B7H3 Immune Checkpoint Overexpression Is Associated with Decreased Complete Response Rates to Neoadjuvant Therapy in Locally Advanced Rectal Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. IHC Staining and Evaluation
2.3. Statistical Analysis
2.4. Endpoints
3. Results
3.1. Study Cohort
3.2. Validation Cohort
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA. Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer Statistics, 2024. CA. Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef]
- Scott, A.J.; Kennedy, E.B.; Berlin, J.; Brown, G.; Chalabi, M.; Cho, M.T.; Cusnir, M.; Dorth, J.; George, M.; Kachnic, L.A.; et al. Management of Locally Advanced Rectal Cancer: ASCO Guideline. J. Clin. Oncol. 2024. [Google Scholar] [CrossRef]
- Adam, M.; Chang, G.J.; Chen, Y.-J.; Ciombor, K.K.; Cohen, S.A.; Deming, D.; Garrido-Laguna, I.; Grem, J.L.; Buffett Cancer Center Carla Harmath, P.; Randolph Hecht, J. NCCN Guidelines Version 3.2024 Rectal Cancer Continue NCCN Guidelines Panel Disclosures. 2024. Available online: https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1461 (accessed on 12 August 2024).
- Glynne-Jones, R.; Wyrwicz, L.; Tiret, E.; Brown, G.; Rödel, C.; Cervantes, A.; Arnold, D. Rectal Cancer: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2017, 28, iv22–iv40. [Google Scholar] [CrossRef]
- Hong, Y.S.; Kim, S.Y.; Lee, J.S.; Nam, B.H.; Kim, K.; Kim, J.E.; Park, Y.S.; Park, J.O.; Baek, J.Y.; Kim, T.Y.; et al. Oxaliplatin-Based Adjuvant Chemotherapy for Rectal Cancer after Preoperative Chemoradiotherapy (ADORE): Long-Term Results of a Randomized Controlled Trial. J. Clin. Oncol. 2019, 37, 3111–3123. [Google Scholar] [CrossRef]
- Zhou, J.; Huang, J.; Zhou, Z.; Deng, X.; Wu, Q.; Wang, Z. Total Neoadjuvant Therapy for Locally Advanced Rectal Cancer: A Three-Group Propensity Score Matched Study. Int. J. Colorectal Dis. 2024, 39, 1–12. [Google Scholar] [CrossRef]
- Bahadoer, R.R.; Dijkstra, E.A.; van Etten, B.; Marijnen, C.A.M.; Putter, H.; Kranenbarg, E.M.K.; Roodvoets, A.G.H.; Nagtegaal, I.D.; Beets-Tan, R.G.H.; Blomqvist, L.K.; et al. Short-Course Radiotherapy Followed by Chemotherapy before Total Mesorectal Excision (TME) versus Preoperative Chemoradiotherapy, TME, and Optional Adjuvant Chemotherapy in Locally Advanced Rectal Cancer (RAPIDO): A Randomised, Open-Label, Phase 3 Trial. Lancet Oncol. 2021, 22, 29–42. [Google Scholar] [CrossRef]
- Aschele, C.; Glynne-Jones, R. Selecting a TNT Schedule in Locally Advanced Rectal Cancer: Can We Predict Who Actually Benefits? Cancers 2023, 15, 2567. [Google Scholar] [CrossRef]
