Criteria for the Classification of the Interradicular Septum Shape in Maxillary Molars with Clinical Importance for Prosthetic-Driven Immediate Implant Placement
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Ethical Committee
2.2. The Sample Characteristics
2.3. The CBCT Device and Software Characteristics
2.4. The Morphometric Characteristics of the Maxillary Molars Interradicular Septum
- IRS width at the A level (2 mm from the interradicular furcation);
- IRS width at the B level (midpoint of IRS height);
- IRS width at the C level (2 mm from the IRS base);
- IRS width at the D level (IRS base);
- IRS height—h (the distance between the interradicular furcation and IRS base);
- The distance between IRS base and sinus floor—H;
- Interradicular furcation angle.
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Svärdström, G.; Wennström, J.L. Furcation topography of the maxillary and mandibular first molars. J. Clin. Periodontol. 1988, 15, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Ghoncheh, Z.; Zade, B.M.; Kharazifard, M.J. Root Morphology of the Maxillary First and Second Molars in an Iranian Population Using Cone Beam Computed Tomography. J. Dent. 2017, 14, 115–122. [Google Scholar]
- Almog, D.M.; Sanchez, R. Correlation between planned prosthetic and residual bone trajectories in dental implants. J. Prosthet. Dent. 1999, 81, 562–567. [Google Scholar] [CrossRef]
- Agostinelli, C.; Agostinelli, A.; Berardini, M.; Trisi, P. Radiological Evaluation of the Dimension Lower Molar Alveoli. Implant Dent. 2018, 27, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela, S.; Olivares, J.M.; Weiss, N.; Benadof, D. Immediate Implant Placement by Interradicular Bone Drilling before Molar Extraction: Clinical Case Report with One-Year Follow-Up. Case Rep. Dent. 2018, 2018, 6412826. [Google Scholar] [CrossRef] [Green Version]
- Fugazzotton, P.A.; Hains, F.O. Immediate implant placement in posterior areas, Part 2: The maxillary arch. Compend. Contin. Educ. Dent. 2013, 34, 518–528. [Google Scholar]
- Sayed, A.J.; Shaikh, S.S.; Shaikh, S.Y.; Hussain, M.A. Inter radicular bone dimensions in primary stability of immediate molar implants—A cone beam computed tomography retrospective analysis. Saudi Dent. J. 2021, 33, 1091–1097. [Google Scholar] [CrossRef]
- Agostineli, C.; Agostineli, A.; Berardini, M.; Trisi, P. Anatomical and Radiologic Evaluation of the Dimensions of Upper Molar Alveoli. Implant Dent. 2018, 27, 171–176. [Google Scholar] [CrossRef]
- Pavlovic, Z.R.; Petrovic, M. Morphological Characteristics of Maxillary Molars Interradicular Septum and Clinical Implications -What Do We Know So Far? Serb. J. Exp. Clin. Res. 2022. [Google Scholar] [CrossRef]
- Ravinder, R.; Dubey, P.; Raj, S.; Mishra, P.; Rajput, A. Immediate implant placement in posterior maxilla: A prospective clinical study. J. Osseointegr. 2021, 13, 185–190. [Google Scholar]
- Venkatesh, E.; Elluru, S.V. Cone beam computed tomography: Basics and applications in dentistry. J. Istanb. Univ. Fac. Dent. 2017, 51, S102–S121. [Google Scholar] [CrossRef] [PubMed]
- Arnaut, A.; Milanovic, P.; Vasiljevic, M.; Jovicic, N.; Vojinovic, R.; Selakovic, D.; Rosic, G. The Shape of Nasopalatine Canal as a Determining Factor in Therapeutic Approach for Orthodontic, Teeth Movement-A CBCT Study. Diagnostics 2021, 11, 2345. [Google Scholar] [CrossRef] [PubMed]
- Kamburoğlu, K. Use of dentomaxillofacial cone beam computed tomography in dentistry. World J. Radiol. 2015, 7, 128–130. [Google Scholar] [CrossRef] [PubMed]
