Molecular and Clinical Insights on the Complex Interaction between Oxidative Stress, Apoptosis, and Endobiota in the Pathogenesis of Endometriosis
Abstract
:1. Introduction
2. Materials and Methods
3. Oxidative Stress and EMS
Oxidative Stress and EMS
Subject | Number | Type of Sample | Biomarker of Interest | Reference |
---|---|---|---|---|
Female | 18 EMS patients | Ectopic and eutopic samples | Novel OS biomarker-AOC3/VAP1, alkenal reductase PTGR1 and methionine sulfoxidereductase | [29] |
Female | 133 women; 40 ectopic and 73 eutopic | Ectopic ESCs | Ectopic ESC ROS ↑ SOD2 ↑ | [31] |
Female | 55 EMS patients out of 64 | Blood and peritoneal fluid | SOD ↓ GPx ↓ | [22] |
Female | 28 EMS patients and 23 controls | Plasma and peritoneal fluid | Carbonyl ↑ LPO ↑ | [28] |
Female | 121 EMS patients and 81 controls | Peritoneal fluid | AOPP ↑ ADAM17 ↑ Notch ↑ | [33] |
Female | 110 EMS patients and 119 with benign ovarian cysts | Peritoneal fluid | Haemoglobin ↑ Iron ↑ TOS ↑ TAS ↓ | [30] |
Female | 30 EMS patients and 30 controls | Follicular fluid and serum | Vitamin C ↓ Vitamin E ↓ SOD ↑ MDA ≠ | [24] |
Female | 63 EMS patients | Follicular fluid and serum | LPO ↑TAC ↑ | [27] |
Female | 31 EMS patients and 27 controls | Serum | Serum native thiols ↓ Total native thiols ↓ CAT ↑ | [23] |
Female | 30 EMS patients and 40 controls | Serum | Iron ↑ MDA ≠ Carbonyl ≠ | [26] |
Murine model | Iron ↑ FSHR ↓ | [32] |
4. Apoptosis and EMS
Subject | Number | Regulatory Pathway | Reference |
---|---|---|---|
Experimental Models | |||
BALB/c mice | n = 33 mice | Bcl-2 ↓ Bax ↓ | [36] |
BALB/c nude | n = 5 per group | Bcl-2 ↑↓ | [48] |
C57BL/6J mice | n = 3 per group | ERβ ↑ | [44] |
Normal (C57BL/6J), ERβ−/− (B6;129P2-Esr2tm1Unc/J), NALP3−/− (B6.129S6-Nlrp3tm1Bhk/J), and SCID (NOD.CB17-Prkdcscid/J). ERBAI and ROSALSL:ERβ, ROSALSL:ERβ:PRCre/+being generated by crossing ROSALSL:ERβ with PRCre+ | n = 4 | ERβ ↑↓ | [42] |
Normal C57BL/6J, Tnf−/− (B6;129S-Tnftm1Gkl/J), Mmp9−/− (FVB.CgMmp9tm1Tvu/J), GFP-expressing (C57BL/6-Tg(CAG-GFP)10sb/J) and SCID (NOD.Cg-PrkfcscidB2mtm1UncIl2rgtm1Wjl/Szj), SRC-1 null–was generated by crossing SRC-1-null with GFP-expressing | n = 6 | MMP9 ↑ | [45] |
Sprague- Dawley rats | n = 74 | caspase-3 ↑ caspase-8 ↑ caspase-9 ↑ cytochrome ↑ | [39] |
Culture(s)-In Vivo | |||
Human endometrial stromal cells | n = 32; n = 16 peritoneal or OE or both and n = 16 controls; n = 12 dermoid cysts and n = 3 serous cystadenoma and n = 1 simple ovarian cyst | caspase-3 ↑ miR-21–5p ↑ | [40] |
Human endometrial stromal cells | n = 25 OE and n = 5 pelvic EMS | Bcl-2 ↑↓ | [43] |
Human ectopic and normal endometrial cells | STAT1 ↑ caspase-3 ↑ | [38] | |
Human eutopic and ectopic ESCs controls | n = 17, n = 11, and n = 15 | Bcl-2 ↑ Bcl-xL ↑ caspase-3 ↓ VEGF-A ↑ HGF ↑ | [37] |
Cell line(s)-In Vitro | |||
Female/CRL-7566 cell line | n = 20 EMS patients, n = 17 adenomyosis and n = 19 controls; n = 12 proliferative, n = 7 secretory; Endometriosis tissues were divided as: n = 9 cystic and n = 11 non-cystic | CB1 ↓ CB2 ↓ | [49] |
