Performance Evaluation of Automated Erythrocyte Sedimentation Rate (ESR) Analyzers in a Multicentric Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Specimen Collection
2.3. ESR Analyzers Description
2.3.1. VES-MATIC 5
2.3.2. CUBE 30 TOUCH
2.3.3. MINI-CUBE
2.3.4. Westergren Method
2.4. Statistics
3. Results
3.1. Correlation Analysis
3.2. Precision Study
3.3. Repeatability
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Leeuwen, M.A.; van Rijswijk, M.H. Acute Phase Proteins in the Monitoring of Inflammatory Disorders. Baillière’s Clin. Rheumatol. 1994, 8, 531–552. [Google Scholar] [CrossRef] [PubMed]
- Navarro, S.L.; Kantor, E.D.; Song, X.; Milne, G.L.; Lampe, J.W.; Kratz, M.; White, E. Factors Associated with Multiple Biomarkers of Systemic Inflammation. Cancer Epidemiol. Biomark. Prev. 2016, 25, 521–531. [Google Scholar] [CrossRef] [PubMed]
- Germolec, D.R.; Shipkowski, K.A.; Frawley, R.P.; Evans, E. Markers of Inflammation. Methods Mol. Biol. 2018, 1803, 57–79. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Kumar, V.; Kumar, V.; Behera, B.K. Acute Phase Proteins and Their Potential Role as an Indicator for Fish Health and in Diagnosis of Fish Diseases. Protein Pept. Lett. 2017, 24, 78–89. [Google Scholar] [CrossRef] [PubMed]
- Taye, M.A. Sedimentation Rate of Erythrocyte from Physics Prospective. Eur. Phys. J. E Soft. Matter. 2020, 43, 19. [Google Scholar] [CrossRef] [PubMed]
- Pribush, A.; Meyerstein, D.; Meyerstein, N. The Mechanism of Erythrocyte Sedimentation. Part 1: Channeling in Sedimenting Blood. Colloids Surf. B Biointerfaces 2010, 75, 214–223. [Google Scholar] [CrossRef]
- Abramson N Rouleaux Formation. Blood 2006, 107, 4205. [CrossRef]
- Tishkowski, K.; Gupta, V. Erythrocyte Sedimentation Rate; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Kahar, M.A. Erythrocyte Sedimentation Rate (with Its Inherent Limitations) Remains a Useful Investigation in Contemporary Clinical Practice. Ann. Pathol. Lab. Med. 2022, 9, R9–R17. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. CLSI H02A-5—Procedures for ESR Test: Approved Standard, 5th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2011; Volume 31, Chapter 5—Principle. [Google Scholar]
- Kratz, A.; Plebani, M.; Peng, M.; Lee, Y.K.; McCafferty, R.; Machin, S.J.; International Council for Standardization in Haematology (ICSH). ICSH Recommendations for Modified and Alternate Methods Measuring the Erythrocyte Sedimentation Rate. Int. J. Lab. Hematol. 2017, 39, 448–457. [Google Scholar] [CrossRef]
- Pieri, M.; Pignalosa, S.; Perrone, M.A.; Russo, C.; Noce, G.; Perrone, A.; Terrinoni, A.; Massoud, R.; Bernardini, S. Evaluation of the Diesse Cube 30 Touch Erythrocyte Sedimentation Method in Comparison with Alifax Test 1 and the Manual Westergren Gold Standard Method. Scand. J. Clin. Lab. Investig. 2021, 81, 181–186. [Google Scholar] [CrossRef]