- Conroy, T.; Castan, F.; Etienne, P.-L.; Rio, E.; Mesgouez-Nebout, N.; Evesque, L.; Vendrely, V.; Artignan, X.; Bouché, O.; Gargot, D.; et al. Total Neoadjuvant Therapy with MFOLFIRINOX versus Preoperative Chemoradiotherapy in Patients with Locally Advanced Rectal Cancer: Long-Term Results of the UNICANCER-PRODIGE 23 Trial. Ann. Oncol. 2024, in press. [Google Scholar] [CrossRef]
- van der Valk, M.J.M.; Hilling, D.E.; Bastiaannet, E.; Meershoek-Klein Kranenbarg, E.; Beets, G.L.; Figueiredo, N.L.; Habr-Gama, A.; Perez, R.O.; Renehan, A.G.; van de Velde, C.J.H.; et al. Long-Term Outcomes of Clinical Complete Responders after Neoadjuvant Treatment for Rectal Cancer in the International Watch & Wait Database (IWWD): An International Multicentre Registry Study. Lancet 2018, 391, 2537–2545. [Google Scholar] [CrossRef]
- Temmink, S.J.D.; Martling, A.; Angenete, E.; Nilsson, P.J. Complete Response Rates in Rectal Cancer: Temporal Changes over a Decade in a Population-Based Nationwide Cohort. Eur. J. Surg. Oncol. 2023, 49, 106991. [Google Scholar] [CrossRef] [PubMed]
- Cercek, A.; Lumish, M.; Sinopoli, J.; Weiss, J.; Shia, J.; Lamendola-Essel, M.; El Dika, I.H.; Segal, N.; Shcherba, M.; Sugarman, R.; et al. PD-1 Blockade in Mismatch Repair–Deficient, Locally Advanced Rectal Cancer. N. Engl. J. Med. 2022, 386, 2363–2376. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Li, H.; Xia, Y.; Wang, Y.; Wang, Y.; Shi, Y.; Xing, H.; Qu, T.; Wang, Y.; Ma, W. Immune Checkpoint of B7-H3 in Cancer: From Immunology to Clinical Immunotherapy. J. Hematol. Oncol. 2022, 15, 153. [Google Scholar] [CrossRef]
- Koumprentziotis, I.A.; Theocharopoulos, C.; Foteinou, D.; Angeli, E.; Anastasopoulou, A.; Gogas, H.; Ziogas, D.C. New Emerging Targets in Cancer Immunotherapy: The Role of B7-H3. Vaccines 2024, 12, 54. [Google Scholar] [CrossRef]
- Meng, F.; Yang, M.; Chen, Y.; Chen, W.; Wang, W. MiR-34a Induces Immunosuppression in Colorectal Carcinoma through Modulating a SIRT1/NF-ΚB/B7-H3/TNF-α Axis. Cancer Immunol. Immunother. 2021, 70, 2247–2259. [Google Scholar] [CrossRef]
- Ma, Y.; Zhan, S.; Lu, H.; Wang, R.; Xu, Y.; Zhang, G.; Cao, L.; Shi, T.; Zhang, X.; Chen, W. B7-H3 Regulates KIF15-Activated ERK1/2 Pathway and Contributes to Radioresistance in Colorectal Cancer. Cell Death Dis. 2020, 11, 824. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Wang, R.; Lu, H.; Li, X.; Zhang, G.; Fu, F.; Cao, L.; Zhan, S.; Wang, Z.; Deng, Z.; et al. B7-H3 Promotes the Cell Cycle-Mediated Chemoresistance of Colorectal Cancer Cells by Regulating CDC25A. J. Cancer 2020, 11, 2158–2170. [Google Scholar] [CrossRef]
- Zhang, T.; Jiang, B.; Zou, S.T.; Liu, F.; Hua, D. Overexpression of B7-H3 Augments Anti-Apoptosis of Colorectal Cancer Cells by Jak2-STAT3. World J. Gastroenterol. 2015, 21, 1804–1813. [Google Scholar] [CrossRef]
