Developing Automated Computer Algorithms to Track Periodontal Disease Change from Longitudinal Electronic Dental Records
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Natural Language Processing (NLP) Algorithm (PD Extractor.py) to Extract PD Diagnoses from Periodontal Evaluation Forms
2.3. A computer Algorithm (PD Change Classifier.py) That Automatically Determines PD Change Overtime
- PD progression: e.g., from mild gingivitis to mild periodontitis, from mild periodontitis to moderate periodontitis, etc.
- No change in disease status: e.g., from mild gingivitis to mild gingivitis, from mild periodontitis to mild periodontitis, etc.
- Disease improvement: e.g., from moderate periodontitis to mild periodontitis, from severe periodontitis to mild periodontitis, etc.
2.4. Evaluate the Performance of Automated Computer Applications
2.5. Observation Time and Dentisty of the Longituidional EDR Data
2.6. Data Analysis
3. Results
3.1. Patient Demographics
3.2. Performances of the Two Automated Algorithms
3.3. Periodontitis Cases Automatically Classified by Periodontitis_Diagnoser.py and PD Extractor.py
3.4. Observation Time of Longitudinal EDR Data
3.5. Number of Patients Whose Periodontal Diagnosis Changed over Time
- Seventy-seven (12%) out of 669 (100%) patients progressed from generalized mild periodontitis to localized moderate periodontitis.
- Sixty-six (10%) progressed from generalized moderate periodontitis to localized severe periodontitis.
- Fifty-six (9%) progressed from generalized mild periodontitis to generalized moderate periodontitis. See Supplementary Table S2 for detailed categories.
- Seventy-six (13%) out of 537 (100%) patients progressed from generalized moderate periodontitis to generalized mild periodontitis.
- Thirty-two (5%) progressed from generalized mild periodontitis to generalized mild gingivitis.
- Thirty (5%) progressed from generalized mild periodontitis to localized mild periodontitis. See Supplementary Table S3 for detailed categories.
3.6. Performance of the Automated Applications
4. Discussion
4.1. No Disease Change Group
4.2. Disease Progression Group
4.3. Disease Improvement Group
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eke, P.I.; Thornton-Evans, G.O.; Wei, L.; Borgnakke, W.S.; Dye, B.A.; Genco, R.J. Periodontitis in US Adults: National Health and Nutrition Examination Survey 2009–2014. J. Am. Dent. Assoc. 2018, 149, 576–588.e6. [Google Scholar] [CrossRef] [PubMed]
- Genco, R.J.; Borgnakke, W.S. Risk Factors for Periodontal Disease. Periodontol. 2000 2013, 62, 59–94. [Google Scholar] [CrossRef]
- Tonetti, M.S.; Jepsen, S.; Jin, L.; Otomo-Corgel, J. Impact of the Global Burden of Periodontal Diseases on Health, Nutrition and Wellbeing of Mankind: A Call for Global Action. J. Clin. Periodontol. 2017, 44, 456–462. [Google Scholar] [CrossRef] [Green Version]
- Koshi, E.; Rajesh, S.; Koshi, P.; Arunima, P.R. Risk Assessment for Periodontal Disease. J. Indian Soc. Periodontol. 2012, 16, 324–328. [Google Scholar] [CrossRef] [PubMed]
- Lang, N.P.; Suvan, J.E.; Tonetti, M.S. Risk Factor Assessment Tools for the Prevention of Periodontitis Progression a Systematic Review. J. Clin. Periodontol. 2015, 42, S59–S70. [Google Scholar] [CrossRef]