Female/HEK293T, CRL7566, CRL-11731 cell lines | n = 10 OE, n = 10 ovarian cancer, and n = 10 controls | miR-191 ↑↓ | [50] |
Female/CRL-7566 cell line | n = 20 eutopic and ectopic endometrium | miR-29c ↑↓ c-Jun ↑↓ | [51] |
Female/hEM15A cell line | n = 30 OE and n = 30 controls | Cav1.3 ↑↓ | [52] |
Human patients | |||
Female | n = 30 OE and n = 29 controls | p53 ↑ p16 ↑ MDM2 ↓ | [46] |
Female | n = 28 EMS patients, n = 14 laparoscopy after DMPA injection and n = 14 laparoscopy without DMPA injection | PCNA ≠ | [47] |
Female | n = 30 EMS patients and n = 15 controls | Raf-1 ↑ | [53] |
5. Endobiota and EMS
Subject | Number | Region Analyzed | Microbial Taxa Differences | Reference |
---|---|---|---|---|
Female | 14 stage 3/4 ¾ EMS women and 14 controls | V3-V4 region 16S rRNA | Atopobium absence in the vaginal and cervical microbiota ↑ Gardnerella ↑ Streptococcus ↑ Escherichia ↑ Shigella ↑ Ureoplasma Prevalence of Shigella and Escherichia in the stool | [54] |
Female | 19 women; n = 10 distinct EMS stages and n = 9 controls | V3-V5 region 16S rRNA | Significant alterations among bacterial communities depending on the site from which the sample was collected and diagnosis | [55] |
Female | 36 EMS women and 14 controls | V4-V5 region 16S rRNA | Prevalence of Lactobacillus in the lower third of the vagina and posterior vaginal fornix. Differences among communities were visible starting from the cervical mucus of EMS patients, gradually increasing towards the reproductive system. ↑ Operational Taxonomic Units in the cervical mucus, endometrium, and peritoneal fluid. | [59] |
Female | 34 women | V4-V4 region 16S rRNA | Lactobacilli-dominant microenvironment in contrast to non-pregnant women, whereas the endometrial bacterial colonization was marker exclusively by a polymicrobial habitat in which lactobacilli were predominant | [60] |
Female | 39 EMS women and 30 controls | V5-V6 region 16S rRNA | Similar microbial taxa between women with and without EMS. ↑ Lactobacilli spp ↑ Corynebacterium ↑ Enterobacteriaceae in EMS group than in control (p < 0.05) ↑ Flavobacterium ↑ Pseudomonas ↑ Streptococcus in EMS group than in Control (p < 0.05) | [62] |
Mice | C57BL/6 wild-type mice and transgenic C57BL/6-TgN(ACTB-EGFP)1Osb/J donor mice; 4 per cage-2 EMS and 2 sham-transplanted controls | V4-V5 region16S rRNA | No significant difference between groups, being speculated that EMS does not induce a dysbiosis during the acute phase of lesion formation. | [63] |
Mice | C57BL6; 22 from which in 4 distinct intervals (day 7, 14, and 28) fecal sample was collected and the mice were sacrificed for model confirmation; 8 out of 10 in day 42. | V4 region 16S rRNA | Similar diversity and richness between EMS and mock mice. ↑ Firmicutes/Bacteroidetes ratio in EMS after 42 days ↑ Bifidobacterium in EMS group | [64] |
Mice | BALB/c mice | V4 region 16S rRNA | ↑ pathogen load in the uteri of gut microbiota-dysbiosis mice | [65] |
