Multifocal Electroretinogram Photopic Negative Response: A Reliable Paradigm to Detect Localized Retinal Ganglion Cells’ Impairment in Retrobulbar Optic Neuritis Due to Multiple Sclerosis as a Model of Retinal Neurodegeneration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
- Age between 30 and 55 years;
- Diagnosis of relapsing remitting MS according to validated 2010 McDonald criteria [47];
- MS disease duration estimated as the number of years from onset to the most recent assessment of disability, ranging from 5 and 15 years;
- Treatment with disease-modifying therapies currently approved for preventing MS relapses, including Interferon-β-1a, Interferon-β-1b, Peginterferon beta-1a, Glatiramer acetate, Natalizumab, Dimethyl fumarate, and Teriflunomide [50];
- A single episode of ON treated exclusively with steroid regimen following the Optic Neuritis Treatment Trial recommendations [51];
- At least 12 months (ranging from 13 to 20 months) of time elapsed between the onset of ON and the inclusion in the study. This criterion was chosen since it is known that the retrograde degeneration following ON occurs over a period of 6 months [52]. When a MS patient was affected by ON in both eyes, we studied the eye affected longer that met the inclusion criteria;
- Based on the ophthalmological examination, other inclusion criteria were: mean refractive error (when present) between −3.00 and +3.00 spherical equivalent; intraocular pressure less than 18 mmHg, absence of glaucoma, or other diseases involving cornea, lens (lens opacity classification system, LOCS III, stage < 1), uvea, retina;
- High-contrast BCVA of 0.0 LogMAR of the ETDRS charts;
- Absence of central scotoma or of square-wave jerks, saccadic intrusions, and nystagmus in primary position of gaze that can influence the ability to maintain a stable fixation during the mfPhNR recordings (see below);
- Absence of other systemic diseases (i.e., diabetes, systemic hypertension, rheumatologic disorders) that may influence the retinal function.
2.2. Multifocal Photopic Negative Responses Recordings
2.3. Statistical Analysis
3. Results
3.1. Ring Analysis
3.2. Sector Analysis
3.3. ETDRS Sector Analysis
4. Discussion
4.1. MfPhNR Findings by Applying Ring Analysis
4.2. MfPhNR Findings by Applying Sector Analysis
4.3. MfPhNR Findings by Applying ETDRS Sector Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MS | multiple sclerosis |
ON | optic neuritis |
MS-ON | multiple sclerosis patients with optic neuritis followed by good recovery of best corrected visual acuity |
Ff-ERG | Full-field Electroretinogram |
PhNR | Photopic Negative Response |
Ff-PhNR | Full-field Photopic Negative Response |
PERG | pattern electroretinogram |
MfERG | multifocal electroretinogram |
Mf-PhNR | multifocal Photopic Negative Response |
RGCs | retinal ganglion cells |
BCVA | best corrected visual acuity |
RAD | response amplitude density |
OCT | optical coherence tomography |
IRL | innermost retinal layers |
ORL | outer retinal layers |
SD | one standard deviation of the mean |
N | number of eyes of each group |
A | one-way analysis of variance |
R | ring |
ST | superior-temporal |
SN | superior-nasal |
IN | inferior-nasal |
IT | inferior-temporal |
S | superior |
T | temporal |
I | inferior |
N | nasal |
I-MV | IRL macular volume |
I-MT | IRL macular thickness |
ETDRS | Early Treatment of Diabetic Retinopathy Study |
References