- Ramseier, C.A.; Anerud, A.; Dulac, M.; Lulic, M.; Cullinan, M.P.; Seymour, G.J.; Faddy, M.J.; Bürgin, W.; Schätzle, M.; Lang, N.P. Natural History of Periodontitis: Disease Progression and Tooth Loss over 40 Years. J. Clin. Periodontol. 2017, 44, 1182–1191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schätzle, M.; Löe, H.; Ramseier, C.A.; Bürgin, W.; Ånerud, Å.; Boysen, H.; Lang, N.P. Clinical Course of Chronic Periodontitis: Effect of Lifelong Light Smoking (20 Years) on Loss of Attachment and Teeth. J. Investig. Clin. Dent. 2010, 1, 8–15. [Google Scholar] [CrossRef]
- Schätzle, M.; Löe, H.; Lang, N.P.; Heitz-Mayfield, L.J.; Bürgin, W.; Anerud, A.; Boysen, H. Clinical Course of Chronic Periodontitis. III. Patterns, Variations and Risks of Attachment Loss. J. Clin. Periodontol. 2003, 30, 909–918. [Google Scholar] [CrossRef]
- Schätzle, M.; Faddy, M.J.; Cullinan, M.P.; Seymour, G.J.; Lang, N.P.; Bürgin, W.; Ånerud, Å.; Boysen, H.; Löe, H. The Clinical Course of Chronic Periodontitis: V. Predictive Factors in Periodontal Disease. J. Clin. Periodontol. 2009, 36, 365–371. [Google Scholar] [CrossRef] [Green Version]
- Schatzle, M.; Loe, H.; Lang, N.P.; Burgin, W.; Anerud, A.; Boysen, H. The Clinical Course of Chronic Periodontitis. IV. Gingival Inflammation as a Risk Factor in Tooth Mortality. J. Clin. Periodontol. 2004, 31, 1122–1127. [Google Scholar] [CrossRef]
- Needleman, I.; Garcia, R.; Gkranias, N.; Kirkwood, K.L.; Kocher, T.; Iorio, A.D.; Moreno, F.; Petrie, A. Mean Annual Attachment, Bone Level, and Tooth Loss: A Systematic Review. J. Periodontol. 2018, 89, S120–S139. [Google Scholar] [CrossRef]
- Loe, H.; Anerud, A.; Boysen, H.; Morrison, E. Natural History of Periodontal Disease in Man. Rapid, Moderate and No Loss of Attachment in Sri Lankan Laborers 14 to 46 Years of Age. J. Clin. Periodontol. 1986, 13, 431–440. [Google Scholar] [CrossRef]
- Worthington, H.V.; Clarkson, J.E.; Bryan, G.; Beirne, P.V. Routine Scale and Polish for Periodontal Health in Adults. In Cochrane Database of Systematic Reviews; John Wiley and Sons Ltd.: Hoboken, NJ, USA, 2013. [Google Scholar] [CrossRef] [Green Version]
- Thyvalikakath, T.P.; Duncan, W.D.; Siddiqui, Z.; Lapradd, M.; Eckert, G.; Schleyer, T.; Rindal, D.B.; Jurkovich, M.; Shea, T.; Gilbert, G.H. Leveraging Electronic Dental Record Data for Clinical Research in the National Dental PBRN Practices Background and Significance. Appl. Clin. Inform. 2020, 11, 305–314. [Google Scholar] [CrossRef]
- Wang, Y.; Siddiqui, Z.; Krishnan, A.; Patel, J.; Thyvalikakath, T. Extraction and Evaluation of Medication Data from Electronic Dental Records. Stud. Health Technol. Inform. 2017, 245, 1290. [Google Scholar] [CrossRef]
- Patel, J.; Siddiqui, Z.; Krishnan, A.; Thyvalikakath, T. Identifying Patients’ Smoking Status from Electronic Dental Records Data. Stud. Health Technol. Inform. 2017, 245, 1281. [Google Scholar] [CrossRef] [PubMed]
- Thyvalikakath, T.; LaPradd, M.; Siddiqui, Z.; Duncan, W.D.; Eckert, G.; Medam, J.K.; Rindal, D.B.; Jurkovich, M.; Gilbert, G.H. Root Canal Treatment Survival Analysis in National Dental PBRN Practices. J. Dent. Res. 2022, 101, 1328–1334. [Google Scholar] [CrossRef]
