Central Nervous System Involvement in Primary Sjögren’s Syndrome: Narrative Review of MRI Findings
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Search Strategy and Eligibility Criteria
2.3. Data Extraction
3. Conventional MRI Studies
3.1. White Matter Hyperintensities (WMHs)
3.2. Atrophy
4. Volumetric and Morphometric Studies
5. DTI Studies
6. Resting-State fMRI Studies
7. Discussion
7.1. Etiopathogenesis of WMHs
7.2. MRI Findings and Cognitive Functions
7.3. Involvement of Brain Regions
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mavragani, C.P.; Moutsopoulos, H.M. The geoepidemiology of Sjögren’s syndrome. Autoimmun. Rev. 2010, 9, A305–A310. [Google Scholar] [CrossRef] [PubMed]
- Sjögren, H. Zur kenntis der keratoconjunctivitis sicca (keratitis filiformis bei hypofunktion der tranendrusen). Acta Ophthalmol. 1933, 11 (Suppl. 2), 1–151. [Google Scholar]
- Perzyńska-Mazan, J.; Maślińska, M.; Gasik, R. Neurological manifestations of primary Sjögren’s syndrome. Reumatologia 2018, 56, 99–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fauchais, A.L.; Magy, L.; Vidal, E. Central and peripheral neurological complications of primary Sjögren’s syndrome. Presse Med. 2012, 41, e485–e493. [Google Scholar] [CrossRef]
- Manthorpe, R.; Manthorpe, T.; Sjöberg, S. Magnetic resonance imaging of the brain in patients with primary Sjögren’s syndrome. Scand. J. Rheumatol. 1992, 21, 148–149. [Google Scholar] [CrossRef]
- Coates, T.; Slavotinek, J.P.; Rischmueller, M.; Schultz, D.; Anderson, C.; Dellamelva, M.; Sage, M.R.; Gordon, T.P. Cerebral white matter lesions in primary Sjogren’s syndrome: A controlled study. J. Rheumatol. 1999, 26, 1301–1305. [Google Scholar]
- Harboe, E.; Beyer, M.K.; Greve, O.J.; Gøransson, L.G.; Tjensvoll, A.B.; Kvaløy, J.T.; Omdal, R. Cerebral white matter hyperintensities are not increased in patients with primary Sjögren’s syndrome. Eur. J. Neurol. 2009, 16, 576–581. [Google Scholar] [CrossRef]
- Le Guern, V.; Belin, C.; Henegar, C.; Moroni, C.; Maillet, D.; Lacau, C.; Dumas, J.L.; Vigneron, N.; Guillevin, L. Cognitive function and 99mTc-ECD brain SPECT are significantly correlated in patients with primary Sjögren syndrome: A case-control study. Ann. Rheum. Dis. 2010, 69, 132–137. [Google Scholar] [CrossRef]
- Tzarouchi, L.C.; Tsifetaki, N.; Konitsiotis, S.; Zikou, A.; Astrakas, L.; Drosos, A.; Argyropoulou, M.I. CNS involvement in primary Sjögren syndrome: Assessment of gray and white matter changes with MRI and voxel-based morphometry. AJR. Am. J. Roentgenol. 2012, 197, 1207–1212. [Google Scholar] [CrossRef]
- Andrianopoulou, A.; Zikou, A.K.; Astrakas, L.G.; Gerolymatou, N.; Xydis, V.; Voulgari, P.; Kiortsis, D.N.; Argyropoulou, M.I. Functional connectivity and microstructural changes of the brain in primary Sjögren syndrome: The relationship with depression. Acta Radiol. 2020, 61, 1684–1694. [Google Scholar] [CrossRef]
- Govoni, M.; Bajocchi, G.; Rizzo, N.; Tola, M.R.; Caniatti, L.; Tugnoli, V.; Colamussi, P.; Trotta, F. Neurological involvement in primary Sjögren’s syndrome: Clinical and instrumental evaluation in a cohort of Italian patients. Clin. Rheumatol. 1999, 18, 299–303. [Google Scholar] [CrossRef] [PubMed]
- Hammonds, S.K.; Lauvsnes, M.B.; Dalen, I.; Beyer, M.K.; Kurz, K.D.; Greve, O.J.; Norheim, K.B.; Omdal, R. No structural cerebral MRI changes related to fatigue in patients with primary Sjögren’s syndrome. Rheumatol. Adv. Pract. 2017, 1, rkx007. [Google Scholar] [CrossRef] [PubMed]
- Morreale, M.; Francia, A.; Marchione, P.; Manuppella, F.; Giacomini, P. Intracranial hemodynamic changes in primary Sjögren Syndrome: A transcranial doppler case–control study. Neurol. Sci. 2015, 36, 1589–1595. [Google Scholar] [CrossRef] [PubMed]
