasound morphology in the hands of less experienced sonographers. Aust. N. Z. J. Obstet. Gynaecol. 2008, 48, 195–201. [Google Scholar] [CrossRef]
- Kim, K.A.; Park, C.M.; Lee, J.H.; Kim, H.K.; Cho, S.M.; Kim, B.; Seol, H.Y. Benign Ovarian Tumors with Solid and Cystic Components That Mimic Malignancy. Am. J. Roentgenol. 2004, 182, 1259–1265. [Google Scholar] [CrossRef]
- Acharya, U.R.; Molinari, F.; Sree, S.V.; Swapna, G.; Saba, L.; Guerriero, S.; Suri, J.S. Ovarian Tissue Characterization in Ultrasound: A review. Technol. Cancer Res. Treat. 2015, 14, 251–261. [Google Scholar] [CrossRef] [Green Version]
- Acharya, U.R.; Sree, S.V.; Kulshreshtha, S.; Molinari, F.; Koh, J.E.W.; Saba, L.; Suri, J.S. GyneScan: An Improved Online Paradigm for Screening of Ovarian Cancer via Tissue Characterization. Technol. Cancer Res. Treat. 2014, 13, 529–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timmerman, D. Lack of standardization in gynecological ultrasonography. Ultrasound Obstet. Gynecol. 2000, 16, 395–398. [Google Scholar] [CrossRef] [PubMed]
- Timmerman, D.; Testa, A.C.; Bourne, T.; Ameye, L.; Jurkovic, D.; Van Holsbeke, C.; Paladini, D.; van Calster, B.; Vergote, I.; van Huffel, S.; et al. Simple ultrasound-based rules for the diagnosis of ovarian cancer. Ultrasound Obstet. Gynecol. 2008, 31, 681–690. [Google Scholar] [CrossRef]
- Guerriero, S.; Ajossa, S.; Garau, N.; Piras, B.; Paoletti, A.M.; Melis, G.B. Ultrasonography and color Doppler-based triage for adnexal masses to provide the most appropriate surgical approach. Am. J. Obstet. Gynecol. 2005, 192, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Acharya, U.R.; Sree, S.V.; Krishnan, M.M.R.; Saba, L.; Molinari, F.; Guerriero, S.; Suri, J.S. Ovarian tumor characterization using 3D ultrasound. Technol. Cancer Res. Treat. 2012, 11, 543–552. [Google Scholar] [CrossRef] [PubMed]
- Acharya, U.R.; Mookiah, M.R.K.; Sree, S.V.; Yanti, R.; Martis, R.J.; Saba, L.; Molinari, F.; Guerriero, S.; Suri, J.S. Evolutionary Algorithm-Based Classifier Parameter Tuning for Automatic Ovarian Cancer Tissue Characterization and Classification. Ultraschall Med. 2012, 35, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Acharya, U.R.; Sree, S.V.; Saba, L.; Molinari, F.; Guerriero, S.; Suri, J.S. Ovarian Tumor Characterization and Classification Using Ultrasound—A New Online Paradigm. J. Digit. Imaging 2012, 26, 544–553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khazendar, S.; Sayasneh, A.; Al-Assam, H.; Du, H.; Kaijser, J.; Ferrara, L.; Timmerman, D.; Jassim, S.; Bourne, T. Automated characterisation of ultrasound images of ovarian tumours: The diagnostic accuracy of a support vector machine and image processing with a local binary pattern operator. Facts Views Vis. Obgyn 2015, 7, 7–15. [Google Scholar] [PubMed]
- Al-Dahlawi, R.; Pugh, N.D. The Use of Texture Analysis on Transvaginal Ultrasound Images in Diagnosing Ovarian Masses: A Prospective Study. J. Gynecol. Womens Health 2017, 4. [Google Scholar] [CrossRef]