- Robson, A.G.; Nilsson, J.; Li, S.; Jalali, S.; Fulton, A.B.; Tormene, A.P.; Holder, G.E.; Brodie, S.E. ISCEV guide to visual electrodiagnostic procedures. Doc. Ophthalmol. 2018, 136, 1–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCulloch, D.L.; Marmor, M.F.; Brigell, M.G.; Hamilton, R.; Holder, G.E.; Tzekov, R.; Bach, M. ISCEV Standard for full-field clinical electroretinography (2015 update). Doc. Ophthalmol. 2015, 130, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Hood, D.C.; Bach, M.; Brigell, M.; Keating, D.; Kondo, M.; Lyons, J.S.; Marmor, M.F.; McCulloch, D.L.; Palmowski-Wolfe, A.M. International Society for Clinical Electrophysiology of Vision. ISCEV standard for clinical multifocal electroretinography (mfERG) (2011 edition). Doc. Ophthalmol. 2012, 124, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Maffei, L.; Fiorentini, A. Electroretinographic responses to alternating gratings before and after section of the optic nerve. Science 1981, 211, 953–955. [Google Scholar] [CrossRef]
- Hollander, H.; Bisti, S.; Maffei, L.; Hebel, R. Electroretinographic responses and retrograde changes of retinal morphology after intracranial optic nerve section. Exp. Brian. Res. 1984, 55, 483–494. [Google Scholar]
- Jeon, S.J.; Park, H.L.; Jung, K.I.; Park, C.K. Relationship between pattern electroretinogram and optic disc morphology in glaucoma. PLoS ONE 2019, 14, e0220992. [Google Scholar] [CrossRef] [Green Version]
- Jung, K.I.; Jeon, S.; Shin, D.Y.; Lee, J.; Park, C.K. Pattern Electroretinograms in Preperimetric and Perimetric Glaucoma. Am. J. Ophthalmol. 2020, 215, 118–126. [Google Scholar] [CrossRef]
- Viswanathan, S.; Frishman, L.J.; Robson, J.G. The uniform field and pattern ERG in macaques with experimental glaucoma: Removal of spiking activity. Investig. Ophthalmol. Vis. Sci. 2000, 41, 2797–2810. [Google Scholar]
- Porciatti, V. Electrophysiological assessment of retinal ganglion cell function. Exp. Eye Res. 2015, 141, 164–170. [Google Scholar] [CrossRef] [Green Version]
- Porciatti, V.; Alba, D.E.; Feuer, W.J.; Davis, J.; Guy, J.; Lam, B.L. The Relationship between Stage of Leber′s Hereditary Optic Neuropathy and Pattern Electroretinogram Latency. Transl. Vis. Sci. Technol. 2022, 11, 31. [Google Scholar] [CrossRef]
- Boyton, R.M.; Riggs, L.A. The effect of stimulus area and intensity upon the human retinal response. J. Exp. Psychol. 1951, 42, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Parisi, V.; Falsini, B. Electrophysiological evaluation of the macular cone system: Focal electroretinography and visual evoked potentials after photostress. Semin. Ophthalmol. 1998, 13, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Wirth, A.; Zetterstrom, B. Effect of area and intensity on the size and shape of the electroretinogram; exclusion of stray light effects. Br. J. Ophthalmol. 1954, 38, 257–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varano, M.; Parisi, V.; Tedeschi, M.; Sciamanna, M.; Gallinaro, G.; Capaldo, N.; Catalano, S.; Pascarella, A. Macular function after PDT in myopic maculopathy: Psychophysical and electrophysiological evaluation. Investig. Ophthalmol. Vis. Sci. 2005, 46, 1453–1462. [Google Scholar] [CrossRef]
- Yamamoto, S.; Gouras, P.; Lopez, R. The focal cone electroretinogram. Vision Res. 1995, 35, 1641–1649. [Google Scholar] [CrossRef] [Green Version]
- Parisi, V.; Coppè, A.M.; Gallinaro, G.; Stirpe, M. Assessment of macular function by focal electroretinogram and pattern electroretinogram before and after epimacular membrane surgery. Retina 2007, 27, 312–320. [Google Scholar] [CrossRef] [Green Version]
- Poloschek, C.M.; Sutter, E.E. The fine structure of multifocal ERG topographies. J. Vis. 2002, 2, 577–587. [Google Scholar] [CrossRef] [Green Version]
- Bearse, M.A.; Sutter, E.E. Imaging localized retinal dysfunction with the multifocal electroretinogram. J. Opt. Soc. Am. A. Opt. Image. Sci. Vis. 1996, 13, 634–640. [Google Scholar] [CrossRef]
- Parisi, V.; Ziccardi, L.; Stifano, G.; Montrone, L.; Gallinaro, G.; Falsini, B. Impact of regional retinal responses on cortical visually evoked responses: Multifocal ERGs and VEPs in the retinitis pigmentosa model. Clin. Neurophysiol. 2010, 121, 380–385. [Google Scholar] [CrossRef]