- Lu, Z.; Zhao, Z.X.; Cheng, P.; Huang, F.; Guan, X.; Zhang, M.G.; Chen, H.P.; Liu, Z.; Jiang, Z.; Zheng, Z.X.; et al. B7-H3 Immune Checkpoint Expression Is a Poor Prognostic Factor in Colorectal Carcinoma. Mod. Pathol. 2020, 33, 2330–2340. [Google Scholar] [CrossRef]
- Ingebrigtsen, V.A.; Boye, K.; Tekle, C.; Nesland, J.M.; Flatmark, K.; Fodstad, O. B7-H3 Expression in Colorectal Cancer: Nuclear Localization Strongly Predicts Poor Outcome in Colon Cancer. Int. J. Cancer 2012, 131, 2528–2536. [Google Scholar] [CrossRef]
- Varghese, E.; Samuel, S.M.; Brockmueller, A.; Shakibaei, M.; Kubatka, P.; Büsselberg, D. B7-H3 at the Crossroads between Tumor Plasticity and Colorectal Cancer Progression: A Potential Target for Therapeutic Intervention. Cancer Metastasis Rev. 2023, 43, 115–133. [Google Scholar] [CrossRef] [PubMed]
- Getu, A.A.; Tigabu, A.; Zhou, M.; Lu, J.; Fodstad, Ø.; Tan, M. New Frontiers in Immune Checkpoint B7-H3 (CD276) Research and Drug Development. Mol. Cancer 2023, 22, 43. [Google Scholar] [CrossRef]
- Taylor, H.; Slamecka, J.; Musiyenko, A.; Gavin, E.; Norton, T.S.; Aragon, I.; Young, T.; Scalici, J.; Rocconi, R.P.; Tan, M.; et al. Abstract B31: Tumor-Intrinsic B7-H3 Regulates Drug Resistance, Metabolism, and Pathogenesis in Ovarian Cancer. Clin. Cancer Res. 2018, 24, B31. [Google Scholar] [CrossRef]
- Li, Y.; Cai, Q.; Shen, X.; Chen, X.; Guan, Z. Overexpression of B7-H3 Is Associated With Poor Prognosis in Laryngeal Cancer. Front. Oncol. 2021, 11, 759528. [Google Scholar] [CrossRef]
- Maas, M.; Nelemans, P.J.; Valentini, V.; Das, P.; Rödel, C.; Kuo, L.J.; Calvo, F.A.; García-Aguilar, J.; Glynne-Jones, R.; Haustermans, K.; et al. Long-Term Outcome in Patients with a Pathological Complete Response after Chemoradiation for Rectal Cancer: A Pooled Analysis of Individual Patient Data. Lancet. Oncol. 2010, 11, 835–844. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Zhu, J.H.; Yao, X.Q. Prognostic Significance of B7-H3 Expression in Patients with Colorectal Cancer: A Meta-Analysis. Pak. J. Med. Sci. 2016, 32, 1568–1573. [Google Scholar] [CrossRef]
- Ingebrigtsen, V.A.; Boye, K.; Nesland, J.M.; Nesbakken, A.; Flatmark, K.; Fodstad, Ø. B7-H3 Expression in Colorectal Cancer: Associations with Clinicopathological Parameters and Patient Outcome. BMC Cancer 2014, 14, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Chen, L.J.; Zhang, G.B.; Jiang, J.T.; Zhu, M.; Tan, Y.; Wang, H.T.; Lu, B.F.; Zhang, X.G. Clinical Significance and Regulation of the Costimulatory Molecule B7-H3 in Human Colorectal Carcinoma. Cancer Immunol. Immunother. 2010, 59, 1163–1171. [Google Scholar] [CrossRef]
- Liu, X.; Wang, F.; Wu, J.; Zhang, T.; Liu, F.; Mao, Y.; Hua, D. Expression of CYP1B1 and B7-H3 Significantly Correlates with Poor Prognosis in Colorectal Cancer Patients. Int. J. Clin. Exp. Pathol. 2018, 11, 2654. [Google Scholar]