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bazot, M.; Bharwani, N.; Huchon, C.; Kinkel, K.; Cunha, T.M.; Guerra, A.; Manganaro, L.; Buñesch, L.; Kido, A.; Togashi, K.; et al. European Society of Urogenital Radiology (ESUR) Guidelines: MR Imaging of Pelvic Endometriosis. Eur. Radiol. 2017, 27, 2765–2775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vercellini, P.; Viganò, P.; Somigliana, E.; Fedele, L. Endometriosis: Pathogenesis and Treatment. Nat. Rev. Endocrinol. 2014, 10, 261–275. [Google Scholar] [CrossRef]
- Zondervan, K.T.; Becker, C.M.; Koga, K.; Missmer, S.A.; Taylor, R.N.; Viganò, P. Endometriosis. Nat. Rev. Dis. Prim. 2018, 4, 9. [Google Scholar] [CrossRef]
- Johnson, N.P.; Hummelshoj, L.; Adamson, G.D.; Keckstein, J.; Taylor, H.S.; Abrao, M.S.; Bush, D.; Kiesel, L.; Tamimi, R.; Sharpe-Timms, K.L.; et al. World Endometriosis Society Consensus on the Classification of Endometriosis. Hum. Reprod. 2017, 32, 315–324. [Google Scholar] [CrossRef]
- Czyzyk, A.; Podfigurna, A.; Szeliga, A.; Meczekalski, B. Update on Endometriosis Pathogenesis. Minerva Ginecol. 2017, 69, 447–461. [Google Scholar]
- Sampson, J.A. Peritoneal Endometriosis Due to the Menstrual Dissemination of Endometrial Tissue into the Peritoneal Cavity. Am. J. Obstet. Gynecol. 1927, 14, 422–469. [Google Scholar] [CrossRef]
- Halme, J.; Hammond, M.G.; Hulka, J.F.; Raj, S.G.; Talbert, L.M. Retrograde Menstruation in Healthy Women and in Patients with Endometriosis. Obstet. Gynecol. 1984, 64, 151–154. [Google Scholar] [PubMed]
- Liu, D.T.; Hitchcock, A. Endometriosis: Its Association with Retrograde Menstruation, Dysmenorrhoea and Tubal Pathology. Br. J. Obstet. Gynaecol. 1986, 93, 859–862. [Google Scholar] [CrossRef]
- Sourial, S.; Tempest, N.; Hapangama, D.K. Theories on the Pathogenesis of Endometriosis. Int. J. Reprod. Med. 2014, 2014, 179515. [Google Scholar] [CrossRef] [Green Version]
- Ahn, S.H.; Monsanto, S.P.; Miller, C.; Singh, S.S.; Thomas, R.; Tayade, C. Pathophysiology and Immune Dysfunction in Endometriosis. Biomed. Res. Int. 2015, 2015, 795976. [Google Scholar] [CrossRef] [Green Version]
- Gordts, S.; Koninckx, P.; Brosens, I. Pathogenesis of Deep Endometriosis. Fertil. Steril. 2017, 108, 872–885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halme, J.; Becker, S.; Hammond, M.G.; Raj, M.H.G.; Raj, S. Increased Activation of Pelvic Macrophages in Infertile Women with Mild Endometriosis. Am. J. Obstet. Gynecol. 1983, 145, 333–337. [Google Scholar] [CrossRef]
- Keettel, W.C.; Stein, R.J. The Viability of the Cast-Off Menstrual Endometrium. Am. J. Obstet. Gynecol. 1951, 61, 440–442. [Google Scholar] [CrossRef]
- Nisolle, M.; Paindaveine, B.; Bourdon, A.; Berlière, M.; Casanas-Roux, F.; Donnez, J. Histologic Study of Peritoneal Endometriosis in Infertile Women. Fertil. Steril. 1990, 53, 984–988. [Google Scholar] [CrossRef]
- Kruitwagen, R.F.P.M.; Poels, L.G.; Willemsen, W.N.P.; de Ronde, I.J.Y.; Jap, P.H.K.; Rolland, R. Endometrial Epithelial Cells in Peritoneal Fluid during the Early Follicular Phase. Fertil. Steril. 1991, 55, 297–303. [Google Scholar] [CrossRef]