- Parisi, V.; Ziccardi, L.; Costanzo, E.; Tedeschi, M.; Barbano, L.; Manca, D.; Di Renzo, A.; Giorno, P.; Varano, M.; Parravano, M. Macular Functional and Morphological Changes in Intermediate Age-Related Maculopathy. Investig. Ophthalmol. Vis. Sci. 2020, 61, 11. [Google Scholar] [CrossRef]
- Parisi, V.; Ziccardi, L.; Centofanti, M.; Tanga, L.; Gallinaro, G.; Falsini, B.; Bucci, M.G. Macular function in eyes with open-angle glaucoma evaluated by multifocal electroretinogram. Investig. Ophthalmol. Vis. Sci. 2012, 53, 6973–6980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziccardi, L.; Parisi, V.; Picconi, F.; Di Renzo, A.; Lombardo, M.; Frontoni, S.; Parravano, M. Early and localized retinal dysfunction in patients with type 1 diabetes mellitus studied by multifocal electroretinogram. Acta Diabetol. 2018, 55, 1191–1200. [Google Scholar] [CrossRef] [PubMed]
- Cascavilla, M.L.; Parisi, V.; Triolo, G.; Ziccardi, L.; Borrelli, E.; Di Renzo, A.; Balducci, N.; Lamperti, C.; Bianchi Marzoli, S.; Darvizeh, F.; et al. Retinal dysfunction characterizes subtypes of dominant optic atrophy. Acta Ophthalmol. 2018, 96, e156–e163. [Google Scholar] [CrossRef] [PubMed]
- Ziccardi, L.; Cioffi, E.; Barbano, L.; Gioiosa, V.; Falsini, B.; Casali, C.; Parisi, V. Macular Morpho-Functional and Visual Pathways Functional Assessment in Patients with Spinocerebellar Type 1 Ataxia with or without Neurological Signs. J. Clin. Med. 2021, 10, 5271. [Google Scholar] [CrossRef]
- Barbano, L.; Ziccardi, L.; Landi, D.; Nicoletti, C.G.; Mataluni, G.; Falsini, B.; Centonze, D.; Marfia, G.A.; Quaranta, L.; Parisi, V. Assessment of Macular Function by Multifocal Electroretinogram in Patients with Multiple Sclerosis Treated with Fingolimod. Adv. Ther. 2021, 38, 3986–3996. [Google Scholar] [CrossRef]
- Ziccardi, L.; Barbano, L.; Boffa, L.; Albanese, M.; Nicoletti, C.G.; Landi, D.; Grzybowski, A.; Falsini, B.; Marfia, G.A.; Centonze, D.; et al. Functional Assessment of Outer and Middle Macular Layers in Multiple Sclerosis. J. Clin. Med. 2020, 9, 3766. [Google Scholar] [CrossRef]
- Frishman, L.; Sustar, M.; Kremers, J.; McAnany, J.J.; Sarossy, M.; Tzekov, R.; Viswanathan, S. ISCEV extended protocol for the photopic negative response (PhNR) of the full-field electroretinogram. Doc. Ophthalmol. 2018, 136, 207–211. [Google Scholar] [CrossRef] [Green Version]
- Viswanathan, S.; Frishman, L.J.; Robson, J.G.; Harwerth, R.S.; Smith, E.L., 3rd. The photopic negative response of the macaque electroretinogram: Reduction by experimental glaucoma. Investig. Ophthalmol. Vis. Sci. 1999, 40, 1124–1136. [Google Scholar]
- Kinoshita, J.; Takada, S.; Iwata, N.; Tani, Y. Comparison of photopic negative response (PhNR) between focal macular and full-field electroretinograms in monkeys. Doc. Ophthalmol. 2016, 132, 177–187. [Google Scholar] [CrossRef]
- Kirkiewicz, M.; Lubiński, W.; Penkala, K. Photopic negative response of full-field electroretinography in patients with different stages of glaucomatous optic neuropathy. Doc. Ophthalmol. 2016, 132, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Karanjia, R.; Berezovsky, A.; Sacai, P.Y.; Cavascan, N.N.; Liu, H.Y.; Nazarali, S.; Moraes-Filho, M.N.; Anderson, K.; Tran, J.S.; Watanabe, S.E.; et al. The Photopic Negative Response: An Objective Measure of Retinal Ganglion Cell Function in Patients with Leber′s Hereditary Optic Neuropathy. Investig. Ophthalmol. Vis. Sci. 2017, 58, BIO300–BIO306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abed, E.; Piccardi, M.; Rizzo, D.; Chiaretti, A.; Ambrosio, L.; Petroni, S.; Parrilla, R.; Dickmann, A.; Riccardi, R.; Falsini, B. Functional Loss of the Inner Retina in Childhood Optic Gliomas Detected by Photopic Negative Response. Investig. Ophthalmol. Vis. Sci. 2015, 56, 2469–2474. [Google Scholar] [CrossRef] [PubMed]