- Marampon, F.; Ciccarelli, C.; Zani, B.M. Biological Rationale for Targeting MEK/ERK Pathways in Anti-Cancer Therapy and to Potentiate Tumour Responses to Radiation. Int. J. Mol. Sci. 2019, 20, 2530. [Google Scholar] [CrossRef]
- Shi, T.; Ma, Y.; Cao, L.; Zhan, S.; Xu, Y.; Fu, F.; Liu, C.; Zhang, G.; Wang, Z.; Wang, R.; et al. B7-H3 Promotes Aerobic Glycolysis and Chemoresistance in Colorectal Cancer Cells by Regulating HK2. Cell Death Dis. 2019, 10, 308. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Chen, Z.; Ning, K.; Jin, J.; Han, X. Inhibition of B7-H3 Reverses Oxaliplatin Resistance in Human Colorectal Cancer Cells. Biochem. Biophys. Res. Commun. 2017, 490, 1132–1138. [Google Scholar] [CrossRef] [PubMed]
- Paschke, S.; Jafarov, S.; Staib, L.; Kreuser, E.D.; Maulbecker-Armstrong, C.; Roitman, M.; Holm, T.; Harris, C.C.; Link, K.H.; Kornmann, M. Are Colon and Rectal Cancer Two Different Tumor Entities? A Proposal to Abandon the Term Colorectal Cancer. Int. J. Mol. Sci. 2018, 19, 2577. [Google Scholar] [CrossRef]
- Hugen, N.; Brown, G.; Glynne-Jones, R.; De Wilt, J.H.W.; Nagtegaal, I.D. Advances in the Care of Patients with Mucinous Colorectal Cancer. Nat. Rev. Clin. Oncol. 2015, 13, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Grillo-Ruggieri, F.; Mantello, G.; Berardi, R.; Cardinali, M.; Fenu, F.; Iovini, G.; Montisci, M.; Fabbietti, L.; Marmorale, C.; Guerrieri, M.; et al. Mucinous Rectal Adenocarcinoma Can Be Associated to Tumor Downstaging after Preoperative Chemoradiotherapy. Dis. Colon Rectum 2007, 50, 1594–1603. [Google Scholar] [CrossRef]
- Sengul, N.; Wexner, S.D.; Woodhouse, S.; Arrigain, S.; Xu, M.; Larach, J.A.; Ahn, B.K.; Weiss, E.G.; Nogueras, J.J.; Berho, D.M. Effects of Radiotherapy on Different Histopathological Types of Rectal Carcinoma. Color. Dis. 2006, 8, 283–288. [Google Scholar] [CrossRef]
- Yu, S.K.T.; Chand, M.; Tait, D.M.; Brown, G. Magnetic Resonance Imaging Defined Mucinous Rectal Carcinoma Is an Independent Imaging Biomarker for Poor Prognosis and Poor Response to Preoperative Chemoradiotherapy. Eur. J. Cancer 2014, 50, 920–927. [Google Scholar] [CrossRef]
- Garcia-Aguilar, J.; Chen, Z.; Smith, D.D.; Li, W.; Madoff, R.D.; Cataldo, P.; Marcet, J.; Pastor, C. Identification of a Biomarker Profile Associated with Resistance to Neoadjuvant Chemoradiation Therapy in Rectal Cancer. Ann. Surg. 2011, 254, 486–493. [Google Scholar] [CrossRef]
- Chand, M.; Rasheed, S.; Bhangu, A.; Stamp, G.W.H.; Swift, R.I.; Tekkis, P.P.; Brown, G. Adjuvant Chemotherapy Improves Overall Survival after TME Surgery in Mucinous Carcinoma of the Rectum. Eur. J. Surg. Oncol. 2014, 40, 240–245. [Google Scholar] [CrossRef]