- Hamid, B.A. Image Texture Analysis of Transvaginal Ultrasound in Monitoring Ovarian Cancer. Ph.D. Thesis, School of Engineering, Cardiff University, Cardiff, UK, 2011; pp. 57–198. [Google Scholar]
- Gadkari, D. Image Quality Analysis Using GLCM. Master’s Thesis, University of Central Florida, Orlando, FL, USA, 2004. [Google Scholar]
- Larroza, A.; Bodí, V.; Moratal, D. Texture Analysis in Magnetic Resonance Imaging: Review and Considerations for Future Applications. In Assessment of Cellular and Organ Function and Dysfunction Using Direct and Derived MRI Methodologies; IntechOpen: London, UK, 2016. [Google Scholar]
- Morris, D. An evaluation of the use of texture measurements for the tissue characterisation of ultrasonic images of in vivo human placentae. Ultrasound Med. Biol. 1988, 14, 387–395. [Google Scholar] [CrossRef]
- Liu, Z.; Yan, W.Q.; Yang, M.L. Image denoising based on a CNN model. In Proceedings of the 2018 4th International Conference on Control, Automation and Robotics (ICCAR), Auckland, New Zealand, 20–23 April 2018; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2018; pp. 389–393. [Google Scholar]
- Strzelecki, M.; Szczypinski, P.; Materka, A.; Klepaczko, A. A software tool for automatic classification and segmentation of 2D/3D medical images. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 2013, 702, 137–140. [Google Scholar] [CrossRef]
- Collewet, G.; Strzelecki, M.; Mariette, F. Influence of MRI acquisition protocols and image intensity normalization methods on texture classification. Magn. Reson. Imaging 2004, 22, 81–91. [Google Scholar] [CrossRef]
- Mayerhoefer, M.E.; Breitenseher, M.; Amann, G.; Dominkus, M. Are signal intensity and homogeneity useful parameters for distinguishing between benign and malignant soft tissue masses on MR images? Objective evaluation by means of texture analysis. Magn. Reson. Imaging 2008, 26, 1316–1322. [Google Scholar] [CrossRef] [PubMed]
- Karegowda, A.; Jayaram, M.A.; Manjunath, A.S. Cascading k-means clustering and k-nearest neighbor classifier for categorization of diabetic patients. Int. J. Eng.Adv. Technol. 2002, 1, 147–151. [Google Scholar]
- Dennie, C.; Thornhill, R.; Sethi-Virmani, V.; Souza, C.A.; Bayanati, H.; Gupta, A.; Maziak, D. Role of quantitative computed tomography texture analysis in the differentiation of primary lung cancer and granulomatous nodules. Quant. Imaging Med. Surg. 2016, 6, 6–15. [Google Scholar]
- De Oliveira, M.S.; Betting, L.E.; Mory, S.B.; Cendes, F.; Castellano, G. Texture analysis of magnetic resonance images of patients with juvenile myoclonic epilepsy. Epilepsy Behav. 2013, 27, 22–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biomedical Informatics 260. Computational Feature Extraction: Texture Features Lecture 6 David Paik, Ph.D. Available online: https://docplayer.net/188454072-Biomedical-informatics-260-computational-feature-extraction-texture-features-lecture-6-david-paik-phd-spring-2019.html (accessed on 2 January 2021).