- Arumugam, K.; Lim, J.M. Menstrual Characteristics Associated with Endometriosis. Br. J. Obstet. Gynaecol. 1997, 104, 948–950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vercellini, P.; De Giorgi, O.; Aimi, G.; Panazza, S.; Uglietti, A.; Crosignani, P.G. Menstrual Characteristics in Women with and Without Endometriosis. Obstet. Gynecol. 1997, 90, 264–268. [Google Scholar] [CrossRef]
- Kvaskoff, M.; Mu, F.; Terry, K.L.; Harris, H.R.; Poole, E.M.; Farland, L.; Missmer, S.A. Endometriosis: A High-Risk Population for Major Chronic Diseases? Hum. Reprod. Update 2015, 21, 500–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bulun, S.E.; Yilmaz, B.D.; Sison, C.; Miyazaki, K.; Bernardi, L.; Liu, S.; Kohlmeier, A.; Yin, P.; Milad, M.; Wei, J. Endometriosis. Endocr. Rev. 2019, 40, 1048–1079. [Google Scholar] [CrossRef]
- Young, V.B. The Role of the Microbiome in Human Health and Disease: An Introduction for Clinicians. BMJ 2017, 356. [Google Scholar] [CrossRef]
- Khan, K.N.; Fujishita, A.; Hiraki, K.; Kitajima, M.; Nakashima, M.; Fushiki, S.; Kitawaki, J. Bacterial Contamination Hypothesis: A New Concept in Endometriosis. Reprod. Med. Biol. 2018, 17, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Amreen, S.; Kumar, P.; Gupta, P.; Rao, P. Evaluation of Oxidative Stress and Severity of Endometriosis. J. Hum. Reprod. Sci. 2019, 12, 40–46. [Google Scholar]
- Turkyilmaz, E.; Yildirim, M.; Cendek, B.D.; Baran, P.; Alisik, M.; Dalgaci, F.; Yavuz, A.F. Evaluation of Oxidative Stress Markers and Intra-Extracellular Antioxidant Activities in Patients with Endometriosis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2016, 199, 164–168. [Google Scholar] [CrossRef]
- Elsharkawy, S.S.; Abdrabo, S.M.; Khalil, H.M.; Mannaa, F.H. Evaluation of Oxidative Stress Markers in Serum and Follicular Fluid of Women with Infertility Related to Endometriosis. J. Clin. Obstet. Gynecol. Infertility 2020, 4, 1045. [Google Scholar]
- Juan, C.A.; Pérez de la Lastra, J.M.; Plou, F.J.; Pérez-Lebeña, E. The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. Int. J. Mol. Sci. 2021, 22, 4642. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, M.; Mahjoub, S.; Esmaelzadeh, S.; Hajian, K.; Basirat, Z.; Ghasemi, M. Evaluation of Oxidative Stress in Endometriosis: A Case-Control Study. Casp. J. Intern. Med. 2015, 6, 25–29. [Google Scholar]
- Nasiri, N.; Moini, A.; Eftekhari-Yazdi, P.; Karimian, L.; Salman Yazdi, R.; Arabipoor, A. Oxidative Stress Statues in Serum and Follicular Fluid of Women with Endometriosis. Cell J. 2017, 18, 582–587. [Google Scholar] [PubMed]
- Montoya-Estrada, A.; Coria-García, C.F.; Cruz-Orozco, O.P.; Aguayo-González, P.; Torres-Ramos, Y.D.; Flores-Herrera, H.; Hicks, J.J.; Medina-Navarro, R.; Guzmán-Grenfell, A.M. Increased Systemic and Peritoneal Oxidative Stress Biomarkers in Endometriosis Are Not Related to Retrograde Menstruation. Redox Rep. 2019, 24, 51–55. [Google Scholar] [CrossRef]