- Moss, H.E.; Park, J.C.; McAnany, J.J. The Photopic Negative Response in Idiopathic Intracranial Hypertension. Investig. Ophthalmol. Vis. Sci. 2015, 56, 3709–3714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machida, S. Clinical applications of the photopic negative response to optic nerve and retinal diseases. J. Ophthalmol. 2012, 2012, 397178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilsey, L.J.; Fortune, B. Electroretinography in glaucoma diagnosis. Curr. Opin. Ophthalmol. 2016, 27, 118–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, X.; Patel, N.B.; Rajagopalan, L.P.; Harwerth, R.S.; Frishman, L.J. Relation between macular retinal ganglion cell/inner plexiform layer thickness and multifocal electroretinogram measures in experimental glaucoma. Investig. Ophthalmol. Vis. Sci. 2014, 55, 4512–4524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esposito Veneruso, P.; Ziccardi, L.; Magli, G.; Parisi, V.; Falsini, B.; Magli, A. Early light deprivation effects on human cone-driven retinal function. Acta Ophthalmol. 2017, 95, 133–139. [Google Scholar] [CrossRef]
- Esposito Veneruso, P.; Ziccardi, L.; Magli, G.; Parisi, V.; Falsini, B.; Magli, A. Developmental visual deprivation: Long term effects on human cone driven retinal function. Graefes. Arch. Clin. Exp. Ophthalmol. 2017, 255, 2481–2486. [Google Scholar] [CrossRef]
- Kaneko, M.; Machida, S.; Hoshi, Y.; Kurosaka, D. Alterations of photopic negative response of multifocal electroretinogram in patients with glaucoma. Curr. Eye Res. 2015, 40, 77–86. [Google Scholar] [CrossRef]
- Al-Nosairy, K.O.; Thieme, H.; Hoffmann, M.B. Diagnostic performance of multifocal photopic negative response, pattern electroretinogram and optical coherence tomography in glaucoma. Exp. Eye Res. 2020, 200, 108242. [Google Scholar] [CrossRef]
- Ziccardi, L.; Barbano, L.; Boffa, L.; Albanese, M.; Grzybowski, A.; Centonze, D.; Parisi, V. Morphological Outer Retina Findings in Multiple Sclerosis Patients with or Without Optic Neuritis. Front. Neurol. 2020, 11, 858. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Mena, D.; Almarcegui, C.; Dolz, I.; Herrero, R.; Bambo, M.P.; Fernandez, J.; Pablo, L.E.; Garcia-Martin, E. Electropysiologic evaluation of the visual pathway in patients with multiple sclerosis. J. Clin. Neurophysiol. 2013, 30, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Martin, E.; Pueyo, V.; Ara, J.R.; Almarcegui, C.; Martin, J.; Pablo, L.; Dolz, I.; Sancho, E.; Fernandez, F.J. Effect of optic neuritis on progressive axonal damage in multiple sclerosis patients. Mult. Scler. 2011, 17, 830–837. [Google Scholar] [CrossRef] [PubMed]
- Fraser, C.L.; Holder, G.E. Electroretinogram findings in unilateral optic neuritis. Doc. Ophthalmol. 2011, 123, 173–178. [Google Scholar] [CrossRef]
- Papakostopoulos, D.; Fotiou, F.; Hart, J.C.; Banerji, N.K. The electroretinogram in multiple sclerosis and demyelinating optic neuritis. Electroencephalogr. Clin. Neurophysiol. 1989, 74, 1–10. [Google Scholar] [CrossRef]
- Adhi, M.; Aziz, S.; Muhammad, K.; Adhi, M.I. Macular thickness by age and gender in healthy eyes using spectral domain optical coherence tomography. PLoS ONE 2012, 7, e37638. [Google Scholar] [CrossRef] [Green Version]
- Polman, C.H.; Reingold, S.C.; Banwell, B.; Clanet, M.; Cohen, J.A.; Filippi, M.; Fujihara, K.; Havrdova, E.; Hutchinson, M.; Kappos, L.; et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann. Neurol. 2011, 69, 292–302. [Google Scholar] [CrossRef] [Green Version]
- Kurtzke, J.F. Rating neurologic impairment in multiple sclerosis: An Expanded Disability Status Scale (EDSS). Neurology 1983, 33, 1444–1452. [Google Scholar] [CrossRef] [Green Version]
- Neurostatus.net. Available online: http://www.neurostatus.net/index.php?file=start (accessed on 6 July 2020).