- Fan, M.; Cheng, H.; Zhang, P.; Gao, X.; Zhang, J.; Shao, G.; Li, L. DCE-MRI texture analysis with tumor subregion partitioning for predicting Ki-67 status of estrogen receptor-positive breast cancers. J. Magn. Reson. Imaging 2017, 48, 237–247. [Google Scholar] [CrossRef] [PubMed]
- Park, B.; Chen, Y. AE—Automation and Emerging Technologies: Co-occurrence Matrix Texture Features of Multi-spectral Images on Poultry Carcasses. J. Agric. Eng. Res. 2001, 78, 127–139. [Google Scholar] [CrossRef] [Green Version]
- Van Griethuysen, J.J.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.; Fillion-Robin, J.-C.; Pieper, S.; Aerts, H.J. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 2017, 77, e104–e107. [Google Scholar] [CrossRef] [Green Version]
- Ganeshan, B.; Goh, V.; Mandeville, H.C.; Ng, Q.S.; Hoskin, P.J.; Miles, K.A. Non–Small Cell Lung Cancer: Histopathologic Correlates for Texture Parameters at CT. Radiology 2013, 266, 326–336. [Google Scholar] [CrossRef] [PubMed]
- Bhooshan, N.; Giger, M.L.; Jansen, S.A.; Li, H.; Lan, L.; Newstead, G.M. Cancerous Breast Lesions on Dynamic Contrast-Enhanced MR Images: Computerized Characterization for Image-Based Prognostic Markers. Radiology 2010, 254, 680–690. [Google Scholar] [CrossRef]
- Zhou, A.G.; Levinson, K.L.; Rosenthal, D.L.; Vandenbussche, C.J. Performance of ovarian cyst fluid fine-needle aspiration cytology. Cancer Cytopathol. 2018, 126, 112–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kristjansdottir, B.; LeVan, K.; Partheen, K.; Carlsohn, E.; Sundfeldt, K. Potential tumor biomarkers identified in ovarian cyst fluid by quantitative proteomic analysis, iTRAQ. Clin. Proteom. 2013, 10, 4. [Google Scholar] [CrossRef] [Green Version]
- Wood, D.; Fitzpatrick, T.; Bibbo, M. Peritoneal washings and ovary. In Comprehensive Cytopathology E-Book; Wilbur, D., Ed.; Elsevier Health Sciences: Amsterdam, The Netherlands, 2014; pp. 291–301. [Google Scholar]
- Win, T.T.; Mahmood, N.M.Z.N.; Ma, S.O.; Ismail, M. Bilateral Ovarian Clear Cell Carcinoma Arising in 17 Year Longstanding History of Bilateral Ovarian Endometriosis. Iran. J. Pathol. 2017, 11, 478–482. [Google Scholar]
- Russel, P. Surface epithelial—Stromal tumors of the OVARY. In Blaustein’s Pathology of the Female Genital Tract, 4th ed.; Kurman, R.J., Ed.; Springer: New York, NY, USA, 1994; pp. 705–782. [Google Scholar]
- Benign, Proliferative Noninvasive (Borderline), and Invasive Epithelial Tumors of the Ovary|GLOWM n.d. Available online: https://www.glowm.com/section_view/heading/benign-proliferative-noninvasiveborderline-and-invasive-epithelial-tumors-of-the-ovary/item/248 (accessed on 27 November 2020).
- Nagamine, K.; Kondo, J.; Kaneshiro, R.; Tauchi-Nishi, P.; Terada, K. Ovarian needle aspiration in the diagnosis and management of ovarian masses. J. Gynecol. Oncol. 2017, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ovarian Serous Cystadenocarcinoma Disease: Malacards—Research Articles, Drugs, Genes, Clinical Trials n.d. Available online: https://www.malacards.org/card/ovarian_serous_cystadenocarcinoma (accessed on 2 January 2021).