- Thézénas, M.-L.; De Leo, B.; Laux-Biehlmann, A.; Bafligil, C.; Elger, B.; Tapmeier, T.; Morten, K.; Rahmioglu, N.; Dakin, S.G.; Charles, P.; et al. Amine Oxidase 3 Is a Novel Pro-Inflammatory Marker of Oxidative Stress in Peritoneal Endometriosis Lesions. Sci. Rep. 2020, 10, 1495. [Google Scholar] [CrossRef] [Green Version]
- Polak, G.; Barczyński, B.; Wertel, I.; Kwaśniewski, W.; Bednarek, W.; Derewianka-Polak, M.; Frąszczak, K.; Olajossy, M.; Kotarski, J. Disrupted Iron Metabolism in Peritoneal Fluid May Induce Oxidative Stress in the Peritoneal Cavity of Women with Endometriosis. Ann. Agric. Environ. Med. 2018, 25, 587–592. [Google Scholar] [CrossRef]
- Chen, C.; Zhou, Y.; Hu, C.; Wang, Y.; Yan, Z.; Li, Z.; Wu, R. Mitochondria and Oxidative Stress in Ovarian Endometriosis. Free Radic. Biol. Med. 2019, 136, 22–34. [Google Scholar] [CrossRef]
- Hayashi, S.; Nakamura, T.; Motooka, Y.; Ito, F.; Jiang, L.; Akatsuka, S.; Iwase, A.; Kajiyama, H.; Kikkawa, F.; Toyokuni, S. Novel Ovarian Endometriosis Model Causes Infertility via Iron-Mediated Oxidative Stress in Mice. Redox Biol. 2020, 37, 101726. [Google Scholar] [CrossRef]
- González-Foruria, I.; Santulli, P.; Chouzenoux, S.; Carmona, F.; Chapron, C.; Batteux, F. Dysregulation of the ADAM17/Notch Signalling Pathways in Endometriosis: From Oxidative Stress to Fibrosis. Mol. Hum. Reprod. 2017, 23, 488–499. [Google Scholar] [CrossRef]
- Agic, A.; Djalali, S.; Diedrich, K.; Hornung, D. Apoptosis in Endometriosis. Gynecol. Obstet. Investig. 2009, 68, 217–223. [Google Scholar] [CrossRef]
- Taniguchi, F.; Kaponis, A.; Izawa, M.; Kiyama, T.; Deura, I.; Ito, M.; Iwabe, T.; Adonakis, G.; Terakawa, N.; Harada, T. Apoptosis and Endometriosis. Front. Biosci. (Elite Ed.) 2011, 3, 648–662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulyantoro, I.; Indrapraja, O.; Widjiati, W.; Noerpramana, N.P. Effect of Metformin on Bcl-2/Bax Expression Ratio and Endometrial Implants: A Mouse Model in Endometriosis Study. J. Biomed. Transl. Res. 2020, 6, 53–58. [Google Scholar] [CrossRef]
- Delbandi, A.-A.; Mahmoudi, M.; Shervin, A.; Heidari, S.; Kolahdouz-Mohammadi, R.; Zarnani, A.-H. Evaluation of Apoptosis and Angiogenesis in Ectopic and Eutopic Stromal Cells of Patients With Endometriosis Compared to Non-Endometriotic Controls. BMC Womens. Health 2020, 20, 3. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Abudula, M.; Fan, X.; Wang, F.; Chen, Y.; Liu, L. Sunitinib Induces Primary Ectopic Endometrial Cell Apoptosis Through Up-Regulation of STAT1 In Vitro. J. Clin. Lab. Anal. 2020, 34, e23482. [Google Scholar] [CrossRef] [PubMed]
- Zhong, R.; Ma, A.; Zhu, J.; Li, G.; Xie, S.; Li, Z.; Gui, Y.; Zhu, Y. Kuntai Capsule Inhibited Endometriosis via Inducing Apoptosis in a Rat Model. Evid. Based Complement. Altern. Med. 2016, 2016, 5649169. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Lee, S.; Kim, M.-K.; Lee, J.; Yun, B.; Park, J.; Seo, S.K.; Cho, S.; Choi, Y. Saponin Extracts Induced Apoptosis of Endometrial Cells from Women with Endometriosis Through Modulation of miR-21-5p. Reprod. Sci. 2017, 25, 193371911771126. [Google Scholar] [CrossRef]
