Radiofrequency Echographic Multi Spectrometry (REMS) Technology for Bone Health Status Evaluation in Kidney Transplant Recipients
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
3.1. Study Population
3.2. Diagnostic Classification of DXA and REMS
3.3. Diagnostic Agreement
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Evenepoel, P.; Cunningham, J.; Ferrari, S.; Haarhaus, M.; Javaid, M.K. European Consensus Statement on the diagnosis and management of osteoporosis in chronic kidney disease stages G4–G5D. Nephrol. Dial. Translantation 2021, 36, 42–59. [Google Scholar] [CrossRef] [PubMed]
- Nikkel, L.E.; Hollenbeak, C.S.; Fox, E.J.; Uemura, T.; Ghahramani, N. Risk of fractures after renal transplantation in the United States. Clin. Transplant. Res. 2009, 87, 1846–1851. [Google Scholar] [CrossRef] [PubMed]
- Sukumaran Nair, S.; Lenihan, C.R.; Montez-Rath, M.E.; Lowenberg, D.W.; Chertow, G.M.; Winkelmayer, W.C. Temporal trends in the incidence, treatment and outcomes of hip fracture after first kidney transplantation in the United States. Am. J. Transplant. 2014, 14, 943–951. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.L.S.; Cunningham, J. Bone disease after kidney transplantation. In Bone Disease of Organ Transplantation; Elsevier Inc.: Amsterdam, The Netherlands, 2005. [Google Scholar] [CrossRef]
- Bouquegneau, A.; Salam, S.; Delanaye, P.; Eastell, R.; Khwaja, A. Bone disease after kidney transplantation. Clin. J. Am. Soc. Nephrol. 2016, 11, 1282–1296. [Google Scholar] [CrossRef]
- Mazzaferro, S.; Diacinti, D.; Proietti, E.; Barresi, G.; Baldinelli, M.; Pisani, D.; D’Erasmo, E.; Pugliese, F. Morphometric X-ray absorptiometry in the assessment of vertebral fractures in renal transplant patients. Nephrol. Dial. Transplant. 2006, 21, 466–471. [Google Scholar] [CrossRef]
- NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy. Osteoporosis Prevention, Diagnosis, and Therapy. JAMA 2001, 285, 785–795. [Google Scholar] [CrossRef] [PubMed]
- Khairallah, P.; Nickolas, T.L. Bone and Mineral Disease in Kidney Transplant Recipients. Clin. J. Am. Soc. Nephrol. 2021, 17, 121–130. [Google Scholar] [CrossRef]
- Gregorini, M.; Sileno, G.; Pattonieri, E.F.; Corradetti, V.; Abelli, M.; Ticozzelli, E.; Scudeller, L.; Grignano, M.A.; Esposito, P.; Bogliolo, L.; et al. Understanding Bone Damage After Kidney Transplantation: A Retrospective Monocentric Cross Sectional Analysis. Transplant. Proc. 2017, 49, 650–657. [Google Scholar] [CrossRef]
- Dolgos, S.; Hartmann, A.; Bønsnes, S.; Ueland, T.; Isaksen, G.A.; Godang, K.; Pfeffer, P.; Bollerslev, J. Determinants of bone mass in end-stage renal failure patients at the time of kidney transplantation. Clin. Transplant. 2008, 22, 462–468. [Google Scholar] [CrossRef]
- Nickolas, T.L.; McMahon, D.J.; Shane, E. Relationship between moderate to severe kidney disease and hip fracture in the United States. J. Am. Soc. Nephrol. 2006, 17, 3223–3232. [Google Scholar] [CrossRef]
- Dooley, A.C.; Weiss, N.S.; Kestenbaum, B. Increased Risk of Hip Fracture Among Men With CKD. Am. J. Kidney Dis. 2008, 51, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Julian, B.A.; Laskow, D.A.; Dubovsky, J.; Dubovsky, E.V.; Curtis, J.J.; Quarles, L.D. Rapid loss of vertebral mineral density after renal transplantation. N. Engl. J. Med. 1991, 325, 544–550. [Google Scholar] [CrossRef] [PubMed]
- Ball, A.M.; Gillen, D.L.; Sherrard, D.; Weiss, N.S.; Emerson, S.S.; Seliger, S.L.; Kestenbaum, B.R.; Stehman-Breen, C. Risk of hip fracture among dialysis and renal transplant recipients. J. Am. Med. Assoc. 2002, 288, 3014–3018. [Google Scholar] [CrossRef]