- Lupean, R.-A.; Ștefan, P.-A.; Feier, D.S.; Csutak, C.; Ganeshan, B.; Lebovici, A.; Petresc, B.; Mihu, C.M. Radiomic Analysis of MRI Images is Instrumental to the Stratification of Ovarian Cysts. J. Pers. Med. 2020, 10, 127. [Google Scholar] [CrossRef]
- Lupean, R.-A.; Ștefan, P.-A.; Oancea, M.; Măluțan, A.; Lebovici, A.; Pușcaș, M.; Csutak, C.; Mihu, C. Computer Tomography in the Diagnosis of Ovarian Cysts: The Role of Fluid Attenuation Values. Health 2020, 8, 398. [Google Scholar] [CrossRef]
- Genders, T.S.S.; Spronk, S.; Stijnen, T.; Steyerberg, E.W.; Lesaffre, E.; Hunink, M.G.M. Methods for Calculating Sensitivity and Specificity of Clustered Data: A Tutorial. Radiology 2012, 265, 910–916. [Google Scholar] [CrossRef]
- Michailovich, O.V.; Tannenbaum, A.R. Despeckling of medical ultrasound images. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2006, 53, 64–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loizou, C.P.; Pantziaris, M.; Theofilou, M.; Kasparis, T.; Kyriakou, E. Texture Analysis in Ultrasound Images of Carotid Plaque Components of Asymptomatic and Symptomatic Subjects. In Artificial Intelligence Applications and Innovations; Papadopoulos, H., Andreou, A.S., Iliadis, L., Maglogiannis, I., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 412, pp. 282–291. [Google Scholar]
- Manjon, J.V.; Coupe, P. MRI denoising using Deep Learning and Non-local averaging. arXiv 2019, arXiv:191104798. [Google Scholar]
- Lupean, R.-A.; Ștefan, P.-A.; Csutak, C.; Lebovici, A.; Măluțan, A.; Buiga, R.; Melincovici, C.; Mihu, C. Differentiation of Endometriomas from Ovarian Hemorrhagic Cysts at Magnetic Resonance: The Role of Texture Analysis. Medicina 2020, 56, 487. [Google Scholar] [CrossRef]
- Mayerhoefer, M.E.; Schima, W.; Trattnig, S.; Pinker, K.; Berger-Kulemann, V.; Ba-Ssalamah, A. Texture-based classification of focal liver lesions on MRI at 3.0 Tesla: A feasibility study in cysts and hemangiomas. J. Magn. Reson. Imaging 2010, 32, 352–359. [Google Scholar] [CrossRef]
- Miranda, C.S.; Carvajal, A.R. Complications of Operative Gynecological Laparoscopy. JSLS 2003, 7, 53–58. [Google Scholar]
- Mulvany, N.J. Aspiration Cytology of Ovarian Cysts and Cystic Neoplasms. A study of 235 aspirates. Acta Cytol. 1996, 40, 911–920. [Google Scholar] [CrossRef] [PubMed]
- Kane, M.G.; Krejs, G.J. Complications of diagnostic laparoscopy in Dallas: A 7-year prospective study. Gastrointest. Endosc. 1984, 30, 237–240. [Google Scholar] [CrossRef]
- De Crespigny, L. A comparison of ovarian cyst aspirate cytology and histology. The case against aspiration of cystic pelvic masses. Aust. N. Z. J. Obstet. Gynaecol. 1995, 35, 233–235. [Google Scholar] [PubMed]
- Diernaes, E.; Rasmussen, J.; Soerensen, T.; Hasch, E. Ovarian Cysts: Management by Puncture? Lancet 1987, 329, 1084. [Google Scholar] [CrossRef]