- Prompetchara, E.; Parnsamut, C.; Wangviwat, N.; Pitakpolrat, P.; Chaiwong, K.; Limpornpukdee, O.; Tanticharoenkarn, S.; Ketloy, C. Performance Evaluation of Alternate ESR Measurement Method Using BC-780 Automated Hematology Analyzer: A Comparison Study with the Westergren Reference Method. Clin. Chem. Lab. Med. 2024, 62, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Tomassetti, F.; Pelagalli, M.; Nicolai, E.; Sarubbi, S.; Calabrese, C.; Giovannelli, A.; Codella, S.; Viola, G.; Diamanti, D.; Massoud, R.; et al. Validation of the New MINI-CUBE for Clinic Determination of Erythrocyte Sedimentation Rate. J. Hematol. 2023, 12, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Piva, E.; Stoppa, A.; Pelloso, M.; Plebani, M. The VES-Matic 5 System: Performance of a Novel Instrument for Measuring Erythrocyte Sedimentation Rate. Clin. Chem. Lab. Med. 2022, 60, 1081–1090. [Google Scholar] [CrossRef]
- Cennamo, M.; Giuliano, L.; Arrigoni, G.; Fardone, V.; Russo, R.; De Tomasi, L.M.; Bertani, F.; Cammarota, G.; Brunetti, G.; Del Vecchio, L.; et al. Method Comparison of Erythrocyte Sedimentation Rate Automated Systems, the VES-MATIC 5 (DIESSE) and Test 1 (ALIFAX), with the Reference Method in Routine Practice. J. Clin. Med. 2024, 13, 847. [Google Scholar] [CrossRef]
- Pelagalli, M.; Tomassetti, F.; Nicolai, E.; Giovannelli, A.; Codella, S.; Iozzo, M.; Massoud, R.; Secchi, R.; Venditti, A.; Pieri, M.; et al. The Role of Erythrocyte Sedimentation Rate (ESR) in Myeloproliferative and Lymphoproliferative Diseases: Comparison between DIESSE CUBE 30 TOUCH and Alifax Test 1. Diseases 2023, 11, 169. [Google Scholar] [CrossRef] [PubMed]
- Lapic, I.; Piva, E.; Spolaore, F.; Tosato, F.; Pelloso, M.; Plebani, M. Automated Measurement of the Erythrocyte Sedimentation Rate: Method Validation and Comparison. Clin. Chem. Lab. Med. 2019, 57, 1364–1373. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Statistical Quality Control for Quantitative Measurement Procedures: Principles and Definition, 4th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2016; C24. [Google Scholar]
- Clinical and Laboratory Standards Institute. CLSI EP15-A3—User Verification of Precision and Estimation of Bias; Approved Guideline, 3rd ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2014. [Google Scholar]
- Plebani, M.; Piva, E. Erythrocyte Sedimentation Rate: Use of Fresh Blood for Quality Control. Am. J. Clin. Pathol. 2002, 117, 621–626. [Google Scholar] [CrossRef]
- Lorubbio, M.; Diamanti, D.; Ghiandai, A.; Pieroni, C.; Bonini, D.; Pettinari, M.; Gorini, G.; Bassi, S.; Meloni, P.; Ognibene, A. Evaluation of Stability and Accuracy Compared to the Westergren Method of ESR Samples Analyzed at VES-MATIC 5. Diagnostics 2024, 14, 557. [Google Scholar] [CrossRef]
- Manley, R.W. The Effect of Room Temperature on Erythrocyte Sedimentation Rate and Its Correction. J. Clin. Pathol. 1957, 10, 354–356. [Google Scholar] [CrossRef]
- ICSH. Recommendation for Measurement of Erythrocyte Sedimentation Rate of Human Blood; International Committee For Standardization In Haematology: Buckinghamshire, UK, 1977. [Google Scholar]