- Sotomayor, C.G.; Benjamens, S.; Gomes-Neto, A.W.; Pol, R.A.; Groothof, D.; Te Velde-Keyzer, C.A.; Chong, G.; Glaudemans, A.W.J.M.; Berger, S.P.; Bakker, S.J.L.; et al. Bone Mineral Density and Aortic Calcification: Evidence for a Bone-vascular Axis after Kidney Transplantation. Transplantation 2021, 105, 231–239. [Google Scholar] [CrossRef]
- Albano, D.; Agnollitto, P.M.; Petrini, M.; Biacca, A.; Ulivieri, F.M.; Sconfienza, L.M.; Messina, C. Operator-Related Errors and Pitfalls in Dual Energy X-Ray Absorptiometry: How to Recognize and Avoid Them. Acad. Radiol. 2021, 28, 1272–1286. [Google Scholar] [CrossRef]
- Tomai Pitinca, M.D.; Fortini, P.; Gonnelli, S.; Caffarelli, C. Could Radiofrequency Echographic Multi-Spectrometry (REMS) Overcome the Limitations of BMD by DXA Related to Artifacts? A Series of 3 Cases. J. Ultrasound Med. 2021, 40, 2773–2777. [Google Scholar] [CrossRef]
- Diez-Perez, A.; Brandi, M.L.; Al-Daghri, N.; Branco, J.C.; Bruyère, O.; Cavalli, L.; Cooper, C.; Cortet, B.; Dawson-Hughes, B.; Dimai, H.P.; et al. Radiofrequency echographic multi-spectrometry for the in-vivo assessment of bone strength: State of the art—Outcomes of an expert consensus meeting organized by the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Mus. Aging Clin. Exp. Res. 2019, 31, 1375–1389. [Google Scholar] [CrossRef]
- Caffarelli, C.; Tomai Pitinca, M.D.; Al Refaie, A.; De Vita, M.; Catapano, S.; Gonnelli, S. Could radiofrequency echographic multispectrometry (REMS) overcome the overestimation in BMD by dual-energy X-ray absorptiometry (DXA) at the lumbar spine? BMC Musculoskelet. Disord. 2022, 23, 469. [Google Scholar] [CrossRef] [PubMed]
- Conversano, F.; Franchini, R.; Greco, A.; Soloperto, G.; Chiriacò, F.; Casciaro, E.; Aventaggiato, M.; Renna, M.D.; Pisani, P.; Di Paola, M.; et al. A novel ultrasound methodology for estimating spine mineral density. Ultrasound Med. Biol. 2015, 41, 281–300. [Google Scholar] [CrossRef]
- Casciaro, S.; Peccarisi, M.; Pisani, P.; Franchini, R.; Greco, A.; De Marco, T.; Grimaldi, A.; Quarta, L.; Quarta, E.; Muratore, M.; et al. An Advanced Quantitative Echosound Methodology for Femoral Neck Densitometry. Ultrasound Med. Biol. 2016, 42, 1337–1356. [Google Scholar] [CrossRef]
- Cortet, B.; Dennison, E.; Diez-Perez, A.; Locquet, M.; Muratore, M.; Nogués, X.; Ovejero Crespo, D.; Quarta, E.; Brandi, M.L. Radiofrequency Echographic Multi Spectrometry (REMS) for the diagnosis of osteoporosis in a European multicenter clinical context. Bone 2021, 143, 115786. [Google Scholar] [CrossRef] [PubMed]
- Di Paola, M.; Gatti, D.; Viapiana, O.; Cianferotti, L.; Cavalli, L.; Caffarelli, C.; Conversano, F.; Quarta, E.; Pisani, P.; Girasole, G.; et al. Radiofrequency echographic multispectrometry compared with dual X-ray absorptiometry for osteoporosis diagnosis on lumbar spine and femoral neck. Osteoporos. Int. 2018, 30, 391–402. [Google Scholar] [CrossRef] [PubMed]
- Greco, A.; Pisani, P.; Conversano, F.; Soloperto, G.; Renna, M.D.; Muratore, M.; Casciaro, S. Ultrasound Fragility Score: An innovative approach for the assessment of bone fragility. Measurement 2017, 101, 236–242. [Google Scholar] [CrossRef]
- Kanis, J.A. Assessment of Osteoporosis at the Primary Health Care Level; WHO Scientific Group Technical Report; University of Sheffield: Sheffield, UK, 2007; pp. 1–339. [Google Scholar]
- Fassio, A.; Andreola, S.; Gatti, D.; Bianco, B.; Gatti, M.; Gambaro, G.; Rossini, M.; Viapiana, O.; Negrelli, R.; Adami, G. Radiofrequency echographic multi-spectrometry and DXA for the evaluation of bone mineral density in a peritoneal dialysis setting. Aging Clin. Exp. Res. 2023, 35, 185–192. [Google Scholar] [CrossRef]