- Nagarajan, A.; Perumalsamy, R.; Thyagarajan, R.; Namasivayam, A. Diagnostic imaging for Dental Implant Therapy. J. Clin. Imaging Sci. 2014, 4, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kivovics, M.; Szabó, B.T.; Németh, O.; Iványi, D.; Trimmel, B.; Szmirnova, I.; Orhan, K.; Mijiritsky, E.; Szabó, G.; Dobó-Nagy, C. Comparison between Micro-Computed Tomography and Cone-Beam Computed Tomography in the Assessment of Bone Quality and a Long-Term Volumetric Study of the Augmented Sinus Grafted with an Albumin Impregnated Allograft. J. Clin. Med. 2020, 9, 303. [Google Scholar] [CrossRef] [Green Version]
- Vasiljevic, M.; Milanovic, P.; Jovicic, N.; Vasovic, M.; Milovanovic, D.; Vojinovic, R.; Selakovic, D.; Rosic, G. Morphological and Morphometric Characteristics of Anterior Maxilla Accessory Canals and Relationship with Nasopalatine Canal Type-A CBCT Study. Diagnostics 2021, 11, 1510. [Google Scholar] [CrossRef]
- Rezaei Esfahrood, Z.; Nourelahi, M. Immediate Implantation in Maxillary Molar Sites: A Literature Review. Middle East J. Rehabil. Health Stud. 2015, 2, e30616. [Google Scholar] [CrossRef] [Green Version]
- Smith, R.B.; Tarnow, D.P.; Sarnachiaro, G. Immediate Placement of Dental Implants in Molar Extraction Sockets: An 11-Year Retrospective Analysis. Compend. Contin. Educ. Dent. 2019, 40, 166–170. [Google Scholar]
- Amato, F.; Polara, G.; Prestileo, C. Anatomical Risk Factors Associated with Immediate Extraction Placement in the Posterior Maxilla: A Human Retrospective Cone-Beam Study. J. Dent. Oral Implants 2016, 1, 30–40. [Google Scholar] [CrossRef] [Green Version]
- Pavlovic, Z.R.; Milanovic, P.; Vasiljevic, M.; Jovicic, N.; Arnaut, A.; Colic, D.; Petrovic, M.; Stevanovic, M.; Selakovic, D.; Rosic, G. Assessment of Maxillary Molars Interradicular Septum Morphological Characteristics as Criteria for Ideal Immediate Implant Placement-The Advantages of Cone Beam Computed Tomography Analysis. Diagnostics 2022, 12, 1010. [Google Scholar] [CrossRef]
- Nunes, L.S.; Bornstein, M.M.; Sendi, P.; Buser, D. Anatomical characteristics and dimensions of edentulous sites in the posterior maxillae of patients referred for implant therapy. Int. J. Periodontics Restor. Dent. 2013, 33, 337–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moraschini, V.; Uzeda, M.G.; Sartoretto, S.C.; Calasans-Maia, M.D. Maxillary sinus floor elevation with simultaneous implant placement without grafting materials: A systematic review and meta-analysis. Int. J. Oral Maxillofac. Surg. 2017, 46, 636–647. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Liu, R.; Wang, M.; Yang, J. Immediate implant placement combined with maxillary sinus floor elevation utilizing the transalveolar approach and nonsubmerged healing for failing teeth in the maxillary molar area: A randomized controlled trial clinical study with one-year follow-up. Clin. Implant Dent. Relat. Res. 2019, 21, 462–472. [Google Scholar] [CrossRef] [PubMed]
- Hayacibara, R.M.; Gonçalves, C.S.; Garcez-Filho, J.; Magro-Filho, O.; Esper, H.; Hayacibara, M.F. The success rate of immediate implant placement of mandibular molars: A clinical and radiographic retrospective evaluation between 2 and 8 years. Clin. Oral Implants Res. 2013, 24, 806–811. [Google Scholar] [CrossRef]
- Bleyan, S.; Gaspar, J.; Huwais, S.; Schwimer, C.; Mazor, Z.; Mendes, J.J.; Neiva, R. Molar Septum Expansion with Osseodensification for Immediate Implant Placement, Retrospective Multicenter Study with Up-to-5-Year Follow-Up, Introducing a New Molar Socket Classification. J. Funct. Biomater. 2021, 12, 66. [Google Scholar] [CrossRef]
- Smith, R.B.; Tarnow, D.P. Classification of molar extraction sites for immediate dental implant placement: Technical note. Int. J. Oral Maxillofac. Implants 2013, 28, 911–916. [Google Scholar] [CrossRef] [Green Version]
- Nelsen, R.B. Heron’s formula via proofs without words. Coll. Math. J. 2001, 32, 290. [Google Scholar] [CrossRef]
- Alperin, R.C. Heron’s area formula. Coll. Math. J. 1987, 18, 137–138. [Google Scholar] [CrossRef]