- Akasbi, M.; Berenguer, J.; Saiz, A.; Brito-Zerón, P.; Pérez-De-Lis, M.; Bové, A.; Diaz-Lagares, C.; Retamozo, S.; Blanco, Y.; Perez-Alvarez, R.; et al. White matter abnormalities in primary Sjögren syndrome. QJM Int. J. Med. 2012, 105, 433–443. [Google Scholar] [CrossRef] [Green Version]
- Šarac, H.; Markeljević, J.; Erdeljić, V.; Josipović-Jelić, Z.; Hajnšek, S.; Klapan, T.; Batinica, M.; Baršić, I.; Sertić, J.; Dintinjana, R.D. Signal hyperintensities on brain magnetic resonance imaging in patients with primary Sjögren syndrome and frequent episodic tension-type headache: Relation to platelet serotonin level and disease activity. J. Rheumatol. 2013, 40, 1360–1366. [Google Scholar] [CrossRef]
- Estiasari, R.; Matsushita, T.; Masaki, K.; Akiyama, T.; Yonekawa, T.; Isobe, N.; Kira, J.I. Comparison of clinical, immunological and neuroimaging features between anti-aquaporin-4 antibody-positive and antibody-negative Sjogren’s syndrome patients with central nervous system manifestations. Mult. Scler. 2012, 18, 807–816. [Google Scholar] [CrossRef]
- Delalande, S.; de Seze, J.; Fauchais, A.L.; Hachulla, E.; Stojkovic, T.; Ferriby, D.; Dubucquoi, S.; Pruvo, J.P.; Vermersch, P.; Hatron, P.Y. Neurologic manifestations in primary Sjögren syndrome: A study of 82 patients. Medicine 2004, 83, 280–291. [Google Scholar] [CrossRef]
- Mori, K.; Iijima, M.; Koike, H.; Hattori, N.; Tanaka, F.; Watanabe, H.; Katsuno, M.; Fujita, A.; Aiba, I.; Ogata, A.; et al. The wide spectrum of clinical manifestations in Sjögren’s syndrome-associated neuropathy. Brain 2005, 128, 2518–2534. [Google Scholar] [CrossRef] [Green Version]
- Butryn, M.; Neumann, J.; Rolfes, L.; Bartels, C.; Wattjes, M.P.; Mahmoudi, N.; Seeliger, T.; Konen, F.F.; Thiele, T.; Witte, T.; et al. Clinical, radiological, and laboratory features of spinal cord involvement in primary Sjögren’s syndrome. J. Clin. Med. 2020, 9, 1482. [Google Scholar] [CrossRef]
- Yoshikawa, K.; Hatate, J.; Toratani, N.; Sugiura, S.; Shimizu, Y.; Takahash, T.; Ito, T.; Fukunaga, R. Prevalence of Sjögren’s syndrome with dementia in a memory clinic. J. Neurol. Sci. 2012, 322, 217–221. [Google Scholar] [CrossRef]
- Massara, A.; Bonazza, S.; Castellino, G.; Caniatti, L.; Trotta, F.; Borrelli, M.; Feggi, L.; Govoni, M. Central nervous system involvement in Sjögren’s syndrome: Unusual, but not unremarkable—Clinical, serological characteristics and outcomes in a large cohort of Italian patients. Rheumatology 2010, 49, 1540–1549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Segal, B.M.; Mueller, B.A.; Zhu, X.; Prosser, R.; Pogatchnik, B.; Holker, E.; Carpenter, A.F.; Lim, K.O. Disruption of brain white matter microstructure in primary Sjögren’s syndrome: Evidence from diffusion tensor imaging. Rheumatology 2010, 49, 1530–1539. [Google Scholar] [CrossRef] [PubMed]
- Alexander, E.L.; Malinow, K.; Lejewski, J.E.; Jerdan, M.S.; Provost, T.T.; Alexander, G.E. Primary Sjögren’s syndrome with central nervous system disease mimicking multiple sclerosis. Ann. Intern. Med. 1986, 104, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Pierot, L.; Sauve, C.; Leger, J.M.; Martin, N.; Koeger, A.C.; Wechsler, B.; Chiras, J. Asymptomatic cerebral involvement in Sjögren’s Syndrome: MRI findings of 15 cases. Neuroradiology 1993, 35, 378–380. [Google Scholar] [CrossRef] [PubMed]
- Lauvsnes, M.B.; Beyer, M.K.; Appenzeller, S.; Greve, O.J.; Harboe, E.; Gøransson, L.G.; Tjensvoll, A.B.; Omdal, R. Loss of cerebral white matter in primary Sjögren’s syndrome: A controlled volumetric magnetic resonance imaging study. Eur. J. Neurol. 2014, 21, 1324–1329. [Google Scholar] [CrossRef] [PubMed]