- Thyvalikakath, T.; Song, M.; Schleyer, T. Perceptions and Attitudes toward Performing Risk Assessment for Periodontal Disease: A Focus Group Exploration. BMC Oral Health 2018, 18, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- St Sauver, J.L.; Carr, A.B.; Yawn, B.P.; Grossardt, B.R.; Bock-Goodner, C.M.; Klein, L.L.; Pankratz, J.J.; Finney Rutten, L.J.; Rocca, W.A. Linking Medical and Dental Health Record Data: A Partnership with the Rochester Epidemiology Project. BMJ Open 2017, 7, e012528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, M.; Liu, K.; Abromitis, R.; Schleyer, T.L. Reusing Electronic Patient Data for Dental Clinical Research: A Review of Current Status. J. Dentistry 2013, 41, 1148–1163. [Google Scholar] [CrossRef] [Green Version]
- Cowie, M.R.; Blomster, J.I.; Curtis, L.H.; Duclaux, S.; Ford, I.; Fritz, F.; Goldman, S.; Janmohamed, S.; Kreuzer, J.; Leenay, M.; et al. Electronic health records to facilitate clinical research. Clin. Res. Cardiol. 2016, 106, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Kowsari, K.; Harrison, J.H.; Lobo, J.M.; Barnes, L.E. Patient2Vec: A Personalized Interpretable Deep Representation of the Longitudinal Electronic Health Record. IEEE Access 2018, 6, 65333–65346. [Google Scholar] [CrossRef]
- Zhao, J.; Feng, Q.P.; Wu, P.; Lupu, R.A.; Wilke, R.A.; Wells, Q.S.; Denny, J.C.; Wei, W.Q. Learning from Longitudinal Data in Electronic Health Record and Genetic Data to Improve Cardiovascular Event Prediction. Sci. Reports 2019, 9, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mullins, J.; Yansane, A.; Kumar, S.V.; Bangar, S.; Neumann, A.; Johnson, T.R.; Olson, G.W.; Kookal, K.K.; Sedlock, E.; Kim, A.; et al. Assessing the Completeness of Periodontal Disease Documentation in the EHR: A First Step in Measuring the Quality of Care. BMC Oral Health 2021, 21, 282. [Google Scholar] [CrossRef] [PubMed]
- Tokede, B.; Yansane, A.; White, J.; Bangar, S.; Mullins, J.; Brandon, R.; Gantela, S.; Kookal, K.; Rindal, D.; Lee, C.T.; et al. Translating Periodontal Data to Knowledge in a Learning Health System. J. Am. Dent. Assoc. 2022, 153, 996–1004. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.-J.; Lee, S.-J.; Yong, T.-H.; Shin, N.-Y.; Jang, B.-G.; Kim, J.-E.; Huh, K.-H.; Lee, S.-S.; Heo, M.-S.; Choi, S.-C.; et al. Deep Learning Hybrid Method to Automatically Diagnose Periodontal Bone Loss and Stage Periodontitis. Sci. Rep. 2020, 10, 7531. [Google Scholar] [CrossRef]
- Patel, J.; Siddiqui, Z.; Krishnan, A.; Thyvalikakath, T.P. Leveraging Electronic Dental Record Data to Classify Patients Based on Their Smoking Intensity. Methods Inf. Med. 2018, 57, 253–260. [Google Scholar] [CrossRef] [Green Version]
- Patel, J.; Mowery, D.; Krishnan, A.; Thyvalikakath, T. Assessing Information Congruence of Documented Cardiovascular Disease between Electronic Dental and Medical Records. In AMIA Annual Symposium Proceedings; American Medical Informatics Association: Washington, DC, USA, 2018; Volume 2018, p. 1442. [Google Scholar]
- Siddiqui, Z.; Wang, Y.; Patel, J.; Thyvalikakath, T. Differences in medication usage of dental patients by age, gender, race/ethnicity and insurance status. Technol. Health Care Off. J. Eur. Soc. Eng. Med. 2021, 29, 1099–1108. [Google Scholar] [CrossRef]
- Watson, J.I.; Patel, J.S.; Ramya, M.B.; Capin, O.; Diefenderfer, K.E.; Thyvalikakath, T.P.; Cook, N.B. Longevity of Crown Margin Repairs Using Glass Ionomer Cement: A Retrospective Study. Oper. Dent. 2021, 46, 263–270. [Google Scholar] [CrossRef]