- Buchholz, R.H.; Rathbun, R.L. An infinite set of Heron triangles with two rational medians. Am. Math. Mon. 1997, 104, 107–115. [Google Scholar] [CrossRef]
- Demirkol, N.; Demirkol, M. The Diameter and Length Properties of Single Posterior Dental Implants: A Retrospective Study. Cumhur. Dent. J. 2019, 22, 276–282. [Google Scholar] [CrossRef] [Green Version]
- Thirunavakarasu, R.; Arun, M.; Abhinav, R.P.; Ganesh, B.S. Commonly Used Implant Dimensions in the Posterior Maxilla—A Retrospective Study. J. Long Term Eff. Med. Implants 2022, 32, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Padhye, N.M.; Shirsekar, V.U.; Bhatavadekar, N.B. Three-Dimensional Alveolar Bone Assessment of Mandibular First Molars with Implications for Immediate Implant Placement. Int. J. Periodontics Restor. Dent. 2020, 40, e163–e167. [Google Scholar] [CrossRef] [PubMed]
- Milanovic, P.; Selakovic, D.; Vasiljevic, M.; Jovicic, N.U.; Milovanović, D.; Vasovic, M.; Rosic, G. Morphological Characteristics of the Nasopalatine Canal and the Relationship with the Anterior Maxillary Bone-A Cone Beam Computed Tomography Study. Diagnostics 2021, 11, 915. [Google Scholar] [CrossRef] [PubMed]
- Bornstein, M.M.; Balsiger, R.; Sendi, P.; Von Arx, T. Morphology of the nasopalatine canal and dental implant surgery: A radiographic analysis of 100 consecutive patients using limited cone-beam computed tomography. Clin. Oral Implants Res. 2011, 22, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Milanovic, P.; Vasiljevic, M. Gender Differences in the Morphological Characteristics of the Nasopalatine Canal and the Anterior Maxillary Bone—CBCT Study. Serbian J. Exp. Clin. Res. 2021. [Google Scholar] [CrossRef]
- Mardinger, O.; Namani-Sadan, N.; Chaushu, G.; Schwartz-Arad, D. Morphologic Changes of the Nasopalatine Canal Related to Dental Implantation: A Radiologic Study in Different Degrees of Absorbed Maxillae. J. Periodontol. 2008, 79, 1659–1662. [Google Scholar] [CrossRef]
- Von Arx, T.; Lozanoff, S.; Sendi, P.; Bornstein, M.M. Assessment of bone channels other than the nasopalatine canal in the anterior maxilla using limited cone beam computed tomography. Surg. Radiol. Anat. 2013, 35, 783–790. [Google Scholar] [CrossRef] [Green Version]
- Regnstrand, T.; Ezelden, M.; Shujaat, S.; Alqahtami, K.A.; Benchimol, D.; Jacobs, R. Three-dimensional quantification of the relationship between the upper first molar. Clin. Exp. Dent. Res. 2022, 1–7. [Google Scholar] [CrossRef]
- Altunsoy, M.; Ok, E.; Nur, B.G.; Aglarci, O.S.; Gungor, E.; Colak, M. Root canal morphology analysis of maxillary permanent first and second molars in a southeastern Turkish population using cone-beam computed tomography. J. Dent. Sci. 2015, 10, 401–407. [Google Scholar] [CrossRef] [Green Version]
- Dunham, W. Archimedes’ Determination of Circular Area. Ch. 4 in Journey through Genius: The Great Theorems of Mathematics; Wiley: New York, NY, USA, 1990; pp. 84–112. [Google Scholar]
- Shokry, M.M.; Taalab, M.R. Immediate implant placement through inter-radicular bone drilling before versus after roots extraction in mandibular molar area (a randomized controlled clinical study). Egypt. Dent. J. 2022, 68, 1377–1388. [Google Scholar] [CrossRef]
- Demircan, S. Prosthetically driven immediate implant placement at lower molar area; an anatomical study. Eur. Oral Res. 2020, 54, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Wagenberg, B.; Froum, S.J. A retrospective study of 1925 consecutively places immediate implants from 1988 to 2004. Int. J. Oral Maxillofac. Implants 2006, 21, 71–80. [Google Scholar] [PubMed]
- Fugazzotto, P.A. Implant placement at the time of mandibular molar extraction: Description of technique and preliminary results of 341 cases. J. Periodontol. 2008, 79, 737–747. [Google Scholar] [CrossRef] [PubMed]