- Kao, C.H.; Ho, Y.J.; Lan, J.L.; Changlai, S.P.; Chieng, P.U. Regional cerebral blood flow and glucose metabolism in Sjögren’s syndrome. J. Nucl. Med. 1998, 39, 1354–1356. [Google Scholar]
- Mataró, M.; Escudero, D.; Ariza, M.; Sánchez-Ojanguren, J.; Latorre, P.; Junqué, C.; Mercader, J.M. Magnetic resonance abnormalities associated with cognitive dysfunction in primary Sjögren syndrome. J. Neurol. 2003, 250, 1070–1076. [Google Scholar] [CrossRef]
- Oishi, K.; Mielke, M.M.; Albert, M.; Lyketsos, C.G.; Mori, S. DTI Analyses and clinical applications in Alzheimer’s disease. J. Alzheimer’s Dis. 2011, 26, 287–296. [Google Scholar] [CrossRef]
- Tzarouchi, L.C.; Zikou, A.K.; Tsifetaki, N.; Astrakas, L.G.; Konitsiotis, S.; Voulgari, P.; Drosos, A.; Argyropoulou, M.I. White matter water diffusion changes in primary Sjögren syndrome. Am. J. Neuroradiol. 2014, 35, 680–685. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.-D.; Li, J.-L.; Zhou, J.-M.; Lu, Z.-N.; Zhao, L.-R.; Shen, W.; Xu, J.-H.; Cheng, Y. Altered white matter structural connectivity in primary Sjögren’s syndrome: A link-based analysis. Neuroradiology 2022, 64, 2011–2019. [Google Scholar] [CrossRef]
- Lee, M.H.; Smyser, C.D.; Shimony, J.S. Resting-state FMRI: A review of methods and clinical applications. AJNR Am. J. Neuroradiol. 2013, 34, 1866–1872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Z.; Lai, J.; Zhang, H.; Ng, C.H.; Zhang, P.; Xu, D.; Hu, S. Regional homogeneity and functional connectivity analysis of resting-state magnetic resonance in patients with bipolar II disorder. Medicine 2019, 98, e17962. [Google Scholar] [CrossRef] [PubMed]
- Xing, W.; Shi, W.; Leng, Y.; Sun, X.; Guan, T.; Liao, W.; Wang, X. Resting-state FMRI in primary Sjögren syndrome. Acta Radiol. 2018, 59, 1091–1096. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.D.; Zhao, L.R.; Zhou, J.M.; Su, Y.Y.; Ke, J.; Cheng, Y.; Li, J.L.; Shen, W. Altered hippocampal functional connectivity in primary Sjögren syndrome: A resting-state FMRI study. Lupus 2020, 29, 446–454. [Google Scholar] [CrossRef]
- Zhang, X.D.; Ke, J.; Li, J.L.; Su, Y.Y.; Zhou, J.M.; Zhao, L.R.; Huang, L.X.; Cheng, Y.; Shen, W. Different cerebral functional segregation in Sjogren’s syndrome with or without systemic lupus erythematosus revealed by amplitude of low-frequency fluctuation. Acta Radiol. 2021, 63, 1214–1222. [Google Scholar] [CrossRef]
- Alexander, E.L.; Beall, S.S.; Gordon, B.; Selnes, O.A.; Yannakakis, G.D.; Patronas, N.; Provost, T.T.; McFarland, H.F. Magnetic resonance imaging of cerebral lesions in patients with the Sjögren syndrome. Ann. Intern. Med. 1988, 108, 815–823. [Google Scholar] [CrossRef]
- Dziadkowiak, E.; Sebastian, A.; Wieczorek, M.; Kusińska, E.; Waliszewska-Prosół, M.; Wiland, P.; Ejma, M. Parameters of somatosensory evoked potentials in patients with primary Sjögren’s syndrome: Preliminary results. J. Immunol. Res. 2018, 2018, 8174340. [Google Scholar] [CrossRef] [Green Version]
- Waliszewska-Prosół, M.; Sebastian, A.; Wiland, P.; Budrewicz, S.; Dziadkowiak, E.; Ejma, M. Brainstem auditory evoked potentials in patients with primary Sjögren’s syndrome without central nervous system involvement. Clin. Rheumatol. 2021, 40, 991–997. [Google Scholar] [CrossRef]
- Gerraty, R.P.; McKelvie, P.A.; Byrne, E. Aseptic meningoencephalitis in primary Sjögren’s syndrome. Acta Neurol. Scand. 1993, 88, 309–311. [Google Scholar] [CrossRef]
