Deep Learning-Based Prediction Model for the Cobb Angle in Adolescent Idiopathic Scoliosis Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. General Workflow and Data Preprocessing
2.3. Vertebra-Focused Landmark Extraction Method
2.4. Cobb Angle and Intervertebral Angles Matrix Calculations
2.5. FNN and Intervertebral Angles Progression Prediction
2.6. K-Fold Cross-Validation
2.7. Statistical Analysis
3. Results
3.1. Demographics
3.2. Intervertebral Angles Matrix
3.3. Intervertebral Angles Progression Prediction
3.4. Cobb Angle Progression Prediction
4. Discussion
4.1. Interpretation of the Findings
4.2. FNNs and Other Neural Networks
4.3. Improvements
4.4. Further Investigations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Weinstein, S.L.; Dolan, L.A.; Cheng, J.C.; Danielsson, A.; Morcuende, J.A. Adolescent idiopathic scoliosis. Lancet 2008, 371, 1527–1537. [Google Scholar] [CrossRef]
- Cheng, J.C.; Castelein, R.M.; Chu, W.C.; Danielsson, A.J.; Dobbs, M.B.; Grivas, T.B.; Gurnett, C.A.; Luk, K.D.; Moreau, A.; Newton, P.O.; et al. Adolescent idiopathic scoliosis. Nat. Rev. Dis. Primers 2015, 1, 15030. [Google Scholar] [CrossRef]
- Pruijs, J.E.; Hageman, M.A.; Keessen, W.; van der Meer, R.; van Wieringen, J.C. Variation in Cobb angle measurements in scoliosis. Skelet. Radiol. 1994, 23, 517–520. [Google Scholar] [CrossRef]
- Beauchamp, M.; Labelle, H.; Grimard, G.; Stanciu, C.; Poitras, B.; Dansereau, J. Diurnal variation of Cobb angle measurement in adolescent idiopathic scoliosis. Spine 1993, 18, 1581–1583. [Google Scholar] [CrossRef]
- Göçen, S.; Havitçioglu, H. Effect of rotation on frontal plane deformity in idiopathic scoliosis. Orthopedics 2001, 24, 265–268. [Google Scholar] [CrossRef] [PubMed]
- Morrissy, R.T.; Goldsmith, G.S.; Hall, E.C.; Kehl, D.; Cowie, G.H. Measurement of the Cobb angle on radiographs of patients who have scoliosis. Evaluation of intrinsic error. J. Bone Joint Surg. 1990, 72, 320–327. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, K.; Fan, H.; Huang, Z.; Xiang, Y.; Yang, J.; He, L.; Zhang, L.; Yang, Y.; Li, R.; et al. Development and validation of deep learning algorithms for scoliosis screening using back images. Commun. Biol. 2019, 2, 390. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Chen, K.; Yuan, H.; Liao, Z.; Zhou, T.; Guo, W.; Zhao, S.; Wang, R.; Su, P. Automatic Lenke classification of adolescent idiopathic scoliosis with deep learning. JOR Spine 2024, 7, e1327. [Google Scholar] [CrossRef] [PubMed]
- Lonstein, J.E.; Carlson, J.M. The prediction of curve progression in untreated idiopathic scoliosis during growth. J. Bone Joint Surg. 1984, 66, 1061–1071. [Google Scholar] [CrossRef]
- Yamauchi, Y.; Yamaguchi, T.; Asaka, Y. Prediction of Curve Progression in Idiopathic Scoliosis Based on Initial Roentgenograms: A Proposal of an Equation. Spine 1988, 13, 1258–1261. [Google Scholar] [CrossRef]
- Soucacos, P.N.; Zacharis, K.; Gelalis, J.; Soultanis, K.; Kalos, N.; Beris, A.; Xenakis, T.; Johnson, E.O. Assessment of curve progression in idiopathic scoliosis. Eur. Spine J. 1998, 7, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Cheuk, K.Y.; Xu, L.; Wang, Y.; Feng, Z.; Sit, T.; Cheng, K.L.; Nepotchatykh, E.; Lam, T.P.; Liu, Z.; et al. A validated composite model to predict risk of curve progression in adolescent idiopathic scoliosis. EClinicalMedicine 2020, 18, 100236. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, S.L. Natural History. Spine 1999, 24, 2592. [Google Scholar] [CrossRef] [PubMed]
- Hung, V.W.Y.; Qin, L.; Cheung, C.S.K.; Lam, T.P.; Ng, B.K.W.; Tse, Y.K.; Guo, X.; Lee, K.M.; Cheng, J.C.Y. Osteopenia: A New Prognostic Factor of Curve Progression in Adolescent Idiopathic Scoliosis. J. Bone Joint Surg. 2005, 87, 2709–2716. [Google Scholar] [PubMed]
- Labelle, H.; Aubin, C.-E.; Jackson, R.; Lenke, L.; Newton, P.; Parent, S. Seeing the Spine in 3D: How Will It Change What We Do? J. Pediatr. Orthop. 2011, 31, S37–S45. [Google Scholar] [CrossRef] [PubMed]
- García-Cano, E.; Arámbula Cosío, F.; Duong, L.; Bellefleur, C.; Roy-Beaudry, M.; Joncas, J.; Parent, S.; Labelle, H. Prediction of spinal curve progression in Adolescent Idiopathic Scoliosis using Random Forest regression. Comput. Biol. Med. 2018, 103, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, T.; Cheung, K.M.; Shea, G.K. Application of deep learning upon spinal radiographs to predict progression in adolescent idiopathic scoliosis at first clinic visit. EClinicalMedicine 2021, 42, 101220. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.; Wu, P.; Huang, Q.; Qu, H.; Metaxas, D.N. Vertebra-focused landmark detection for scoliosis assessment. In Proceedings of 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), Iowa City, IA, USA, 3–7 April 2020; pp. 736–740. [Google Scholar]