- Sanz, M.; Cecchinato, D.; Ferrus, J.; Pjetursson, E.B.; Lang, N.P.; Lindhe, J. A prospective, randomized-controlled clinical trial to evaluate bone preservation using implants with different geometry placed into extraction sockets in the maxilla. Clin. Oral Implants Res. 2010, 21, 13–21. [Google Scholar] [CrossRef] [PubMed]
The Interradicular Septum Shape | D Level | Angle | ||
---|---|---|---|---|
M1 | M2 | M1 | M2 | |
Arrow | ≥4 mm | ≥4 mm | ≤60° | ≤70° |
Boat | ≥4 mm | ≥4 mm | ≥90° | ≥70° |
Drop | ≤4 mm | ≤4 mm | ≥70° | ≤70° |
Palatal convergence | ≥4 mm | ≥4 mm | ≤70° | ≤70° |
Buccal convergence | ≥4 mm | ≥4 mm | ≥60° | ≤70° |
IRS Shape | Arrow | Boat | Drop | Palatal Convergence | Buccal Convergence |
---|---|---|---|---|---|
M1 (%) | 46.9 | 13.1 | 11.9 | 14.4 | 13.8 |
M2 (%) | 43 | 12.4 | 11.4 | 18.7 | 14.5 |
The Interradicular Septum Shape | Level A | Level B | Level C | Level D | 10 − (h + H) |
---|---|---|---|---|---|
Arrow | 3 mm | 4 mm | 5 mm | 6.5 mm | 3 mm |
Boat | 3 mm | 3.4 mm | 3.8 mm | 4.7 mm | 4.5 mm |
Drop | 2 mm | 4 mm | 4.3 mm | 4.2 mm | 2.5 mm |
Palatal convergence | 3.7 mm | 5 mm | 6 mm | 7.5 mm | 0.5 mm |
Buccal convergence | 3.5 mm | 4.7 mm | 5.3 mm | 5.7 mm | 0 mm |
The Interradicular Septum Shape | Level A | Level B | Level C | Level D | 10 − (h + H) |
---|---|---|---|---|---|
Arrow | 2.5 mm | 3.5 mm | 4.4 mm | 5.5 mm | 2 mm |
Boat | 3 mm | 3.5 mm | 4 mm | 5.4 mm | 2.5 mm |
Drop | 2.3 mm | 3.3 mm | 3.3 mm | 3.8 mm | 1.2 mm |
Palatal convergence | 2.7 mm | 3.7 mm | 4.6 mm | 5.2 mm | 1.8 mm |
Buccal convergence | 2.3 mm | 3.3 mm | 4 mm | 4.4 mm | 0.5 mm |
The Interradicular Septum Shape | Arrow | Boat | Drop | Palatal Convergence | Buccal Convergence |
---|---|---|---|---|---|
Surface area at level A | 5.7 | 4.7 | 3.7 | 6 | 4.8 |
Surface area at level B | 8 | 5.1 | 7.4 | 9.7 | 7.3 |
Surface area at level C | 9.3 | 5.6 | 7.8 | 13 | 10 |
Surface area at level D | 12.4 | 8.5 | 6.4 | 13.2 | 9.7 |
The Interradicular Septum Shape | Arrow | Boat | Drop | Palatal Convergence | Buccal Convergence |
---|---|---|---|---|---|
Surface area at level A | 3 | 3.7 | 2.2 | 3.3 | 2.1 |
Surface area at level B | 4.6 | 5.2 | 3.3 | 5.5 | 3.1 |
Surface area at level C | 5.8 | 5.4 | 3.2 | 6.4 | 3.5 |
Surface area at level D | 7.2 | 6.7 | 3.1 | 6.7 | 5.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milenkovic, J.; Vasiljevic, M.; Jovicic, N.; Milovanovic, D.; Selakovic, D.; Rosic, G. Criteria for the Classification of the Interradicular Septum Shape in Maxillary Molars with Clinical Importance for Prosthetic-Driven Immediate Implant Placement. Diagnostics 2022, 12, 1432. https://doi.org/10.3390/diagnostics12061432
Milenkovic J, Vasiljevic M, Jovicic N, Milovanovic D, Selakovic D, Rosic G. Criteria for the Classification of the Interradicular Septum Shape in Maxillary Molars with Clinical Importance for Prosthetic-Driven Immediate Implant Placement. Diagnostics. 2022; 12(6):1432. https://doi.org/10.3390/diagnostics12061432
Chicago/Turabian StyleMilenkovic, Jovana, Milica Vasiljevic, Nemanja Jovicic, Dragan Milovanovic, Dragica Selakovic, and Gvozden Rosic. 2022. "Criteria for the Classification of the Interradicular Septum Shape in Maxillary Molars with Clinical Importance for Prosthetic-Driven Immediate Implant Placement" Diagnostics 12, no. 6: 1432. https://doi.org/10.3390/diagnostics12061432
APA StyleMilenkovic, J., Vasiljevic, M., Jovicic, N., Milovanovic, D., Selakovic, D., & Rosic, G. (2022). Criteria for the Classification of the Interradicular Septum Shape in Maxillary Molars with Clinical Importance for Prosthetic-Driven Immediate Implant Placement. Diagnostics, 12(6), 1432. https://doi.org/10.3390/diagnostics12061432