- Belin, C.; Moroni, C.; Caillat-Vigneron, N.; Debray, M.; Baudin, M.; Dumas, J.L.; Moretti, J.L.; Delaporte, P.; Guillevin, L. Central nervous system involvement in Sjögren’s syndrome: Evidence from neuropsychological testing and HMPAO-SPECT. Ann. Med. Interne 1999, 150, 598–604. [Google Scholar]
- Huang, W.S.; Chiu, P.Y.; Kao, A.; Tsai, C.H.; Lee, C.C. Detecting abnormal regional cerebral blood flow in patients with primary Sjögren’s syndrome by technetium-99m ethyl cysteinate dimer single photon emission computed tomography of the brain—A preliminary report. Rheumatol. Int. 2003, 23, 174–177. [Google Scholar] [CrossRef] [PubMed]
- Escudero, D.; Latorre, P.; Codina, M.; Coll-Canti, J.; Coll, J. Central Nervous System Disease in Sjögren’s Syndrome. Ann. Med. Interne (Paris) 1995, 146, 239–242. [Google Scholar] [PubMed]
- Tajima, Y.; Mito, Y.; Owada, Y.; Tsukishima, E.; Moriwaka, F.; Tashiro, K. Neurological Manifestations of Primary Sjögren’s Syndrome in Japanese Patients. Intern. Med. 1997, 36, 690–693. [Google Scholar] [CrossRef] [Green Version]
- Al-Watban, J.; Patay, Z.; Bohlega, S.; Larsson, S. Magnetic resonance imaging of central nervous system involvement in primary Sjögren’s syndrome. Riv. Neuroradiol. 1998, 11, 51–54. [Google Scholar] [CrossRef]
- Lafitte, C.; Amoura, Z.; Cacoub, P.; Pradat-Diehl, P.; Picq, C.; Salachas, F.; Léger, J.M.; Piette, J.C.; Delattre, J.Y. Neurological Complications of Primary Sjögren’s Syndrome. J. Neurol. 2001, 248, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Alhomoud, I.A.; Bohlega, S.A.; Alkawi, M.Z.; Alsemari, A.M.; Omer, S.M.; Alsenani, F.M. Primary Sjogren’s Syndrome with Central Nervous System Involvement. Saudi Med. J. 2009, 30, 1067–1072. [Google Scholar] [PubMed]
- Gono, T.; Kawaguchi, Y.; Katsumata, Y.; Takagi, K.; Tochimoto, A.; Baba, S.; Okamoto, Y.; Ota, Y.; Yamanaka, H. Clinical Manifestations of Neurological Involvement in Primary Sjögren’s Syndrome. Clin. Rheumatol. 2011, 30, 485–490. [Google Scholar] [CrossRef]
- Kurtuluş, F.; Çay, H.F.; Parlak, E.; Yaman, A. Montreal Cognitive Assessment in Primary Sjogren’s Syndrome. Neurosci. J. 2019, 24, 199–206. [Google Scholar] [CrossRef]
- Anaya, J.M.; Villa, L.A.; Restrepo, L.; Molina, J.F.; Mantilla, R.D.; Vargas, S. Central nervous system compromise in primary Sjögren’s syndrome. J. Clin. Rheumatol. 2002, 8, 189–196. [Google Scholar] [CrossRef]
- Kapadia, M.; Sakic, B. Autoimmune and inflammatory mechanisms of CNS damage. Prog. Neurobiol. 2011, 95, 301–333. [Google Scholar] [CrossRef]
- Ömerhoca, S.; Yazici Akkaş, S.; Kale Içen, N. Multiple Sclerosis: Diagnosis and differential diagnosis. Arch. Neuropsychiatry 2018, 55, S1. [Google Scholar] [CrossRef] [PubMed]
- Cikes, N.; Bosnic, D.; Sentic, M. Non-MS Autoimmune demyelination. Clin. Neurol. Neurosurg. 2008, 110, 905–912. [Google Scholar] [CrossRef] [PubMed]
- Arnsten, A.F.T. Stress signalling pathways that impair prefrontal cortex structure and function. Nat. Rev. Neurosci. 2009, 10, 410–422. [Google Scholar] [CrossRef]
- Johnson, A.C.; McNabb, A.R.; Rossiter, R.J. Chemistry of Wallerian degeneration; A review of recent studies. Arch. Neurol. Psychiatry 1950, 64, 105–121. [Google Scholar] [CrossRef]
- Alexander, E.L. Neurologic disease in Sjögren’s syndrome: Mononuclear inflammatory vasculopathy affecting central/peripheral nervous system and muscle. a clinical review and update of immunopathogenesis. Rheum. Dis. Clin. N. Am. 1993, 19, 869–908. [Google Scholar] [CrossRef]