- Williams, U.E.; Oparah, S.K.; Philip-Ephraim, E.E. Disease Modifying Therapy in Multiple Sclerosis. Int. Sch. Res. Not. 2014, 2014, 307064. [Google Scholar] [CrossRef] [Green Version]
- Optic Neuritis Study Group. Multiple sclerosis risk after optic neuritis: Final optic neuritis treatment trial follow-up. Arch. Neurol. 2008, 65, 727–732. [Google Scholar]
- Huang-Link, Y.M.; Al-Hawasi, A.; Lindehammar, H. Acute optic neuritis: Retinal ganglion cell loss precedes retinal nerve fiber thinning. Neurol. Sci. 2015, 36, 617–620. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Liu, X.; Wu, Z.; Guo, X.; Xu, H.; Dustin, L.; Sadda, S. Macular and retinal nerve fiber layer thickness measurements in normal eyes with the Stratus OCT, the Cirrus HD-OCT, and the Topcon 3D OCT-1000. J. Glaucoma. 2011, 20, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Curcio, C.A.; Allen, K.A. Topography of ganglion cells in human retina. J. Comp. Neurol. 1990, 300, 5–25. [Google Scholar] [CrossRef] [PubMed]
- Wassle, H.; Grunert, U.; Rohrenbeck, J.; Boycott, B.B. Retinal ganglion cell density and cortical magnification factor in the primate. Vision. Res. 1990, 30, 1897–1911. [Google Scholar] [CrossRef]
- Morny, E.K.A.; Patel, K.; Votruba, M.; Binns, A.M.; Margrain, T.H. The Relationship between the Photopic Negative Response and Retinal Ganglion Cell Topography. Investig. Ophthalmol. Vis. Sci. 2019, 60, 1879–1887. [Google Scholar] [CrossRef]
- Drasdo, N. Receptive field densities of the ganglion cells of the human retina. Vision. Res. 1989, 29, 985–988. [Google Scholar] [CrossRef]
- Wang, J.; Gao, X.; Huang, W.; Wang, W.; Chen, S.; Du, S.; Li, X.; Zhang, X. Swept-source optical coherence tomography imaging of macular retinal and choroidal structures in healthy eyes. BMC Ophthalmol. 2015, 15, 122. [Google Scholar] [CrossRef] [Green Version]
Ring 1 0–5 Degrees | Ring 2 5–10 Degrees | Ring 3 10–15 Degrees | Ring 4 15–20 Degrees | Ring 5 20–25 Degrees | ||
---|---|---|---|---|---|---|
RAD a | RAD a | RAD a | RAD a | RAD a | ||
Controls | Mean | 32.252 | 14.928 | 9.448 | 5.840 | 4.372 |
N b = 25 | SD c | 5.487 | 3.734 | 2.698 | 1.941 | 1.120 |
MS-ON | Mean | 21.515 | 9.63 | 7.02 | 4.31 | 3.19 |
N b = 20 | SD c | 5.402 | 3.587 | 2.233 | 1.694 | 0.865 |
A d vs. C | f (1, 43) | 43.13 | 23.16 | 10.45 | 7.72 | 15.06 |
p | 0.000 | 0.000 | 0.002 | 0.008 | 0.000 |
Ring 2 5–10 Degrees | Ring 3 10–15 Degrees | Ring 4 15–20 Degrees | Ring 5 20–25 Degrees | |||||
---|---|---|---|---|---|---|---|---|
Controls | A a vs | A a vs | A a vs | A a vs | ||||
f(1, 48) | p | f(1, 48) | p | f(1, 49) | p | f(1, 48) | p | |
Ring 1 | 170.33 | 0.000 | 346.52 | 0.000 | 514.83 | 0.000 | 619.62 | 0.000 |
Ring 2 | --------- | 35.38 | 0.000 | 116.59 | 0.000 | 183.31 | 0.000 | |
Ring 3 | --------- | --------- | 18.70 | 0.000 | 51.16 | 0.000 | ||
Ring 4 | --------- | --------- | --------- | 10.83 | 0.002 | |||
MS-ON | A a vs | A a vs | A a vs | A a vs | ||||