- Borovicztny, B.V.; Bottiger, L.E.; Stockholm, A.; Chattis, B.; Aires, J.B.; Dawson, R.; Fukutake, K.; Gunz, F.W.; Lewis, S.M.; Rewald, E. Reference Method for the Erythrocyte Sedimentation Rate (ESR) Test on Human Blood; International Committee For Standardization In Hematology: Buckinghamshire, UK, 1973. [Google Scholar]
- Bray, C.; Bell, L.N.; Liang, H.; Haykal, R.; Kaiksow, F.; Mazza, J.J.; Yale, S.H. Erythrocyte Sedimentation Rate and C-Reactive Protein Measurements and Their Relevance in Clinical Medicine. WMJ 2016, 115, 317–321. [Google Scholar]
- Fincher, R.-M.E. Clinical Significance of Extreme Elevation of the Erythrocyte Sedimentation Rate. Arch. Intern. Med. 1986, 146, 1581. [Google Scholar] [CrossRef] [PubMed]
- Jou, J.M.; Lewis, S.M.; Briggs, C.; Lee, S.H.; De La Salle, B.; Mcfadden, S. ICSH Review of the Measurement of the Erythocyte Sedimentation Rate. Int. J. Lab. Hematol. 2011, 33, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Cha, C.-H.; Cha, Y.J.; Park, C.-J.; Kim, H.K.; Cha, E.-J.; Kim, D.H.; Honghoon; Jung, J.-S.; Kim, M.-J.; Jang, S.; et al. Evaluation of the TEST 1 Erythrocyte Sedimentation Rate System and Intra- and Inter-Laboratory Quality Control Using New Latex Control Materials. Clin. Chem. Lab. Med. 2010, 48, 1043–1048. [Google Scholar] [CrossRef] [PubMed]
- Das, M.K. Multicenter Studies: Relevance, Design and Implementation. Indian Pediatr. 2022, 59, 571–579. [Google Scholar] [CrossRef] [PubMed]
- Plebani, M. Erythrocyte Sedimentation Rate: Innovative Techniques for an Obsolete Test? Clin. Chem. Lab. Med. 2003, 41, 115–116. [Google Scholar] [CrossRef]
- Schapkaitz, E.; RabuRabu, S.; Engelbrecht, M. Differences in Erythrocyte Sedimentation Rates Using a Modified Westergren Method and an Alternate Method. J. Clin. Lab. Anal. 2019, 33, e22661. [Google Scholar] [CrossRef]
- Plebani, M.; Astion, M.L.; Barth, J.H.; Chen, W.; de Oliveira Galoro, C.A.; Escuer, M.I.; Ivanov, A.; Miller, W.G.; Petinos, P.; Sciacovelli, L.; et al. Harmonization of Quality Indicators in Laboratory Medicine. A Preliminary Consensus. Clin. Chem. Lab. Med. (CCLM) 2014, 52, 951–958. [Google Scholar] [CrossRef]
- Fu, S.; Zhang, L.; Hu, Q.-L.; Li, Z.-J. Establishment and Evaluation of an Internal Quality Control Method for ESR Relays. Int. J. Gen. Med. 2022, 15, 3247–3254. [Google Scholar] [CrossRef]
- Plebani, M. Harmonization in Laboratory Medicine: More than Clinical Chemistry? Clin. Chem. Lab. Med. 2018, 56, 1579–1586. [Google Scholar] [CrossRef]
CUBE 30 TOUCH vs. Westergren Method | MINI-CUBE vs. Westergren Method | VES-MATIC 5 vs. Westergren Method | ||
---|---|---|---|---|
Tor Vergata Hospital | Sample size (n) | 230 | 230 | 230 |
Regression equation | y = −0.076 + 1.039x | y = 2.000 + 1.000x | y = −0.816 + 1.072x | |
Spearman correlation coefficient (R2) and [95% CI] | 0.970 [0.961 to 0.977] | 0.958 [0.946 to 0.968] | 0.972 [0.964 to 0.979] | |
Significance level | p < 0.0001 | p < 0.0001 | p < 0.0001 | |
Bland–Altman mean [min.–max] | 0.5 [min. −15.9; max −14.8] | −2.1 [min. −16.2; max 12.1] | −2.0 [min. −15.3; max 11.2] | |