- Gori, M. Chapter 5—Deep Architectures. In Machine Learning; Gori, M., Ed.; Morgan Kaufmann: Siena, Italy, 2018; pp. 236–338. [Google Scholar]
- Marques, J.A.L.; Gois, F.N.B.; Madeiro, J.P.d.V.; Li, T.; Fong, S.J. Chapter 4—Artificial neural network-based approaches for computer-aided disease diagnosis and treatment. In Cognitive and Soft Computing Techniques for the Analysis of Healthcare Data; Bhoi, A.K., de Albuquerque, V.H.C., Srinivasu, P.N., Marques, G., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 79–99. [Google Scholar]
- Marcot, B.G.; Hanea, A.M. What is an optimal value of k in k-fold cross-validation in discrete Bayesian network analysis? Comput. Stat. 2021, 36, 2009–2031. [Google Scholar] [CrossRef]
- Jin, C.; Wang, S.; Yang, G.; Li, E.; Liang, Z. A Review of the Methods on Cobb Angle Measurements for Spinal Curvature. Sensors 2022, 22, 3258. [Google Scholar] [CrossRef]
- Janicki, J.A.; Alman, B. Scoliosis: Review of diagnosis and treatment. Paediatr. Child Health 2007, 12, 771–776. [Google Scholar] [CrossRef]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef]
- Svozil, D.; Kvasnicka, V.; Pospichal, J.í. Introduction to multi-layer feed-forward neural networks. Chemom. Intell. Lab. Syst. 1997, 39, 43–62. [Google Scholar] [CrossRef]
- Yao, Y.; Yu, W.; Gao, Y.; Dong, J.; Xiao, Q.; Huang, B.; Shi, Z. W-Transformer: Accurate Cobb angles estimation by using a transformer-based hybrid structure. Med. Phys. 2022, 49, 3246–3262. [Google Scholar] [CrossRef] [PubMed]
- Dai, D.; Tan, W.; Zhan, H. Understanding the feedforward artificial neural network model from the perspective of network flow. arXiv 2017, arXiv:1704.08068. [Google Scholar]
- Hinton, G.E.; Srivastava, N.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R.R. Improving neural networks by preventing co-adaptation of feature detectors. arXiv 2012, arXiv:1207.0580. [Google Scholar]
- Kim, H.-C.; Kang, M.-J. A comparison of methods to reduce overfitting in neural networks. Int. J. Adv. Smart Converg. 2020, 9, 173–178. [Google Scholar]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Krogh, A.; Hertz, J.A. A simple weight decay can improve generalization. In Proceedings of the 4th International Conference on Neural Information Processing Systems, Denver, CO, USA, 2–5 December 1991; Morgan Kaufmann Publishers Inc.: Denver, CO, USA, 1991; pp. 950–957. [Google Scholar]
- Nowlan, S.J.; Hinton, G.E. Simplifying Neural Networks by Soft Weight-Sharing. Neural Comput. 1992, 4, 473–493. [Google Scholar] [CrossRef]
Class | Accuracy | Sensitivity | Specificity | |
---|---|---|---|---|
Predicted Cobb Angle | Class A: <15° | 0.84 | 0.78 | 0.86 |
Class B: >15° <25° | 0.72 | 0.65 | 0.76 | |
Class C:>25° < 35° | 0.80 | 0.60 | 0.88 | |
Class D: >35° < 45° | 0.94 | 0.28 | 0.99 | |
Class E: >45° | 0.99 | 0.99 | 1.00 | |
Overall | 0.85 | 0.65 | 0.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chui, C.-S.; He, Z.; Lam, T.-P.; Mak, K.-K.; Ng, H.-T.; Fung, C.-H.; Chan, M.-S.; Law, S.-W.; Lee, Y.-W.; Hung, L.-H.; et al. Deep Learning-Based Prediction Model for the Cobb Angle in Adolescent Idiopathic Scoliosis Patients. Diagnostics 2024, 14, 1263. https://doi.org/10.3390/diagnostics14121263
Chui C-S, He Z, Lam T-P, Mak K-K, Ng H-T, Fung C-H, Chan M-S, Law S-W, Lee Y-W, Hung L-H, et al. Deep Learning-Based Prediction Model for the Cobb Angle in Adolescent Idiopathic Scoliosis Patients. Diagnostics. 2024; 14(12):1263. https://doi.org/10.3390/diagnostics14121263
Chicago/Turabian StyleChui, Chun-Sing (Elvis), Zhong He, Tsz-Ping Lam, Ka-Kwan (Kyle) Mak, Hin-Ting (Randy) Ng, Chun-Hai (Ericsson) Fung, Mei-Shuen Chan, Sheung-Wai Law, Yuk-Wai (Wayne) Lee, Lik-Hang (Alec) Hung, and et al. 2024. "Deep Learning-Based Prediction Model for the Cobb Angle in Adolescent Idiopathic Scoliosis Patients" Diagnostics 14, no. 12: 1263. https://doi.org/10.3390/diagnostics14121263
APA StyleChui, C. -S., He, Z., Lam, T. -P., Mak, K. -K., Ng, H. -T., Fung, C. -H., Chan, M. -S., Law, S. -W., Lee, Y. -W., Hung, L. -H., Chu, C. -W., Mak, S. -Y., Yau, W. -F., Liu, Z., Li, W. -J., Zhu, Z., Wong, M. Y., Cheng, C. -Y., Qiu, Y., & Yung, S. -H. (2024). Deep Learning-Based Prediction Model for the Cobb Angle in Adolescent Idiopathic Scoliosis Patients. Diagnostics, 14(12), 1263. https://doi.org/10.3390/diagnostics14121263