- Meldrum, D.R.; Chang, R.J.; Lu, J.; Vale, W.; Rivier, J.; Judd, H.L. “Medical Oophorectomy” Using a Long-Acting gGnRHrh Agonist-A Possible New Approach to the Treatment of Endometriosis. J. Clin. Endocrinol. Metab. 1982, 54, 1081–1083. [Google Scholar] [CrossRef] [PubMed]
- Han, S.J.; Jung, S.Y.; Wu, S.-P.; Hawkins, S.M.; Park, M.J.; Kyo, S.; Qin, J.; Lydon, J.P.; Tsai, S.Y.; Tsai, M.-J.; et al. Estrogen Receptor β Modulates Apoptosis Complexes and the Inflammasome to Drive the Pathogenesis of Endometriosis. Cell 2015, 163, 960–974. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Kai, C.; Mei, J.; Zhou, W.-J.; Liu, L.; Yao, L.; Meng, Y.; Wang, M.; Ha, S.; Lai, Z.; et al. Estrogen Restricts the Apoptosis of Endometrial Stromal Cells by Promoting TSLP Secretion. Mol. Med. Rep. 2018, 18, 4410–4416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, Y.J.; Lee, J.E.; Park, M.J.; O’Malley, B.W.; Han, S.J. Bufalin Suppresses Endometriosis Progression by Inducing Pyroptosis and Apoptosis. J. Endocrinol. 2018, 237, 255–269. [Google Scholar] [CrossRef] [Green Version]
- Han, S.J.; Hawkins, S.M.; Begum, K.; Jung, S.Y.; Kovanci, E.; Qin, J.; Lydon, J.P.; DeMayo, F.J.; O’Malley, B.W. A New Isoform of Steroid Receptor Coactivator-1 Is Crucial for Pathogenic Progression of Endometriosis. Nat. Med. 2012, 18, 1102–1111. [Google Scholar] [CrossRef] [Green Version]
- Sang, L.; Fang, Q.-J.; Zhao, X.-B. A Research on the Protein Expression of p53, p16, and MDM2 in Endometriosis. Medicine 2019, 98, e14776. [Google Scholar] [CrossRef] [PubMed]
- Tingthanatikul, Y.; Tawarasumida, Y.; Lertvikool, S.; Wongkularb, A.; Sophonsritsuk, A.; Weerakiet, S.; Sroyraya, M.; Chansela, P.; Changklungmoa, N.; Songkoomkrong, S.; et al. DMPA Suppresses Cell Proliferation and Enhances Cell Apoptosis of Eutopic Endometrium in Women with Endometriosis: A Randomized Controlled Study. J. Med. Assoc. Thai. 2016, 99, 751–756. [Google Scholar]
- Song, Y.; Fu, J.; Zhou, M.; Xiao, L.; Feng, X.; Chen, H.; Huang, W. Activated Hippo/Yes-Associated Protein Pathway Promotes Cell Proliferation and Anti-Apoptosis in Endometrial Stromal Cells of Endometriosis. J. Clin. Endocrinol. Metab. 2016, 101, 1552–1561. [Google Scholar] [CrossRef] [PubMed]
- Bilgic, E.; Meydanli, E.; Köse, S.; Aydin, M.; Karaismailoğlu, E.; Akar, I.; Usubutun, A.; Korkusuz, P. Endocannabinoids Modulate Apoptosis in Endometriosis and Adenomyosis. Acta Histochem. 2017, 119, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Xu, L.; Wang, P. MiR-191 Inhibits TNF-α Induced Apoptosis of Ovarian Endometriosis and Endometrioid Carcinoma Cells by Targeting DAPK1. Int. J. Clin. Exp. Pathol. 2015, 8, 4933–4942. [Google Scholar]