- Yaguchi, H.; Houzen, H.; Kikuchi, K.; Hata, D.; Ura, S.; Takeda, T.; Yabe, I.; Sasaki, H. An autopsy case of Sjögren’s syndrome with acute encephalomyelopathy. Intern. Med. 2008, 47, 1675–1680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caselli, R.J.; Boeve, B.F.; Scheithauer, B.W.; O’Duffy, J.D.; Hunder, G.G. Nonvasculitic Autoimmune inflammatory meningoencephalitis (NAIM): A reversible form of encephalopathy. Neurology 1999, 53, 1579–1581. [Google Scholar] [CrossRef] [PubMed]
- Josephs, K.A.; Rubino, F.A.; Dickson, D.W. Nonvasculitic autoimmune inflammatory meningoencephalitis. Neuropathology 2004, 24, 149–152. [Google Scholar] [CrossRef]
- Malinow, K.L.; Molina, R.; Gordon, B.; Selnes, O.A.; Provost, T.T.; Alexander, E.L. Neuropsychiatric dysfunction in primary Sjögren’s syndrome. Ann. Intern. Med. 1985, 103, 344–350. [Google Scholar] [CrossRef]
- Mauch, E.; Völk, C.; Kratzsch, G.; Krapf, H.; Kornhuber, H.H.; Laufen, H.; Hummel, K.J. Neurological and neuropsychiatric dysfunction in primary Sjögren’s syndrome. Acta Neurol. Scand. 1994, 89, 31–35. [Google Scholar] [CrossRef]
- Morreale, M.; Marchione, P.; Giacomini, P.; Pontecorvo, S.; Marianetti, M.; Vento, C.; Tinelli, E.; Francia, A. Neurological involvement in primary Sjögren syndrome: A focus on central nervous system. PLoS ONE 2014, 9, e84605. [Google Scholar] [CrossRef] [PubMed]
- Koçer, B.; Tezcan, M.E.; Batur, H.Z.; Haznedaroğlu, Ş.; Göker, B.; İrkeç, C.; Çetinkaya, R. Cognition, depression, fatigue, and quality of life in primary Sjögren’s syndrome: Correlations. Brain Behav. 2016, 6, e00586. [Google Scholar] [CrossRef] [PubMed]
- Harboe, E.; Tjensvoll, A.B.; Vefring, H.K.; Gøransson, L.G.; Kvaløy, J.T.; Omdal, R. Fatigue in Primary Sjögren’s Syndrome - A Link to Sickness Behaviour in Animals? Brain Behav. Immun. 2009, 23, 1104–1108. [Google Scholar] [CrossRef] [PubMed]
- Blanc, F.; Longato, N.; Jung, B.; Kleitz, C.; di Bitonto, L.; Cretin, B.; Collongues, N.; Sordet, C.; Fleury, M.; Poindron, V.; et al. Cognitive Dysfunction and Dementia in Primary Sjögren’s Syndrome. ISRN Neurol. 2013, 2013, 501327. [Google Scholar] [CrossRef] [PubMed]
- Goulabchand, R.; Castille, E.; Navucet, S.; Etchecopar-Etchart, D.; Matos, A.; Maria, A.; Gutierrez, L.A.; le Quellec, A.; de Champfleur, N.M.; Gabelle, A.; et al. The interplay between cognition, depression, anxiety, and sleep in primary Sjogren’s Syndrome patients. Sci. Rep. 2022, 12, 13176. [Google Scholar] [CrossRef] [PubMed]
- Liliang, P.C.; Liang, C.L.; Lu, K.; Yang, S.N.; Hsieh, M.T.; Tai, Y.C.; Wang, K.W. Population-based study suggests an increased risk of Alzheimer’s disease in Sjögren’s syndrome. Clin. Rheumatol. 2018, 37, 935–941. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.H.; Perng, W.T.; Chiou, J.Y.; Wang, Y.H.; Huang, J.Y.; Wei, J.C.C. Risk of dementia among patients with Sjogren’s syndrome: A nationwide population-based cohort study in Taiwan. Semin. Arthritis Rheum. 2019, 48, 895–899. [Google Scholar] [CrossRef]
- Manzo, C.; Martinez-Suarez, E.; Kechida, M.; Isetta, M.; Serra-Mestres, J. Cognitive function in primary Sjögren’s syndrome: A systematic review. Brain Sci. 2019, 9, 85. [Google Scholar] [CrossRef] [Green Version]
- Mekinian, A.; Tennenbaum, J.; Lahuna, C.; Dellal, A.; Belfeki, N.; Capron, J.; Januel, E.; Stankoff, B.; Alamowitch, S.; Fain, O. Primary Sjögren’s syndrome: Central and peripheral nervous system involvements. Clin. Exp. Rheumatol. 2020, 38 (Suppl. 126), S103–S109. [Google Scholar]
- Noma, N.; Watanabe, Y.; Shimada, A.; Usuda, S.; Iida, T.; Shimada, A.; Tanaka, Y.; Oono, Y.; Sasaki, K. Effects of cognitive behavioral therapy on orofacial pain conditions. J. Oral Sci. 2020, 63, 4–7. [Google Scholar] [CrossRef]