- Yasui, K.; Ryota, K.; Iizuka, A.; Haruo, M.; Emiko, T.; Ashizawa, T.; Nagashima, T.; Ohshima, K.; Urakami, K.; Kusuhara, M.; et al. Effect of Preoperative Chemoradiotherapy on the Immunological Status of Rectal Cancer Patients. J. Radiat. Res. 2020, 61, 766. [Google Scholar] [CrossRef]
- Demaria, S.; Golden, E.B.; Formenti, S.C. Role of Local Radiation Therapy in Cancer Immunotherapy. JAMA Oncol. 2015, 1, 1325–1332. [Google Scholar] [CrossRef] [PubMed]
- Kalbasi, A.; June, C.H.; Haas, N.; Vapiwala, N. Radiation and Immunotherapy: A Synergistic Combination. J. Clin. Investig. 2013, 123, 2756–2763. [Google Scholar] [CrossRef] [PubMed]
- Park, B.; Yee, C.; Lee, K.M. The Effect of Radiation on the Immune Response to Cancers. Int. J. Mol. Sci. 2014, 15, 927–943. [Google Scholar] [CrossRef]
- Seo, I.; Lee, H.W.; Byun, S.J.; Park, J.Y.; Min, H.; Lee, S.H.; Lee, J.S.; Kim, S.; Bae, S.U. Neoadjuvant Chemoradiation Alters Biomarkers of Anticancer Immunotherapy Responses in Locally Advanced Rectal Cancer. J. Immunother. Cancer 2021, 9, e001610. [Google Scholar] [CrossRef] [PubMed]
- Feustel, K.; Martin, J.; Falchook, G.S. B7-H3 Inhibitors in Oncology Clinical Trials: A Review. J. Immunother. Precis. Oncol. 2024, 7, 53. [Google Scholar] [CrossRef]
- Mielcarska, S.; Dawidowicz, M.; Kula, A.; Kiczmer, P.; Skiba, H.; Krygier, M.; Chrabańska, M.; Piecuch, J.; Szrot, M.; Ochman, B.; et al. B7H3 Role in Reshaping Immunosuppressive Landscape in MSI and MSS Colorectal Cancer Tumours. Cancers 2023, 15, 3136. [Google Scholar] [CrossRef]
- Mei, J.; Cai, Y.; Zhu, H.; Jiang, Y.; Fu, Z.; Xu, J.; Chen, L.; Yang, K.; Zhao, J.; Song, C.; et al. High B7-H3 Expression with Low PD-L1 Expression Identifies Armored-Cold Tumors in Triple-Negative Breast Cancer. NPJ Breast Cancer 2024, 10, 11. [Google Scholar] [CrossRef]
Variables | Total (n = 49) | Low Expression (n = 20) | High Expression (n = 29) | p-Value |
---|---|---|---|---|
Age years, mean (SD) | 60.6 (11.2) | 60.8 (12.8) | 60.5 (10.3) | 0.940 |
Gender | 0.126 | |||
Male | 33 (67.3%) | 11 (55%) | 22 (75.9%) | |
Female | 16 (32.7%) | 9 (45%) | 7 (24.1%) | |
ECOG | 0.343 | |||
0–1 | 45 (91.8%) | 17 (95%) | 28 (96.6%) | |
2 | 4 (8.2%) | 3 (5%) | 1 (3.4%) | |
Clinical T stage | 0.735 | |||
T1 | 1 (2%) | 0 (0%) | 1 (3.4%) | |
T2 | 4 (8.2%) | 1 (5%) | 3 (10.4%) | |
T3 | 36 (73.5%) | 16 (80%) | 20 (69%) | |
T4a | 7 (14.3%) | 3 (15%) | 4 (13.8%) | |
T4b | 1 (2%) | 0 (0%) | 1 (3.4%) | |
Clinical N stage | 0.902 | |||
N0 | 7 (14.3%) | 3 (15%) | 4 (13.8% | |
N1a | 2 (4.1%) | 1 (5%) | 1 (3.4%) | |
N1b | 12 (24.5%) | 5 (25%) | 7 (24.2%) | |
N2a | 5 (10.2%) | 1 (5%) | 4 (13.8%) | |
N2b | 23 (46.9%) | 10 (50%) | 13 (44.8%) | |