- Li, N.; Zhan, X. Identification of clinical trait-related lncRNA and mRNA biomarkers with weighted gene co expression net-wor analysis as useful tool for personalized medicine in ovarian cancer. EPMA J. 2019, 10, 273–290. [Google Scholar] [CrossRef] [Green Version]
- Diehn, M.; Nardini, C.; Wang, D.S.; McGovern, S.; Jayaraman, M.; Liang, Y.; Aldape, K.; Cha, S.; Kuo, M.D. Identification of noninvasive imaging surrogates for brain tumor gene-expression modules. Proc. Natl. Acad. Sci. USA 2008, 105, 5213–5218. [Google Scholar] [CrossRef] [Green Version]
- Cook, G.; Yip, C.; Siddique, M.; Goh, V.; Chicklore, S.; Roy, A.; Marsden, P.; Ahmad, S.; Landau, D. Are pretreatment 18F-FD PET tumor textural features in non-small cell lung cancer associated with response and survival after chemoradiotherapy? J. Nucl. Med. 2013, 54, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Coroller, T.P.; Grossmann, P.; Hou, Y.; Velazquez, E.R.; Leijenaar, R.T.; Hermann, G.; Lambin, P.; Haibe-Kains, B.; Mak, R.H.; Aerts, H.J. CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. Radiother. Oncol. 2015, 114, 345–350. [Google Scholar] [CrossRef]
- Lu, M.; Zhan, X. The crucial role of multiomic approach in cancer research and clinically relevant outcomes. EPMA J. 2018, 9, 77–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janssens, J.P.; Schuster, K.; Voss, A. Preventive, predictive, and personalized medicine for efective an afordable cancer care. EPMA J. 2018, 9, 113–123. [Google Scholar] [CrossRef]
- Dirrichs, T.; Bauerschlag, D.; Maass, N.; Kuhl, C.K.; Schrading, S. Impact of Multiparametric MRI (mMRI) on the Therapeutic Management of Adnexal Masses Detected with Transvaginal Ultrasound (TVUS): An Interdisciplinary Management Approach. Acad. Radiol. 2020. [Google Scholar] [CrossRef]
- Ye, R.; Weng, S.; Li, Y.; Yan, C.; Chen, J.; Zhu, Y.; Wen, L. Texture Analysis of Three-Dimensional MRI Images May Differentiate Borderline and Malignant Epithelial Ovarian Tumors. Korean J. Radiol. 2021, 22, 106–117. [Google Scholar] [CrossRef] [PubMed]
Parameter | p-Value | Benign Group | Malignant Group | Agreement | |||
---|---|---|---|---|---|---|---|
Median | IQR | Median | IQR | ICC | 95% CI | ||
Fisher | |||||||
CH4D6SumVarnc | <0.0001 | 85.88 | 59.73–131.59 | 242.63 | 167.91–455.47 | 0.96 | 0.94–0.97 |
CH3D6SumVarnc | <0.0001 | 88.27 | 62.54–136.3 | 258.28 | 172.04–463.22 | 0.96 | 0.94–0.97 |
CH5D6SumVarnc | <0.0001 | 84.31 | 56.33–128.25 | 235.9 | 164.45–450.94 | 0.95 | 0.94–0.97 |
CV5D6SumVarnc | <0.0001 | 83.53 | 55.74–127.05 | 230.49 | 143.38–438.08 | 0.96 | 0.94–0.97 |
CV4D6SumVarnc | <0.0001 | 85.37 | 56.91–132.69 | 234.69 | 148.02–449.39 | 0.96 | 0.94–0.97 |
CV3D6SumVarnc | <0.0001 | 86.71 | 59.6–139.33 | 238.15 | 154.47–465.49 | 0.96 | 0.94–0.97 |
CH2D6SumVarnc | <0.0001 | 94.86 | 67.57–148.25 | 269.59 | 180.29–480.45 | 0.96 | 0.94–0.97 |