- Long, M.; Wan, X.; La, X.; Gong, X.; Cai, X. MiR-29c Is Downregulated in the Ectopic Endometrium and Exerts Its Effects on Endometrial Cell Proliferation, Apoptosis and Invasion by Targeting C-Jun. Int. J. Mol. Med. 2015, 35, 1119–1125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Yuan, Y.; Ma, X.; Xing, F. Ca2+ Channel Subunit a 1D Inhibits Endometriosis Cell Apoptosis and Mediated by Prostaglandin E2. Ginekol. Pol. 2019, 90, 669–674. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Hang, Y.; Zhang, T.; Tan, L.; Li, S.; Jin, Y. USP10 Promotes Proliferation and Migration and Inhibits Apoptosis of Endometrial Stromal Cells in Endometriosis through AC-Tivating the Raf-1/MEK/ERK Pathway. Am. J. Physiol. Physiol. 2018, 315, C863–C872. [Google Scholar] [CrossRef] [PubMed]
- Ata, B.; Yildiz, S.; Turkgeldi, E.; Brocal, V.P.; Dinleyici, E.C.; Moya, A.; Urman, B. The Endobiota Study: Comparison of Vaginal, Cervical and Gut Microbiota Between Women with Stage 3/4 Endometriosis and Healthy Controls. Sci. Rep. 2019, 9, 2204. [Google Scholar] [CrossRef] [Green Version]
- Cregger, M.; Lenz, K.; Leary, E.; Leach, R.; Fazleabas, A.; White, B.; Braundmeier, A. Reproductive Microbiomes: Using the Microbiome as a Novel Diagnostic Tool for Endometriosis. Reprod. Immunol. Open Access 2017, 2. [Google Scholar] [CrossRef]
- Leonardi, M.; Hicks, C.; El-Assaad, F.; El-Omar, E.; Condous, G. Endometriosis and the Microbiome: A Systematic Review. BJOG An. Int. J. Obstet. Gynaecol. 2020, 127, 239–249. [Google Scholar] [CrossRef]
- Chadchan, S.B.; Cheng, M.; Parnell, L.A.; Yin, Y.; Schriefer, A.; Mysorekar, I.U.; Kommagani, R. Antibiotic Therapy with Metronidazole Reduces Endometriosis Disease Progression in Mice: A Potential Role for Gut Microbiota. Hum. Reprod. 2019, 34, 1106–1116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Zhang, Z.; Zhang, H.; Xie, B. Analysis of the Oxidative Stress Status in Nonspecific Vaginitis and Its Role in Vaginal Epithelial Cells Apoptosis. Biomed. Res. Int. 2015, 2015, 795656. [Google Scholar] [CrossRef] [Green Version]
- Wei, W.; Zhang, X.; Tang, H.; Zeng, L.; Wu, R. Microbiota Composition and Distribution Along the Female Reproductive Tract of Women with Endometriosis. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riganelli, L.; Iebba, V.; Piccioni, M.; Illuminati, I.; Bonfiglio, G.; Neroni, B.; Calvo, L.; Gagliardi, A.; Levrero, M.; Merlino, L.; et al. Structural Variations of Vaginal and Endometrial Microbiota: Hints on Female Infertility. Front. Cell. Infect. Microbiol. 2020, 10, 350. [Google Scholar] [CrossRef] [PubMed]
- Agostinis, C.; Mangogna, A.; Bossi, F.; Ricci, G.; Kishore, U.; Bulla, R. Uterine Immunity and Microbiota: A Shifting Paradigm. Front. Immunol. 2019, 10, 2387. [Google Scholar] [CrossRef] [Green Version]
- Akiyama, K.; Nishioka, K.; Khan, K.N.; Tanaka, Y.; Mori, T.; Nakaya, T.; Kitawaki, J. Molecular Detection of Microbial Colonization in Cervical Mucus of Women with and without Endometriosis. Am. J. Reprod. Immunol. 2019, 82, e13147. [Google Scholar] [CrossRef]
- Hantschel, J.; Weis, S.; Schäfer, K.-H.; Menger, M.D.; Kohl, M.; Egert, M.; Laschke, M.W. Effect of Endometriosis on the Fecal Bacteriota Composition of Mice during the Acute Phase of Lesion Formation. PLoS ONE 2019, 14, e0226835. [Google Scholar] [CrossRef] [Green Version]