- Patel, J.S. Utilizing Electronic Dental Record Data to Track Periodontal Disease Change. Ph.D. Thesis, Indiana University, Bloomington, IN, USA, 2020. [Google Scholar]
- Van Stralen, K.J.; Stel, V.S.; Reitsma, J.B.; Dekker, F.W.; Zoccali, C.; Jager, K.J. Diagnostic Methods I: Sensitivity, Specificity, and Other Measures of Accuracy. Kidney Int. 2009, 75, 1257–1263. [Google Scholar] [CrossRef] [Green Version]
- Lalkhen, A.G.; McCluskey, A. Clinical Tests: Sensitivity and Specificity. Contin. Educ. Anaesth. Crit. Care Pain 2008, 8, 221–223. [Google Scholar] [CrossRef] [Green Version]
- Tonetti, M.S.; Greenwell, H.; Kornman, K.S. Staging and Grading of Periodontitis: Framework and Proposal of a New Classification and Case Definition. J. Periodontol. 2018, 89, S159–S172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Performance Measures | Value (%) |
---|---|
Sensitivity | 98 |
Specificity | 97 |
Precision | 98 |
Positive predictive value | 98 |
Negative predictive value | 97 |
Accuracy | 98 |
Matthews Correlation Coefficient | 96 |
Performance Measures | Value (%) |
---|---|
Sensitivity | 99 |
Specificity | 98 |
Precision | 98 |
Positive predictive value | 98 |
Negative predictive value | 99 |
Accuracy | 98 |
Matthews Correlation Coefficient | 97 |
Diagnoses Generated from Clinical Notes | ||
---|---|---|
Mild gingivitis | 3193 | (24) |
Mild-to-moderate gingivitis | 247 | (2) |
Moderate gingivitis | 1607 | (12) |
Moderate-to-severe gingivitis | 62 | (0.5) |
Gingivitis | 1613 | (12) |
Severe gingivitis | 143 | (1) |
Mild periodontitis | 2430 | (18) |
Mild-to-moderate periodontitis | 569 | (4) |
Moderate periodontitis | 1899 | (14) |
Moderate-to-severe periodontitis | 350 | (3) |
Periodontitis | 258 | (2) |
Severe periodontitis | 554 | (4) |
Missing/no disease mentioned/algorithm error | 294 | (2) |
Total (available data) | 13,219 | (100) |
Missing data | 15,689 | (54) |
Total | 28,908 | (100) |
Time in Years (Observation Time) | N | (%) |
---|---|---|
No follow-up | 15,217 | (53) |
Up to 5 years | 9954 | (34) |
>5 and ≤ 10 years | 3203 | (11) |
>10 and ≤ 15 years | 534 | (2) |
Total | 28,908 | (100) |
Time in Years (Observation Time) | Frequency | (%) |
---|---|---|
No follow-up | 10,521 | (37) |
Up to 5 years | 9651 | (33) |
>5 and ≤ 10 years | 2322 | (8) |
>10 and ≤ 15 years | 386 | (1) |
>15 and ≤ 20 years | 0 | (0) |
Missing data | 6028 | (21) |
Total | 28,908 | (100) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patel, J.S.; Kumar, K.; Zai, A.; Shin, D.; Willis, L.; Thyvalikakath, T.P. Developing Automated Computer Algorithms to Track Periodontal Disease Change from Longitudinal Electronic Dental Records. Diagnostics 2023, 13, 1028. https://doi.org/10.3390/diagnostics13061028
Patel JS, Kumar K, Zai A, Shin D, Willis L, Thyvalikakath TP. Developing Automated Computer Algorithms to Track Periodontal Disease Change from Longitudinal Electronic Dental Records. Diagnostics. 2023; 13(6):1028. https://doi.org/10.3390/diagnostics13061028
Chicago/Turabian StylePatel, Jay S., Krishna Kumar, Ahad Zai, Daniel Shin, Lisa Willis, and Thankam P. Thyvalikakath. 2023. "Developing Automated Computer Algorithms to Track Periodontal Disease Change from Longitudinal Electronic Dental Records" Diagnostics 13, no. 6: 1028. https://doi.org/10.3390/diagnostics13061028