f(1, 38) | p | f(1, 38) | p | f(1, 38) | p | f(1, 38) | p | |
Ring 1 | 67.19 | 0.000 | 122.98 | 0.000 | 184.71 | 0.000 | 224.40 | 0.000 |
Ring 2 | --------- | 7.63 | 0.009 | 5.97 | 0.000 | 60.92 | 0.000 | |
Ring 3 | --------- | --------- | 29.46 | 0.000 | 75.48 | 0.000 | ||
Ring 4 | --------- | --------- | --------- | 10.73 | 0.002 |
Ring 1 0–5 Degrees | Superior-Temporal 5–20 Degrees | Superior-Nasal 5–20 Degrees | Inferior-Nasal 5–20 Degrees | Inferior-Temporal 5–20 Degrees | ||
---|---|---|---|---|---|---|
RAD a | RAD a | RAD a | RAD a | RAD a | ||
Controls | Mean | 32.252 | 7.208 | 6.868 | 6.888 | 7.036 |
N b = 25 | SD c | 5.487 | 1.598 | 1.211 | 1.270 | 0.962 |
MS-ON | Mean | 21.515 | 5.448 | 5.481 | 5.586 | 5.676 |
N b b = 20 | SD c | 5.402 | 1.190 | 1.458 | 1.128 | 1.342 |
A d vs. C | f (1, 43) | 43.13 | 16.78 | 12.16 | 12.88 | 15.66 |
p | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 |
Superior-Nasal 5–20 Degrees | Inferior-Nasal 5–20 Degrees | Inferior-Temporal 5–20 Degrees | ||||
---|---|---|---|---|---|---|
Controls | A a vs | A a vs | A a vs | |||
f(1, 48) | p | f(1, 48) | p | f(1, 48) | p | |
Superior-Temporal | 0.72 | 0.401 | 0.21 | 0.647 | 0.61 | 0.437 |
Superior-Nasal | --------- | 0.29 | 0.590 | 0.00 | 0.955 | |
Inferior-Nasal | --------- | --------- | 0.22 | 0.644 | ||
MS-ON | A a vs | A a vs | A a vs | |||
f(1, 38) | p | f(1, 38) | p | f(1, 38) | p | |
Superior-Temporal | 0.01 | 0.938 | 0.32 | 0.573 | 0.14 | 0.709 |
Superior-Nasal | --------- | 1.34 | 0.709 | 0.06 | 0.800 | |
Inferior-Nasal | --------- | --------- | 0.05 | 0.820 |
Ring 1 0–5 Degrees | Temporal 5–10 Degrees | Superior 5–10 Degrees | Nasal 5–10 Degrees | Inferior 5–10 Degrees | ||
RAD a | RAD a | RAD a | RAD a | RAD a | ||
Controls | Mean | 32.252 | 19.972 | 18.144 | 19.468 | 16.328 |
N b = 25 | SD c | 5.487 | 3.568 | 3.470 | 5.565 | 4.038 |
MS-ON | Mean | 21.515 | 14.195 | 14.805 | 14.962 | 12.752 |
N b = 20 | SD c | 5.402 | 5.546 | 4.888 | 5.365 | 4.614 |
A d vs. C | f (1, 43) | 43.13 | 17.92 | 7.17 | 7.85 | 7.68 |
p | 0.000 | 0.000 | 0.010 | 0.008 | 0.008 | |
Ring 1: 0–5 Degrees | Temporal 10–20 Degrees | Superior 10–20 Degrees | Nasal 10–20 Degrees | Inferior 10–20 Degrees | ||
RAD a | RAD a | RAD a | RAD a | RAD a | ||
Controls | Mean | 32.252 | 8.156 | 6.644 | 7.096 | 6.528 |
N b = 25 | SD c | 5.487 | 1.467 | 1.104 | 1.064 | 1.161 |
MS-ON | Mean | 21.515 | 6.357 | 5.690 | 5.657 | 5.119 |
N b = 20 | SD c | 5.402 | 1.260 | 1.099 | 1.099 | 1.171 |
A d vs. C | f (1, 43) | 43.13 | 18.9 | 8.33 | 19.74 | 16.24 |
p | 0.000 | 0.000 | 0.010 | 0.008 | 0.008 |
Temporal 5–10 Degrees | Inferior 5–10 Degrees | Nasal 5–10 Degrees | ||||||
Controls | A a vs | A a vs | A a vs | |||||
f(1, 48) | p | f(1, 48) | p | f(1, 48) | p | |||
Superior | 3.37 | 0.072 | 2.91 | 0.095 | 1.02 | 0.318 | ||
Temporal | --------- | 11.43 | 0.001 | 3.37 | 0.072 | |||
Inferior | --------- | --------- | 5.21 | 0.027 | ||||
MS-ON | A a vs | A a vs | A a vs | |||||