- Shahmohammadi, S.; Doosti, R.; Shahmohammadi, A.; Mohammadianinejad, S.E.; Sahraian, M.A.; Azimi, A.R.; Harirchian, M.H.; Asgari, N.; Naser Moghadasi, A. Autoimmune diseases associated with neuromyelitis optica spectrum disorders: A literature review. Mult. Scler. Relat. Disord. 2019, 27, 350–363. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Shan, X.; Wei, S.; Liu, F.; Li, W.; Lei, Y.; Guo, W.; Luo, S. Abnormal spontaneous brain activities of limbic-cortical circuits in patients with dry eye disease. Front. Hum. Neurosci. 2020, 14, 574758. [Google Scholar] [CrossRef] [PubMed]
- Tetsuka, S.; Suzuki, T.; Ogawa, T.; Hashimoto, R.; Katoa, H. Anti-Ro/SSA antibodies may be responsible for cerebellar degeneration in Sjogren’s syndrome. J. Clin. Med. Res. 2021, 13, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Collison, K.; Rees, J. Asymmetric cerebellar ataxia and limbic encephalitis as a presenting feature of primary Sjögren’s syndrome. J. Neurol. 2007, 254, 1609–1611. [Google Scholar] [CrossRef]
- Milic, V.; Ostojic, P. Cerebellar ataxia in a patient with primary Sjögren’s syndrome after treatment with chloroquine. Rheumatol. Int. 2008, 28, 1295–1296. [Google Scholar] [CrossRef]
- Kim, M.J.; Lee, M.C.; Lee, J.H.; Chung, S.J. Cerebellar degeneration associated with Sjögren’s syndrome. J. Clin. Neurol. 2012, 8, 155–159. [Google Scholar] [CrossRef] [Green Version]
- Farhat, E.; Zouari, M.; Abdelaziz, I.B.; Drissi, C.; Beyrouti, R.; Hammouda, M.B.; Hentati, F. Progressive cerebellar degeneration revealing primary Sjögren syndrome: A case report. Cerebellum Ataxias 2016, 3, 18. [Google Scholar] [CrossRef] [Green Version]
- Maciel, R.; Camargos, S.; Cardoso, F. Subacute cerebellar degeneration as the first manifestation of Sjögren’s syndrome. Mov. Disord. Clin. Pract. 2017, 4, 637–638. [Google Scholar] [CrossRef]
- lo Voi, E.; Basile, G.C.; Bramanti, A.; Paladina, G.; Militi, A.; Bruschetta, D.; Alito, A.; Cavallaro, F.; Bertino, S.; Milardi, D. Cerebellar atrophy associated with primary Sjögren’s syndrome: Diagnosis, therapy, and virtual reality rehabilitation: A case report. Innov. Clin. Neurosci. 2021, 18, 11–17. [Google Scholar]
n | Mean Age (years) | Disease Duration (years) | Sex Ratio (f/m) | CNS Involvement (Clinical) n (%) | CNS Involvement Type | Presence of WMHs | Number/Range of WMHs | Size of WMHs (mm) | Typical Location of WMHs | WMHs Related to CNS Manifestation (+/−) | WMHs Higher in pSS Than Controls (+/−) | WMHs in Spinal Cord (+/−) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Alexander et al. 1988 [36] 1 | 38 | 52; 53 * | na | 35/3 (19/3; 16/0 *) | 16 (42.1%) | N;P;NP/C | 13/38 (34.2%) (2/22 (9.1%); 12/16 (68.8%)*) | na | 5–10 | periventricular (9), subcortical (7) | + | na | na |
Manthorpe et al. 1992 [5] | 12 | 52 (med) | 9 (med) | 10/2 | 2 (16.67%) | P | 4/12 (33.33%) | 1–4 | 2–5 | na | na | na | na |
Pierot et al. 1993 [24] | 15 | 60 | na | 12/3 | 1 (6.7%) | N | 9/15 (60.00%) | 10 or more (5), between 2 and 10 (2), less than 2 (2) | na | supratentorial white matter (9), basal ganglia (2) | - | na | na |
Escudero et al. 1995 [42] | 48 | 58.2 | 4.75 | 41/7 | 35 (72.9%) | N; NP/C | 25 (51.3%) | na | 5–10 (85–90%); >10 (10–15%) | white matter of centrum semiovale | + | + | na |
Tajima et al. 1997 [43] | 21 | 51.7 | na | 21/0 | 21(100%) | N | 1/21 (4.8%) | na | na | periventricular | + | na | na |
Al-Watban et al. 1998 [44] | 6 | na | na | 6/0 | 6 (100%) | N | 5/6 (83.3%) | na | na | white matter, spinal cord | + | na | + |
Govoni et al. 1999 [11] 1 | 87 | 57.6; 58.8 * | 5.5; 4.4 * | 4/83 (3/66; 1/17 *) | 7 (8%) | N;P;NP/C | 6/7 (85.7%) | na | >10 | cortico-medullar junction, periventricular areas | - | na | na |