AJCC Stage | 0.638 | |||
I | 2 (4.1%) | 1 (5%) | 1 (3.4%) | |
II | 5 (10.2%) | 2 (10%) | 3 (10.3%) | |
III | 42 (85.7%) | 17 (85%) | 25 (86.3%) | |
Tumor location | 0.417 | |||
Lower rectum | 28 (57.1%) | 10 (50%) | 18 (62.1%) | |
Middle rectum | 17 (34.7%) | 9 (45%) | 8 (27.6%) | |
Upper rectum | 4 (8.2%) | 1 (5%) | 3 (10.3%) | |
MRF a | 0.292 | |||
MRF positive | 18 (38.3%) | 9 (47.4%) | 9 (32.1%) | |
MRF negative | 29 (61.7%) | 10 (52.6%) | 19 (67.9%) | |
EMVI a | 0.337 | |||
EMVI positive | 16 (34%) | 8 (42.1%) | 8 (28.6%) | |
EMVI negative | 31 (66%) | 11 (57.9%) | 20 (71.4%) | |
TD a | 0.204 | |||
TD positive | 6 (12.8%) | 4 (21.1%) | 2 (7.1%) | |
TD negative | 41 (87.2%) | 15 (78.9%) | 26 (92.9%) | |
LPN a | 0.452 | |||
LPN positive | 9 (19%) | 5 (26.3%) | 4 (14.3%) | |
LPN negative | 38 (81%) | 14 (73.7%) | 24 (85.7%) | |
CEA at diagnosis (ng/mL) (SD) | 7.2 (6.1) | 7.6 (7) | 7 (5.5) | 0.785 |
Histology | 0.070 | |||
Adenocarcinoma—NOS | 44 (89.8%) | 20 (100%) | 24 (82.8%) | |
Adenocarcinoma—mucinous | 5 (10.2%) | 0 (0%) | 5 (17.2%) | |
Tumor grade | 0.496 | |||
G1 | 16 (32.7%) | 5 (25%) | 11 (37.9%) | |
G2 | 26 (53%) | 11 (22%) | 15 (51.7%) | |
G3 | 7 (14.3%) | 4 (20%) | 3 (10.4%) | |
Distance from anal verge (mm) (SD) | 65 (32) | 68 (27) | 63 (35) | 0.631 |
Neoadjuvant chemotherapy | 0.161 | |||
Yes | 38 (77.5%) | 18 (90%) | 20 (69%) | |
No | 11 (22.5%) | 2 (10%) | 9 (31%) | |
Cycles of neoadjuvant chemotherapy, mean (SD) | 3.3 (2.9) | 3.5 (2.9) | 3.2 (3.4) | 0.698 |
Radiotherapy–surgery interval Weeks, mean (SD) | 14.1 (7.9) | 12.3 (5) | 15.2 (9) | 0.186 |
Variables | Total (n = 49) | Low Expression (n = 20) | High Expression (n = 29) | p-Value |
---|---|---|---|---|
Procedure | 0.049 | |||
Rectosigmoid resection | 11 (22.4%) | 2 (10%) | 9 (31%) | |
Anterior resection | 11 (22.4%) | 7 (35%) | 4 (13.8%) | |
Abdominoperineal resection | 25 (51%) | 9 (45%) | 16 (55.2%) | |
No surgery | 2 (4.1%) | 2 (10%) | 0 (0%) | |
Post-operative morbidity a | 0.325 | |||
Yes | 9 (19.1%) | 3 (16.7%) | 6 (20.7%) | |
No | 38 (80.9%) | 15 (83.3%) | 23 (79.3%) | |
ypT stage a | 0.543 | |||
T0 | 4 (8.6%) | 2 (11.1%) | 2 (6.9%) | |
T1 | 1 (2.1%) | 0 (0%) | 1 (3.4%) | |
T2 | 14 (29.8%) | 4 (22.2%) | 10 (34.5%) | |
T3 | 27 (57.4%) | 11 (61.1%) | 16 (55.2%) | |
T4a | 1 (2.1%) | 1 (5.6%) | 0 (0%) | |
ypN stage a | 0.279 | |||
N0 | 31 (66%) | 12 (66.7%) | 19 (65.6%) | |
N1a | 5 (10.6%) | 1 (5.6%) | 4 (13.8%) | |
N1b | 3 (6.4%) | 0 (0%) | 3 (10.4%) | |
N2a | 4 (8.5%) | 3 (16.7%) | 1 (3.4%) | |
N2b | 4 (8.5%) | 2 (11%) | 2 (6.8%) | |
Resection margins a | 0.383 | |||
R1 | 1 (2.1%) | 1 (5.6%) | 0 (0%) | |
R0 | 46 (97.9%) | 17 (94.4%) | 29 (100%) | |
Modified Ryan TRG a | 0.743 | |||