f(1, 38) | p | f(1, 38) | p | f(1, 38) | p | |||
Superior | 0.14 | 0.714 | 1.87 | 0.180 | 0.01 | 0.923 | ||
Temporal | --------- | 0.80 | 0.377 | 0.20 | 0.659 | |||
Inferior | --------- | --------- | 1.95 | 0.171 | ||||
Temporal 10–20 Degrees | Inferior 10–20 Degrees | Nasal 10–20 Degrees | ||||||
Controls | A a vs | A a vs | A a vs | A a vs. 5–10 degrees | ||||
f(1, 48) | p | f(1,48) | p | f(1, 48) | p | f(1, 48) | p | |
Superior | 16.95 | 0.000 | 0.13 | 0.719 | 3.25 | 0.078 | 249.35 | 0.000 |
Temporal | --------- | 18.93 | 0.000 | 8.55 | 0.005 | 234.53 | 0.000 | |
Inferior | --------- | --------- | 3.25 | 0.078 | 136.01 | 0.000 | ||
Nasal | --------- | --------- | --------- | 119.21 | 0.000 | |||
MS-ON | A a vs | A a vs | A a vs | A a vs. 5–10 degrees | ||||
f(1, 38) | p | f(1, 38) | p | f(1, 38) | p | f(1, 38) | p | |
Superior | 3.18 | 0.082 | 2.53 | 0.120 | 0.01 | 0.925 | 66.20 | 0.000 |
Temporal | --------- | 10.36 | 0.003 | 3.51 | 0.069 | 37.99 | 0.000 | |
Inferior | --------- | --------- | 2.24 | 0.142 | 51.42 | 0.000 | ||
Nasal | --------- | --------- | --------- | 57.74 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbano, L.; Ziccardi, L.; Antonelli, G.; Nicoletti, C.G.; Landi, D.; Mataluni, G.; Falsini, B.; Marfia, G.A.; Centonze, D.; Parisi, V. Multifocal Electroretinogram Photopic Negative Response: A Reliable Paradigm to Detect Localized Retinal Ganglion Cells’ Impairment in Retrobulbar Optic Neuritis Due to Multiple Sclerosis as a Model of Retinal Neurodegeneration. Diagnostics 2022, 12, 1156. https://doi.org/10.3390/diagnostics12051156
Barbano L, Ziccardi L, Antonelli G, Nicoletti CG, Landi D, Mataluni G, Falsini B, Marfia GA, Centonze D, Parisi V. Multifocal Electroretinogram Photopic Negative Response: A Reliable Paradigm to Detect Localized Retinal Ganglion Cells’ Impairment in Retrobulbar Optic Neuritis Due to Multiple Sclerosis as a Model of Retinal Neurodegeneration. Diagnostics. 2022; 12(5):1156. https://doi.org/10.3390/diagnostics12051156
Chicago/Turabian StyleBarbano, Lucilla, Lucia Ziccardi, Giulio Antonelli, Carolina Gabri Nicoletti, Doriana Landi, Giorgia Mataluni, Benedetto Falsini, Girolama Alessandra Marfia, Diego Centonze, and Vincenzo Parisi. 2022. "Multifocal Electroretinogram Photopic Negative Response: A Reliable Paradigm to Detect Localized Retinal Ganglion Cells’ Impairment in Retrobulbar Optic Neuritis Due to Multiple Sclerosis as a Model of Retinal Neurodegeneration" Diagnostics 12, no. 5: 1156. https://doi.org/10.3390/diagnostics12051156
APA StyleBarbano, L., Ziccardi, L., Antonelli, G., Nicoletti, C. G., Landi, D., Mataluni, G., Falsini, B., Marfia, G. A., Centonze, D., & Parisi, V. (2022). Multifocal Electroretinogram Photopic Negative Response: A Reliable Paradigm to Detect Localized Retinal Ganglion Cells’ Impairment in Retrobulbar Optic Neuritis Due to Multiple Sclerosis as a Model of Retinal Neurodegeneration. Diagnostics, 12(5), 1156. https://doi.org/10.3390/diagnostics12051156