Arezzo Hospital | Sample size (n) | 174 | 174 | 174 |
Regression equation | y = −0.104 + 1.042x | y = 3.000 + 1.000x | y = −1.353 + 1.068x | |
Spearman correlation coefficient (R2) and [95% CI] | 0.976 [0.967 to 0.982] | 0.971 [0.961 to 0.978] | 0.974 [0.965 to 0.981] | |
Significance level | p < 0.0001 | p < 0.0001 | p < 0.0001 | |
Bland–Altman mean [min.–max] | 1.5 [min. −10.2; max 13.2] | 2.5 [min. −10.5; max 15.6] | 0.4 [min. −13.0; max 13.7] | |
Siena Hospital | Sample size (n) | 191 | 191 | 191 |
Regression equation | y = −0.055 + 1.027x | y = 1.000x | y = −0.104 + 1.001x | |
Spearman correlation coefficient (R2) and [95% CI] | 0.989 [0.985 to 0.991] | 0.988 [0.984 to 0.991] | 0.988 [0.984 to 0.991] | |
Significance level | p < 0.0001 | p < 0.0001 | p < 0.0001 | |
Bland–Altman mean [min.–max] | 1.9 [min. −11.4; max 15.1] | 2.5 [min. −10.5; max 15.6] | −0.1 [min. −15.2; max 14.9] | |
Como Hospital | Sample size (n) | 192 | 192 | 192 |
Regression equation | y = −0.903 + 1.041x | y = 0.472 + 0.973x | y = 0.125 + 1.050x | |
Spearman correlation coefficient (R2) and [95% CI] | 0.986 [0.981 to 0.989] | 0.980 [0.973 to 0.985] | 0.965 [0.954 to 0.973] | |
Significance level | p < 0.0001 | p < 0.0001 | p < 0.0001 | |
Bland–Altman mean [min.–max] | 1.9 [min. −11.4; max 15.1] | 0.2 [min. −12.8; max 13.2] | 2.3 [min. −12.8; max 17.3] |
Tor Vergata Hospital | ||||
QC Level | CV % Within Run | CV % Between Run | Total Precision | |
VES-MATIC 5 | High | 2.8 | 2.8 | 3.6 |
VES-MATIC 5 | Low | 6.5 | 7.7 | 9.4 |
CUBE 30 TOUCH | High | 3.3 | 2.9 | 3.9 |
CUBE 30 TOUCH | Low | 9.1 | 4.7 | 9.0 |
MINI-CUBE | High | 3.2 | 0.8 | 2.7 |
MINI-CUBE | Low | 9.1 | 4.4 | 8.5 |
Arezzo Hospital | ||||
QC Level | CV% Within Run | CV% Between Run | Total Precision | |
VES-MATIC 5 | High | 2.7 | 0.7 | 2.3 |
VES-MATIC 5 | Low | 8.9 | 7.1 | 10.6 |
CUBE 30 TOUCH | High | 4.2 | 2.4 | 4.2 |
CUBE 30 TOUCH | Low | 10.3 | 4.3 | 9.7 |
MINI-CUBE | High | 2.3 | 2.1 | 2.8 |
MINI-CUBE | Low | 9.1 | 7.1 | 10.0 |
Siena Hospital | ||||
QC Level | CV % Within Run | CV % Between Run | Total Precision | |
VES-MATIC 5 | High | 2.0 | 1.4 | 2.2 |
VES-MATIC 5 | Low | 8.6 | 4.9 | 8.4 |
CUBE 30 TOUCH | High | 1.7 | 1.4 | 2.0 |
CUBE 30 TOUCH | Low | 8.6 | 5.1 | 8.8 |
MINI-CUBE | High | 1.8 | 0.8 | 1.7 |
MINI-CUBE | Low | 6.5 | 3.8 | 6.6 |
Como Hospital | ||||
QC Level | CV % Within Run | CV % Between Run | Total Precision | |
VES-MATIC 5 | High | 3.0 | 4.1 | 4.7 |
VES-MATIC 5 | Low | 11.1 | 3.1 | 9.4 |
CUBE 30 TOUCH | High | 1.7 | 1.0 | 1.7 |
CUBE 30 TOUCH | Low | 9.1 | 4.7 | 9.0 |
MINI-CUBE | High | 1.5 | 2.3 | 2.6 |
MINI-CUBE | Low | 9.1 | 4.7 | 9.0 |
CUBE 30 TOUCH | VES-MATIC 5 | MINI-CUBE | ||||
DIESSE | Evaluated | DIESSE | Evaluated | DIESSE | Evaluated | |
QC High | 3.5 | 3.70 | 7.7 | 4.90 | 14.1 | 4.90 |
QC Low | 9.8 | 1.30 | 13.3 | 2.02 | 8.3 | 1.50 |
Accepted | Accepted | Accepted | Accepted | Accepted | Accepted |
Tor Vergata Hospital | |||||
Analytic Interval | n | MEAN | SD | CV (%) | |
VES-MATIC 5 | Low | 68 | 7.64 | 0.49 | 6 |