CN2D6SumVarnc | <0.0001 | 89.56 | 61.13–136.95 | 247.13 | 158.06–464.65 | 0.96 | 0.94–0.97 |
CN3D6SumVarnc | <0.0001 | 83.48 | 58.51–129.63 | 236.66 | 147.31–449.5 | 0.96 | 0.94–0.97 |
CV2D6SumVarnc | <0.0001 | 91.49 | 63.79–147.72 | 251.8 | 168.09–479.01 | 0.96 | 0.94–0.97 |
POE + ACC | |||||||
WavEnHL_s-6 | 0.0283 | 108.02 | 54.64–173.56 | 124.12 | 110.04–214.94 | 0.99 | 0.99–0.99 |
Kurtosis | 0.0005 | 10.27 | 4.55–21.56 | 4.07 | 1.12–7.23 | 0.92 | 0.89–0.94 |
ATeta4 | 0.0675 | 0.18 | 0.09–0.24 | 0.14 | 0.08–0.16 | 0.98 | 0.97–0.98 |
GD4Kurtosis | 0.0913 | 50.09 | 14.94–68.34 | 13.01 | 4.–44.66 | 0.99 | 0.99–0.99 |
RZD6LngREmph | 0.3699 | 3.4 | 2.25–9.54 | 3.09 | 2.17–4.72 | 0.97 | 0.95–0.98 |
Perc99 | <0.0001 | 116 | 85.5–144 | 166 | 150–207.25 | 0.93 | 0.9–0.95 |
WavEnLH_s-5 | 0.014 | 92.19 | 63.68–138.44 | 122.81 | 101.37–153.98 | 0.98 | 0.97–0.98 |
Mutual Information | |||||||
CZ4D6SumOfSqs | <0.0001 | 25.24 | 17.23–39.44 | 64.54 | 48.28–118.29 | 0.96 | 0.95–0.97 |
CZ5D6SumOfSqs | <0.0001 | 25.03 | 17.14–38.63 | 62.24 | 48.03–116.66 | 0.96 | 0.95–0.97 |
CH5D6SumOfSqs | <0.0001 | 25.13 | 16.93–40 | 67.71 | 48.79–117.8 | 0.96 | 0.94–0.97 |
CZ2D6SumOfSqs | <0.0001 | 25.6 | 17.85–41.33 | 69.91 | 49.11–122.1 | 0.96 | 0.94–0.97 |
CZ3D6SumOfSqs | <0.0001 | 25.51 | 17.48–40.51 | 67.11 | 48.76–120.45 | 0.96 | 0.94–0.97 |
CZ2D6SumVarnc | <0.0001 | 91.34 | 61.89–142.25 | 240.57 | 169.41–470.34 | 0.96 | 0.94–0.97 |
Parameter | Coefficient | Standard Error | p-Value | VIF |
---|---|---|---|---|
CH2D6SumVarnc | 0.015 | 0.013 | 0.2341 | 3718.896 |
CH5D6SumOfSqs | −0.108 | 0.045 | 0.019 | 2905.638 |
CH5D6SumVarnc | 0.013 | 0.009 | 0.1665 | 1629.273 |
CN3D6SumVarnc | −0.009 | 0.008 | 0.2547 | 1396.956 |
CV2D6SumVarnc | 0.0194 | 0.014 | 0.175 | 4275.282 |
CV5D6SumVarnc | −0.0017 | 0.009 | 0.859 | 1769.967 |
CZ2D6SumOfSqs | −0.0287 | 0.059 | 0.63 | 4969.092 |
CZ2D6SumVarnc | −0.0246 | 0.009 | 0.011 | 1880.17 |
CZ5D6SumOfSqs | 0.097 | 0.039 | 0.014 | 2058.43 |
Kurtosis | <0.001 | 0.002 | 0.8365 | 1.663 |
Perc99 | 0.001 | 0.001 | 0.5304 | 8.415 |
Parameter | AUC | Significance Level | J | Cut-Off | Se (%) | Sp (%) |
---|---|---|---|---|---|---|
CH5D6SumOfSqs | 0.887 (0.812–0.94) | <0.0001 | 0.65 | >39.77 | 85.71 (63.7–97) | 74.71 (64.3–83.4) |
CZ2D6SumVarnc | 0.883 (0.807–0.937) | <0.0001 | 0.65 | >151.46 | 85.71 (63.7–97) | 79.31 (69.3–87.3) |
CZ5D6SumOfSqs | 0.895 (0.821–0.946) | <0.0001 | 0.67 | >38.77 | 90.48 (69.6–98.8) | 77.01 (66.8–85.4) |
Prediction model | 0.951 (0.891–0.983) | <0.0001 | 0.83 | >0.31 | 90.48 (69.6–98.8) | 93.1 (85.6–97.4) |
Input Parameters | Set 1 | Set 2 |
---|---|---|
Accuracy (%) | 84.55 (76.93–90.44) | 85.37 (77.86–91.09) |
Sensitivity (%) | 71.43 (53.7–85.36) | 80 (63.06–91.56) |
Specificity (%) | 89.77 (81.47–95.22) | 87.5 (78.73–93.59) |