Coates et al. 1999 [6] 2 | 30 | 63 | na | 25/5 | 12 (40.0%); 6 (20.0%), 4 (13.3%), 1 (3.3%) | N;P | 24/30 (80.0%) | 0–36 | <10 | subcortical areas, deep white matter | na | + | na |
Belin et al. 1999 [40] | 14 SS;7 pSS | 50.35 | na | 14/0 | 14/14 (100%) | NP/C | 7/14 | na | na | supra- and/or subtentorial | - | na | na |
Lafitte et al. 2001 [45] | 11 | 61.9 | na | 4/7 | 11 (100%) | N; NP/C | 4/11 (36.4%) | na | na | periventricular areas | - | na | - |
Mataro et al. 2003 [27] | 15 | 55.7 | 4.46 | 15/0 | na | N;P;NP/C | 8/15 (53.3%) | na | na | periventricular areas (4); lobar areas (8); internal capsule (3); infratentorial (1) | + | - | na |
Delalande et al. 2004 [17] | 58 | na | na | na | na | na | 41/58 (70.0%) | na | na | na | + | na | +(49%) |
Alhomoud et al. 2009 [46] | 12 | 40.0 | na | 12/0 | 12/12 (100%) | N; NP/C | 7/12 (58.3%) | na | na | subcortical areas, brainstem | na | na | + |
Le Guern et al. 2010 [8] | 10 | 40.2 | 7.19 | 10/0 | 8/10 (80.0%) | NP/C | 8/10 (80.0%) | 3–10 (2) | >2 (all) | frontoparietal subcortical regions | + | - | na |
Massara et al. 2010 [21] | 23 | 55.8 | 7 | 22/1 | 23/23 (100%) | N; NP/C | 23/23 (100%) | na | na | periventricular and subcortical areas | - | na | na |
Gono et al. 2011 [47] | 10 | na | na | na | 10/10 (100%) | N | 5/10 (50.0%) | na | na | na | - | na | na |
Tzarouchi et al. 2012 [9] | 53 | 63.07 | 10.05 | 52/1 | 0 | 38/53 (71.7%) | ≥2 mm --> med: 1; range: 0–20; <2 mm --> med: 6; range: 0–24 | associated with a reduced volume of GM in the cortex, deep GM, and cerebellum and WM loss in areas adjacent to regions of GM atrophy and in the corpus callosum | na | + | na | ||
Akasbi et al. 2012 [14] | 51 | 64.2 | na | na | 51/51 (100%) | N, NP/C | 25/51 (49.0%) | isolated (<3) in 4 (16%) patients, multiple in 21 (84%) patients | na | corpus callosum (3), U fibres (3), cerebellum (3), pons (2), basal ganglia (1) | + | na | na |
Yoshikawa et al. 2012 [20] 3 | 20 | 77.2 | na | 15/5 | 20/20 (100%) | NP/C | 18/20 (90.0%) | single lesion (7), bilateral lesions (5), multiple lesions (5), confluent lesions (1) | subcortical areas | + | na | na | |
Sarac et al. 2013 [15] | 22 | 58.5 | 8.95 | 18/4 | 22/22 | N | ns | 90 in total (0–75/patient; mean = 15.1) | <2 mm = 22; 2–5 mm = 47; >5 mm = 21 | periventricular, subcortical, basal ganglia, cerebellum, mesencephalon, pons, infratentorial | + | + | na |
Morreale et al. 2015 [13] 4 | 87 | 46.3 | 1.17 | 78/9 | 32/87 (36.8%); 28/87 (32,2%) | N; NP/C | 21/87 (24,1%) | focal lesions (17), beginning confluence of lesions (4) | ≥5 | frontal, infratentorial and basal ganglia areas | - | - | na |
Hammonds et al. 2017 [12] | 64 | 58.1 | 6.9 | 56/9 | na | na | 52/64 (81.3%) | 3 (median) (0–28) | na | na | - | na | na |
Kurtulus et al. 2019 [48] | 20 | na | na | na | na | na | 11/20 | 0–1 = 7; 2–3 = 3; 4–10 = 3; 10+ = 3 | >3 | cortical-subcortical and periventricular, localized in the frontal, parietal and occipital regions (most of the periventriculars in the parietal) | - | na | na |
Andrianopoulou et al. 2020 [10] | 29 | 61.6 | 10.9 | 29/0 | 11/29 (37.9%) | P | 29/29 (100%) | 10 (med) (1–120) | na | na | - | + | na |
Zhang et al. 2020 [34] | 38 | 50.73 | 3 | 38/0 | na | NP/C | na | FS = 1 | na | na | - | + | na |
Zhang et al. 2022 [30] | 41 | 49.98 | 3 | 41/0 | na | NP/C | na | FS = 1 | na | frontal (26), parietal (16), occipital (2), temporal (2) lobes | + | + | na |
Reference | n | MRI Findings | Cognitive Involvement (n) | NP Diagnosis | Cognitive Symptoms | Correlation (MRI and Cognitive) |
---|---|---|---|---|---|---|