Middle | 31 | 29.57 | 2.9 | 9 | |
High | 54 | 102.68 | 4.99 | 6 | |
CUBE 30 TOUCH | Low | 76 | 7.39 | 0.56 | 8 |
Middle | 51 | 1.74 | 1.74 | 6 | |
High | 39 | 3.04 | 3.04 | 3 | |
MINI-CUBE | Low | 36 | 10.58 | 0.80 | 6 |
Middle | 22 | 39.41 | 2.96 | 6 | |
Up | 30 | 100.45 | 3.22 | 4 | |
Arezzo Hospital | |||||
Analytic Interval | n | MEAN | SD | CV (%) | |
VES-MATIC 5 | Low | 66 | 9.25 | 0.49 | 5 |
Middle | 32 | 29.01 | 2.22 | 8 | |
High | 43 | 94.07 | 2.39 | 3 | |
CUBE 30 TOUCH | Low | 44 | 8.14 | 0.55 | 7 |
Middle | 42 | 30.36 | 1.16 | 4 | |
High | 43 | 92.12 | 1.88 | 2 | |
MINI-CUBE | Low | 36 | 11.14 | 0.54 | 5 |
Middle | 25 | 32.63 | 1.19 | 4 | |
High | 50 | 94.19 | 1.87 | 2 | |
Siena Hospital | |||||
Analytic Interval | n | MEAN | SD | CV (%) | |
VES-MATIC 5 | Low | 75 | 7.80 | 0.56 | 7 |
Middle | 34 | 31.60 | 1.3 | 4 | |
High | 53 | 91.75 | 2.25 | 2 | |
CUBE 30 TOUCH | Low | 81 | 8.0 | 0.5 | 6 |
Middle | 49 | 30.37 | 1.18 | 4 | |
High | 40 | 88.41 | 2.00 | 2 | |
MINI-CUBE | Low | 37 | 10.75 | 0.51 | 5 |
Middle | 27 | 37.15 | 0.98 | 3 | |
High | 32 | 95.14 | 1.67 | 2 | |
Como Hospital | |||||
Analytic Interval | n | MEAN | SD | CV (%) | |
VES-MATIC 5 | Low | 17 | 8.75 | 0.82 | 9.4 |
Middle | 16 | 25.69 | 2.30 | 8.9 | |
High | 79 | 86.02 | 6.13 | 7.9 | |
CUBE 30 TOUCH | Low | 34 | 10.63 | 0.74 | 7 |
Middle | 12 | 29.14 | 2.80 | 9.9 | |
High | 20 | 88.62 | 3.22 | 4.3 | |
MINI-CUBE | Low | 37 | 10.64 | 0.61 | 5.7 |
Middle | 46 | 37.34 | 2.97 | 8.6 | |
High | 30 | 77.49 | 3.02 | 4.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomassetti, F.; Calabrese, C.; Bertani, F.; Cennamo, M.; Diamanti, D.; Giovannelli, A.; Guerranti, R.; Leoncini, R.; Lorubbio, M.; Ognibene, A.; et al. Performance Evaluation of Automated Erythrocyte Sedimentation Rate (ESR) Analyzers in a Multicentric Study. Diagnostics 2024, 14, 2011. https://doi.org/10.3390/diagnostics14182011
Tomassetti F, Calabrese C, Bertani F, Cennamo M, Diamanti D, Giovannelli A, Guerranti R, Leoncini R, Lorubbio M, Ognibene A, et al. Performance Evaluation of Automated Erythrocyte Sedimentation Rate (ESR) Analyzers in a Multicentric Study. Diagnostics. 2024; 14(18):2011. https://doi.org/10.3390/diagnostics14182011
Chicago/Turabian StyleTomassetti, Flaminia, Cinzia Calabrese, Fabio Bertani, Michele Cennamo, Daniela Diamanti, Alfredo Giovannelli, Roberto Guerranti, Roberto Leoncini, Maria Lorubbio, Agostino Ognibene, and et al. 2024. "Performance Evaluation of Automated Erythrocyte Sedimentation Rate (ESR) Analyzers in a Multicentric Study" Diagnostics 14, no. 18: 2011. https://doi.org/10.3390/diagnostics14182011
APA StyleTomassetti, F., Calabrese, C., Bertani, F., Cennamo, M., Diamanti, D., Giovannelli, A., Guerranti, R., Leoncini, R., Lorubbio, M., Ognibene, A., Nicolai, E., Pelagalli, M., Pieroni, C., Bernardini, S., & Pieri, M. (2024). Performance Evaluation of Automated Erythrocyte Sedimentation Rate (ESR) Analyzers in a Multicentric Study. Diagnostics, 14(18), 2011. https://doi.org/10.3390/diagnostics14182011