- Yoon, H.; Kim, J.-H.; Ryu, D.-S.; Yoon, S.-H. What Causes the Discrepancy between Quantitative Computed Tomography and Dual Energy X-ray Absorptiometry? Nerve 2021, 7, 64–70. [Google Scholar] [CrossRef]
- Caffarelli, C.; Tomai Pitinca, M.D.; Al Refaie, A.; Ceccarelli, E.; Gonnelli, S. Ability of radiofrequency echographic multispectrometry to identify osteoporosis status in elderly women with type 2 diabetes. Aging Clin. Exp. Res. 2021, 34, 121–127. [Google Scholar] [CrossRef]
- Rolla, M.; Halupczok-Zyla, J.; Jawiarczyk-Przybylowska, A.; Bolanowski, M. Bone densitometry by radiofrequency echographic multi-spectrometry (REMS) in acromegaly patients. Endokrynol. Pol. 2020, 71, 524–531. [Google Scholar] [CrossRef]
- Adami, G.; Arioli, G.; Bianchi, G.; Brandi, M.L.; Caffarelli, C.; Cianferotti, L.; Gatti, D.; Girasole, G.; Gonnelli, S.; Manfredini, M.; et al. Radiofrequency echographic multi spectrometry for the prediction of incident fragility fractures: A 5-year follow-up study. Bone 2020, 134, 115297. [Google Scholar] [CrossRef]
- Adami, G.; Fassio, A.; Gatti, D.; Viapiana, O.; Benini, C.; Danila, M.I.; Saag, K.G.; Rossini, M. Osteoporosis in 10 years time: A glimpse into the future of osteoporosis. Ther. Adv. Musculoskelet. Dis. 2022, 14, 1759720X221083541. [Google Scholar] [CrossRef]
- Pisani, P.; Conversano, F.; Muratore, M.; Adami, G.; Brandi, M.L.; Caffarelli, C.; Casciaro, E.; Di Paola, M.; Franchini, R.; Gatti, D.; et al. Fragility Score: A REMS-based indicator for the prediction of incident fragility fractures at 5 years. Aging Clin. Exp. Res. 2023, 35, 763–773. [Google Scholar] [CrossRef]
Lumbar Spine | Femoral Neck | Total Hip | |
---|---|---|---|
Gender | 22 men and 18 women | 22 men and 18 women | 22 men and 18 women |
Age (years) | 60.43 ± 9.8 | 58.51 ± 11.2 | 58.51 ± 11.2 |
Height (cm) | 166.05 ± 9.56 | 165.54 ± 9.38 | 165.54 ± 9.38 |
Weight (kg) | 67.1 ± 12.62 | 65.18 ± 12.67 | 65.18 ± 12.67 |
BMI (kg/m2) | 24.3 ± 4.3 | 23.8 ± 4.2 | 23.8 ± 4.2 |
DXA-BMD | 0.929 ± 0.2 | 0.654 ± 0.1 | 0.784 ± 0.2 |
REMS-BMD | 0.865 ± 0.1 | 0.655 ± 0.1 | 0.795 ± 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fassio, A.; Adami, G.; Andreola, S.; Ferraro, P.M.; Pisani, P.; Lombardi, F.A.; Viapiana, O.; Rossini, M.; Caletti, C.; Gambaro, G.; et al. Radiofrequency Echographic Multi Spectrometry (REMS) Technology for Bone Health Status Evaluation in Kidney Transplant Recipients. Diagnostics 2024, 14, 2106. https://doi.org/10.3390/diagnostics14182106
Fassio A, Adami G, Andreola S, Ferraro PM, Pisani P, Lombardi FA, Viapiana O, Rossini M, Caletti C, Gambaro G, et al. Radiofrequency Echographic Multi Spectrometry (REMS) Technology for Bone Health Status Evaluation in Kidney Transplant Recipients. Diagnostics. 2024; 14(18):2106. https://doi.org/10.3390/diagnostics14182106
Chicago/Turabian StyleFassio, Angelo, Giovanni Adami, Stefano Andreola, Pietro Manuel Ferraro, Paola Pisani, Fiorella Anna Lombardi, Ombretta Viapiana, Maurizio Rossini, Chiara Caletti, Giovanni Gambaro, and et al. 2024. "Radiofrequency Echographic Multi Spectrometry (REMS) Technology for Bone Health Status Evaluation in Kidney Transplant Recipients" Diagnostics 14, no. 18: 2106. https://doi.org/10.3390/diagnostics14182106
APA StyleFassio, A., Adami, G., Andreola, S., Ferraro, P. M., Pisani, P., Lombardi, F. A., Viapiana, O., Rossini, M., Caletti, C., Gambaro, G., Gatti, M., & Gatti, D. (2024). Radiofrequency Echographic Multi Spectrometry (REMS) Technology for Bone Health Status Evaluation in Kidney Transplant Recipients. Diagnostics, 14(18), 2106. https://doi.org/10.3390/diagnostics14182106