Alexander et al. 1988 [36] | 38 | WMH | 16/38 | NP testing | progressive dementia (4), attention and concentration defects (10), decreased verbal intelligence quotient (6), general orientation and information (3), new learning and recall (3), recall of visual stimuli (3), perseveration (2) and dysnomia (2) | + |
Belin et al. 1999 [40] | 7pSS; 14SS | WMH | 7/7 (14/14) | NP testing | face naming (language) (3); frontal lobe functions: mild (2), moderate (5); constructional praxis (2); face recognition (1); verbal working memory (2); verbal (1) and visuospatial (2) long-term memory; incidental memory (5) | - |
Lafitte et al. 2001 [45] | 36 | various, mainly WMH | 8/36 | clinical examination, NP testing | subcortical or corticosubcortical dysfunction | - |
Mataro et al. 2003 [27] | 15 | WMH and larger ventricular volume | 7/15 | NP testing | frontal lobe functions, memory | + |
Harboe et al. 2009 [63] | 68 | WMH | 34/68 (16 mild, 14 moderate, 4 severe) | NP testing | examined: attention, complex attention, memory, visual-spatialprocessing, language, reasoning/problem solving, psychomotor speed, motor function | + |
LeGuern et al. 2009 [8] | 10 | WMH (2/10) | 8/10 | NP testing | executive and visuospatial disorders | - |
Segal et al. 2010 [22] | 19 | frontal region WM microstructure alterations (DTI) | 8/19 | clinical examination, NP testing | psychomotor speed and sustained attention, working memory, attention | + |
Yoshikawa et al. 2012 [20] | 20 | subcortical lesions (18/20) | 20/20 (all were memory clinic patients) | clinical examination, NP testing | mild cognitive impairment (7), dementia (13) | - |
Blanc et al. 2013 [64] | 25 | WMH | 15/25 | NP testing | mild cognitive impairment (speed of information processing, attention, immediate and long-term memory, executive functions) (10), dementia (5) | + |
Morreale et al. 2014 [61] | 81 | WMH (infarctions, MS-like foci) | 36/81 | NP testing | subcortical frontal executive functions and verbal memory | + |
Kurtulus et al. 2019 [48] | 22 | WMH | na | NP testing | delayed recall, multiple choice (MoCa) | - |
Zhang et al. 2020 [34] | 38 | altered hippocampal functional connectivity | na | NP testing | psychomotor function, attention, processing speed, visual memory | +(visual reproduction) |
Zhang et el. 2022 [30] | 41 | na | NP testing | impaired psychomotor function, processing speed, visual memory | + | |
Goulabchand et al. 2022 [65] | 32 | WMH, hippocampal atrophy | 32/32 | clinical examination, NP testing | mild cognitive impairment | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Módis, L.V.; Aradi, Z.; Horváth, I.F.; Bencze, J.; Papp, T.; Emri, M.; Berényi, E.; Bugán, A.; Szántó, A. Central Nervous System Involvement in Primary Sjögren’s Syndrome: Narrative Review of MRI Findings. Diagnostics 2023, 13, 14. https://doi.org/10.3390/diagnostics13010014
Módis LV, Aradi Z, Horváth IF, Bencze J, Papp T, Emri M, Berényi E, Bugán A, Szántó A. Central Nervous System Involvement in Primary Sjögren’s Syndrome: Narrative Review of MRI Findings. Diagnostics. 2023; 13(1):14. https://doi.org/10.3390/diagnostics13010014
Chicago/Turabian StyleMódis, László V., Zsófia Aradi, Ildikó Fanny Horváth, János Bencze, Tamás Papp, Miklós Emri, Ervin Berényi, Antal Bugán, and Antónia Szántó. 2023. "Central Nervous System Involvement in Primary Sjögren’s Syndrome: Narrative Review of MRI Findings" Diagnostics 13, no. 1: 14. https://doi.org/10.3390/diagnostics13010014
APA StyleMódis, L. V., Aradi, Z., Horváth, I. F., Bencze, J., Papp, T., Emri, M., Berényi, E., Bugán, A., & Szántó, A. (2023). Central Nervous System Involvement in Primary Sjögren’s Syndrome: Narrative Review of MRI Findings. Diagnostics, 13(1), 14. https://doi.org/10.3390/diagnostics13010014