Positive Predictive Value (%) | 73.53 (59.1–84.23) | 71.79 (58.84–81.93) |
Negative Predictive Value (%) | 88.76 (82.32–93.06) | 91.67 (84.95–95.54) |
Study population | ||
benign group (n = 88) | 9 | 11 |
functional cyst (n = 7) | 1 | 1 |
hemorrhagic cyst (n = 5) | 1 | 1 |
endometrioma (n = 28) | 3 | 3 |
serous cystadenoma (n = 26) | 3 | 4 |
mesothelial inclusion cyst (n = 2) | - | - |
mucinous cystadenoma (n = 6) | 1 | - |
ovarian abscess (n = 6) | - | 1 |
oophoritis (n = 2) | - | 1 |
teratoma (n = 6) | - | |
malignant group (n = 35) | 10 | 7 |
serous carcinoma (n = 24) | 7 | 5 |
endometroid carcinoma (n = 2) | 1 | - |
mucinous carcinoma (n = 6) | 2 | 1 |
clear cell carcinoma (n = 3) | - | 1 |
Author, Year | Study Group | Texture Features | Classifier | Performance | ||
---|---|---|---|---|---|---|
Acc (%) | Se (%) | Sp (%) | ||||
Acharya et al. 2013 [11] | ns = 20 | LBP, LTE | SVM | 99.9 | 100 | 99.8 |
ni = 2000 | ||||||
Acharya et al. 2012 [12] | ns = 20 | Hu i.m., Gabor, Entropies | PNN | 99.8S | 99.2 | 99.6 |
ni = 2600 | ||||||
Acharya et al. 2012 [13] | ns = 20 | SD, FD, | DT | 97 | 94.3 | 99.7 |
ni = 2000 | GLCM, RLM, HOS | |||||
Acharya et al. 2014 [7] | ns = 20; ni = 2600 | FOS, GLCM, RLM | SVM | 84.7–100 | 81–100 | 88.46–100 |
DT | 98.54 | 98.15 | 98.92 | |||
KNN | 100 | 100 | 100 | |||
NB | 67.35 | 60.62 | 74.08 | |||
PNN | 100 | 100 | 100 | |||
Khazendar et al. 2015 [14] | ns = 187 | FOS, LBP | KNN | 63–55 | 55–71 | 49–69 |
ni = 177 | ||||||
Aldahlawi et al. 2017 [15] | ns = 163; | GLCM | - | - | 71–75 | 55–60 |
ni = 169 | Wavelet | - | - | 50–62 | 46–60 | |
Hamid. 2011 [16] | ns = 20 | GLCM | - | - | 100 | 90 |
ni = 20 | Wavelet | - | - | 100 | 90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ștefan, P.-A.; Lupean, R.-A.; Mihu, C.M.; Lebovici, A.; Oancea, M.D.; Hîțu, L.; Duma, D.; Csutak, C. Ultrasonography in the Diagnosis of Adnexal Lesions: The Role of Texture Analysis. Diagnostics 2021, 11, 812. https://doi.org/10.3390/diagnostics11050812
Ștefan P-A, Lupean R-A, Mihu CM, Lebovici A, Oancea MD, Hîțu L, Duma D, Csutak C. Ultrasonography in the Diagnosis of Adnexal Lesions: The Role of Texture Analysis. Diagnostics. 2021; 11(5):812. https://doi.org/10.3390/diagnostics11050812
Chicago/Turabian StyleȘtefan, Paul-Andrei, Roxana-Adelina Lupean, Carmen Mihaela Mihu, Andrei Lebovici, Mihaela Daniela Oancea, Liviu Hîțu, Daniel Duma, and Csaba Csutak. 2021. "Ultrasonography in the Diagnosis of Adnexal Lesions: The Role of Texture Analysis" Diagnostics 11, no. 5: 812. https://doi.org/10.3390/diagnostics11050812
APA StyleȘtefan, P.-A., Lupean, R.-A., Mihu, C. M., Lebovici, A., Oancea, M. D., Hîțu, L., Duma, D., & Csutak, C. (2021). Ultrasonography in the Diagnosis of Adnexal Lesions: The Role of Texture Analysis. Diagnostics, 11(5), 812. https://doi.org/10.3390/diagnostics11050812