- Yuan, M.; Li, D.; Zhang, Z.; Sun, H.; An, M.; Wang, G. Endometriosis Induces Gut Microbiota Alterations in Mice. Hum. Reprod. 2018, 33, 607–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, X.; Mu, R.; Xu, M.; Yuan, X.; Jiang, P.; Guo, J.; Cao, Y.; Zhang, N.; Fu, Y. Gut Microbiota Mediate the Protective Effects on Endometritis Induced by Staphylococcus aureus in Mice. Food Funct. 2020, 11, 3695–3705. [Google Scholar] [CrossRef]
- Oppelt, P.; Renner, S.P.; Strick, R.; Valletta, D.; Mehlhorn, G.; Fasching, P.A.; Beckmann, M.W.; Strissel, P.L. Correlation of High-Risk Human Papilloma Viruses but Not of Herpes Viruses or Chlamydia trachomatis with Endometriosis Lesions. Fertil. Steril. 2010, 93, 1778–1786. [Google Scholar] [CrossRef] [PubMed]
- Heidarpour, M.; Derakhshan, M.; Derakhshan-Horeh, M.; Kheirollahi, M.; Dashti, S. Prevalence of High-Risk Human Papillomavirus Infection in Women with Ovarian Endometriosis. J. Obstet. Gynaecol. Res. 2017, 43, 135–139. [Google Scholar] [CrossRef] [Green Version]
- Rocha, R.M.; Souza, R.P.; Gimenes, F.; Consolaro, M.E.L. The High-Risk Human Papillomavirus Continuum Along the Female Reproductive Tract and Its Relationship to Infertility and Endometriosis. Reprod. Biomed. Online 2019, 38, 926–937. [Google Scholar] [CrossRef]
- Vestergaard, A.L.; Knudsen, U.B.; Munk, T.; Rosbach, H.; Bialasiewicz, S.; Sloots, T.P.; Martensen, P.M.; Antonsson, A. Low Prevalence of DNA Viruses in the Human Endometrium and Endometriosis. Arch. Virol. 2010, 155, 695–703. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doroftei, B.; Ilie, O.-D.; Balmus, I.-M.; Ciobica, A.; Maftei, R.; Scripcariu, I.; Simionescu, G.; Grab, D.; Stoian, I.; Ilea, C. Molecular and Clinical Insights on the Complex Interaction between Oxidative Stress, Apoptosis, and Endobiota in the Pathogenesis of Endometriosis. Diagnostics 2021, 11, 1434. https://doi.org/10.3390/diagnostics11081434
Doroftei B, Ilie O-D, Balmus I-M, Ciobica A, Maftei R, Scripcariu I, Simionescu G, Grab D, Stoian I, Ilea C. Molecular and Clinical Insights on the Complex Interaction between Oxidative Stress, Apoptosis, and Endobiota in the Pathogenesis of Endometriosis. Diagnostics. 2021; 11(8):1434. https://doi.org/10.3390/diagnostics11081434
Chicago/Turabian StyleDoroftei, Bogdan, Ovidiu-Dumitru Ilie, Ioana-Miruna Balmus, Alin Ciobica, Radu Maftei, Ioana Scripcariu, Gabriela Simionescu, Delia Grab, Irina Stoian, and Ciprian Ilea. 2021. "Molecular and Clinical Insights on the Complex Interaction between Oxidative Stress, Apoptosis, and Endobiota in the Pathogenesis of Endometriosis" Diagnostics 11, no. 8: 1434. https://doi.org/10.3390/diagnostics11081434
APA StyleDoroftei, B., Ilie, O. -D., Balmus, I. -M., Ciobica, A., Maftei, R., Scripcariu, I., Simionescu, G., Grab, D., Stoian, I., & Ilea, C. (2021). Molecular and Clinical Insights on the Complex Interaction between Oxidative Stress, Apoptosis, and Endobiota in the Pathogenesis of Endometriosis. Diagnostics, 11(8), 1434. https://doi.org/10.3390/diagnostics11081434