0–1 | 10 (21.3%) | 3 (16.7%) | 7 (24.2%) | |
2 | 23 (49%) | 10 (55.5%) | 13 (44.8%) | |
3 | 14 (29.7%) | 5 (27.8%) | 9 (31%) | |
Tumor downstage a | ||||
pT | 0.529 | |||
Yes | 21 (44.7%) | 7 (38.9%) | 14 (48.3%) | |
No | 26 (55.3%) | 11 (61.1%) | 15 (51.7%) | |
pN | 0.334 | |||
Yes | 35 (74.5%) | 12 (66.7%) | 23 (79.3%) | |
No | 12 (25.5%) | 6 (33.3%) | 6 (20.7%) | |
pT or N | 0.455 | |||
Yes | 39 (83%) | 14 (77.8%) | 25 (86.2%) | |
No | 8 (17%) | 4 (22.2%) | 4 (13.8%) |
Variable | Number | % |
---|---|---|
Age (years) (SD) | 63 (8.2) | N/A |
Gender | ||
Male | 7 | 63.6 |
Female | 4 | 36.4 |
ECOG | ||
0–1 | 10 | 89.9 |
2 | 1 | 10.1 |
Stage | ||
I | 4 | 36.3 |
II | 2 | 18.2 |
III | 5 | 45.5 |
Histology | ||
Adenocarcinoma—NOS | 8 | 72.7 |
Adenocarcinoma—mucinous | 3 | 27.3 |
Cytoplasm/Membrane staining | ||
26–49% | 1 | 9.1 |
>50% | 10 | 90.9 |
Membranal intensity | ||
Weak | 3 | 27.3 |
Moderate | 5 | 45.4 |
Strong | 5 | 27.3 |
Composite score | ||
Low expression | 3 | 27.3 |
High expression | 8 | 72.7 |
Tumor stroma | ||
Weak | 1 | 9 |
Moderate | 5 | 45.5 |
Strong | 5 | 45.5 |
pT stage | ||
1 | 1 | 9% |
2 | 3 | 27% |
3 | 7 | 64% |
pN stage | ||
0 | 6 | 54.5% |
1a | 3 | 27.3% |
1b | 1 | 9.1% |
2a | 0 | 0% |
2b | 1 | 9.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Curcean, S.; Hendea, R.M.; Buiga, R.; Tipcu, A.; Curcean, A.; Vlad, C.; Fekete, Z.; Muntean, A.-S.; Martin, D.; Irimie, A. B7H3 Immune Checkpoint Overexpression Is Associated with Decreased Complete Response Rates to Neoadjuvant Therapy in Locally Advanced Rectal Cancer. Diagnostics 2024, 14, 2023. https://doi.org/10.3390/diagnostics14182023
Curcean S, Hendea RM, Buiga R, Tipcu A, Curcean A, Vlad C, Fekete Z, Muntean A-S, Martin D, Irimie A. B7H3 Immune Checkpoint Overexpression Is Associated with Decreased Complete Response Rates to Neoadjuvant Therapy in Locally Advanced Rectal Cancer. Diagnostics. 2024; 14(18):2023. https://doi.org/10.3390/diagnostics14182023
Chicago/Turabian StyleCurcean, Sebastian, Raluca Maria Hendea, Rares Buiga, Alexandru Tipcu, Andra Curcean, Catalin Vlad, Zsolt Fekete, Alina-Simona Muntean, Daniela Martin, and Alexandru Irimie. 2024. "B7H3 Immune Checkpoint Overexpression Is Associated with Decreased Complete Response Rates to Neoadjuvant Therapy in Locally Advanced Rectal Cancer" Diagnostics 14, no. 18: 2023. https://doi.org/10.3390/diagnostics14182023
APA StyleCurcean, S., Hendea, R. M., Buiga, R., Tipcu, A., Curcean, A., Vlad, C., Fekete, Z., Muntean, A. -S., Martin, D., & Irimie, A. (2024). B7H3 Immune Checkpoint Overexpression Is Associated with Decreased Complete Response Rates to Neoadjuvant Therapy in Locally Advanced Rectal Cancer. Diagnostics, 14(18), 2023. https://doi.org/10.3390/diagnostics14182023